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Outline of the talk

Stability in Gagliardo-Nirenberg-Sobolev inequalities:
nonlinear flows, regularity and the entropy method

@ Gagliardo-Nirenberg-Sobolev inequalities
by variational methods
@ A special family of Gagliardo-Nirenberg-Sobolev inequalities
@ Stability results by variational methods

© The fast diffusion equation and the entropy methods
@ Rényi entropy powers
@ Improved Spectral gaps and Asymptotics
@ Initial time layer

© Constructive Regularity for FDE and Stability for GNS

Global Harnack Principle and Regularity Estimates
Uniform convergence in relative error

The threshold time

Improved entropy-entropy production inequality
Constructive Stability Results
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A celebrated example: Sobolev inequality
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for all f e C® (actually all f e H'(R?)).

@ Validity of the inequality:
any constant .#; > 0 would do!
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A celebrated example: Sobolev inequality
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for all f e C® (actually all f e H'(R?)).

@ Validity of the inequality:
any constant .#; > 0 would do!

© Establish the optimal inequality:
find optimal functions (equality) and best constant .#; > 0.
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A celebrated example: Sobolev inequality
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2d
-2 (R4)

for all f e C® (actually all f e H'(R?)).
@ Validity of the inequality:
any constant .#; > 0 would do!

© Establish the optimal inequality:
find optimal functions (equality) and best constant .#; > 0.

© The question of stability:
if a function satisfies almost equality, can we say that it is almost
an optimal one?
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Heat Equation VS Nash Inequalities

(HE) {OtuzAu in RY x (0, T),

u-0)=uy onR4,
Solutions satisfy the ultracontractive estimates (smoothing effects)

a
]l

(oo =C

the powers a, 8 are fixed by space-time scalings (and mass cons.).
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Heat Equation VS Nash Inequalities

(HE) {OtuzAu in RY x (0, T),

u-0)=uy onR4,
Solutions satisfy the ultracontractive estimates (smoothing effects)

a
]l

(oo =C

the powers a, 8 are fixed by space-time scalings (and mass cons.).
The representation formula makes it easy to prove smoothings

_lluoll
lu(x, t)|=URd (Y Ha(x -y, 0)dy| <k t;,zl

just using the on diagonal bounds on Hy

_ lx=yl?

e K
OSHA(x_y’t)_WSW
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The Nash/GNS Inequality via Smoothing Effect.

Ifllz <21V FIS1F1170
Derive the L2-Norm:

%fwu(t)zdx:—zf Vu(d)?dx zj IVuo|* dx

where the latter follows by

| )
. f [Vu( )\Zd.\':Z[ Vu-Vorudx = —2[ (Au) dx<0
dt Jrd Rd

Integrating the diff. ineq. and using the smoothing effects we obtain

| ull3
rdl2

luoll3 < tIVuoll3 + w3 < tIVugll3 +x
Optimizing in r gives the Nash inequality for f = ug.
Smoothing Effects via Nash/GNS inequalities

@ Nash proved that the smoothing are implied by “his” inequality, using a
nice duality trick, exploiting the symmetry of the heat semigroup.

@ Moser showed that the symmetry of the semigroup is not needed, if one
uses his celebrated iteration.



The Nash/GNS Inequality via Smoothing Effect.
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((ilt[ IVu(t)I dx = 2/ Vu- Vatudx——zf (Au) dx=<0
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Ifl2 < ZIVAIGIFITY
Derive the L2-Norm:

d 24 _ 2 2
E_[Rd u(e) dx——ZIRdIVu(t)I dxz—ZfRdIVuol dx

where the latter follows by
d[ IVu()?dx = 2[ Vu-Vatudx:—Zf (Auw?dx=<0
dr R4

Integrating the diff. ineq. and using the smoothing effects we obtain

luo 12
d/z

luol3 < £Vl + lu(n)l3 < ¢ Vugll3 +%

Matteo Bonforte Stability in Gagliardo-Nirenberg-Sobolev inequalities



The Nash/GNS Inequality via Smoothing Effect.

Ifl2 < ZIVAIGIFITY
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Integrating the diff. ineq. and using the smoothing effects we obtain

luo 12
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Optimizing in ¢ gives the Nash inequality for f = ug.
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The Nash/GNS Inequality via Smoothing Effect.

Ifl2 < ZIVAIGIFITY
Derive the L2-Norm:

d 24 _ 2 2
E.[Rd u(e) dx——ZIRdIVu(t)I dxz—ZfRdIVuol dx

where the latter follows by

((ijt[ IVu(t)I dx = 2/ Vu- Vatudx——zf (Au) dx<0
Integrating the diff. ineq. and using the smoothing effects we obtain

luol?
d/z

luoll3 < t1Vuoll3 + w3 < tIVugll +x
Optimizing in ¢ gives the Nash inequality for f = ug.
Smoothing Effects via Nash/GNS inequalities

@ Nash proved that the smoothing are implied by “his” inequality, using a
nice duality trick, exploiting the symmetry of the heat semigroup.

@ Moser showed that the symmetry of the semigroup is not needed, if one
uses his celebrated iteration.

> Nash/GNS ineq. and Smoothing Effects for the HE are equivalent!
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A special family of Gagliardo-Nirenberg-Sobolev inequalities

GNS by variational methods
Yy Stability results by variational methods

Gagliardo-Nirenberg-Sobolev inequalities by variational methods

Consider the following family of inequalities

A special family of Gagliardo-Nirenberg-Sobolev inequalities

(GNS) 19512 171,25 = Gans ) 11,
with
0= d(p-1) (I,400) ifd=1,2 )
(d+2-p(d-2)p’ (1,p*l  ifd=3, p*=%=27

> The validity of the inequality (no sharp constant) is due to [Sobolev 1938], [Gagliardo,
Nirenberg 1958], but also DeGiorgi, Hardy, Ladyzenskaya, Littlewood, . ..
> The family contains the classical Sobolev Inequality: p = p*

2 2
Sa IV 122 gy 2 1250
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(GNS) 19712 17155 = Gons @) £,

dp-1) ) { (1,400) ifd=1

0= Gr-pa-2p (Lp*l  ifd=3, P*—dd =5

> Up to translations, multiplications by a constant and scalings, there is a unique
optimal function which also provides the value of the optimal constant.

1

g(x) = (1+1x?) 7
> The Sobolev Case p = p* was obtained by [Aubin, Talenti (1976)]...
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> Up to translations, multiplications by a constant and scalings, there is a unique
optimal function which also provides the value of the optimal constant.

1

g(x) = (1+1x?) 7

> The Sobolev Case p = p* was obtained by [Aubin, Talenti (1976)]...
..and (before) by [Rodemich (1966)],




A special family of Gagliardo-Nirenberg-Sobolev inequalities

GNS by variational methods
Yy Stability results by variational methods

Optimal functions ...

(GNS) 19715 17115 2 Gons (o) [ £,
0= d(p-1) P (1,+00) ifd=1 .
(@+2=pd=2)p’ W,p*)  ifd=3, pr= -2

> Up to translations, multiplications by a constant and scalings, there is a unique
optimal function which also provides the value of the optimal constant.

g0 =(1+ |x|2)_ﬁ

> The Sobolev Case p = p* was obtained by [Aubin, Talenti (1976)]...
...and (before) by [Rodemich (1966)], while the general case was established in 2002

Theorem (Optimal GNS [Del Pino - Dolbeault (2002)])
Equality case in (GNS) is achieved if and only if

fem:= {g,l,”'y S (A1, ¥) € (0, +00) X R x Rd}

Aubin-Talenti functions: ‘ Ay (X) =g ((x=»iA) ‘
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A special family of Gagliardo-Nirenberg-Sobolev inequalities

GNS by variational methods
Yy Stability results by variational methods

..and the optimal constant

(GNS) 19702 1713 = Gons ) 171,

Theorem (Optimal GNS [Del Pino - Dolbeault (2002)])

Equality case in (GNS) is achieved if and only if

feN:= {glyy,y (A, y) €(0,+00) xR x Rd}

L
=il

Aubin-Talenti functions gy ., (x) := pg((x—y)/A), g(x) = (1+|x|*) "7
and optimal constant

(2 ) e 08 L G
Gans(p) = (%) (75 -4)"

(d+2-p(d-2)) 2p(d+2-p(d-2)

Matteo Bonforte Stability in Gagliardo-Nirenberg-Sobolev inequalities



GNS by variational methods A spgmal family of Gagl|§rdo-N|renberg-Sobolev inequalities
Stability results by variational methods

| Bwalysis Semimer - Spring 1964
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A special family of Gagliardo-Nirenberg-Sobolev inequalities

GNS by variational methods
i Stability results by variational methods

The stability result of G. Bianchi and H. Egnell

In Sobolev’s inequality (with optimal contant S;),
0lf1:=Sa IIVfIILz(Rd) ||f||L2* ®D) =

is there a natural way to bound the Lh.s. from below in terms of a “distance”
to the set of optimal [Aubin-Talenti] functions when d =3 ?

A question raised in [Brezis-Lieb (1985)]

> [Bianchi-Egnell (1991)] There is a positive constant ¢ such that

SalV Uz gty = Nz oy = € A0 1 F =V, g
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A special family of Gagliardo-Nirenberg-Sobolev inequalities

GNS by variational methods
i Stability results by variational methods

The stability result of G. Bianchi and H. Egnell

In Sobolev’s inequality (with optimal contant S;),
0lf1:=Sa IIVfIILz(Rd) ”f”LZ*(Rd)

is there a natural way to bound the Lh.s. from below in terms of a “distance”
to the set of optimal [Aubin-Talenti] functions when d =3 ?

A question raised in [Brezis-Lieb (1985)]

> [Bianchi-Egnell (1991)] There is a positive constant ¢ such that

Sa IIVfIILz(Rd) ”f”LZ*(Rd) =cC 1nf IVf- VtPIILZ(Rd)
> Various improvements, e.g., [Cianchi, Fusco Maggi, Pratelli (2009)]
there are constants « and x and f — A(f) such that

SalVFIL gay = (L+K AN NFIE o,
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A special family of Gagliardo-Nirenberg-Sobolev inequalities

GNS by variational methods
i Stability results by variational methods

The stability result of G. Bianchi and H. Egnell

In Sobolev’s inequality (with optimal contant S;),
0lf1:=Sa IIVfIILZ(Rd) ||f||L2* ®D =

is there a natural way to bound the Lh.s. from below in terms of a “distance”
to the set of optimal [Aubin-Talenti] functions when d =3 ?

A question raised in [Brezis-Lieb (1985)]

> [Bianchi-Egnell (1991)] There is a positive constant ¢ such that

SalV Uz gty = Nz oy = € A0 1 F =V, g

> Various improvements, e.g., [Cianchi, Fusco Maggi, Pratelli (2009)]
there are constants « and x and f — A(f) such that

SalVFIL gay = (L+K AN NFIE o,

> L9-norm of gradient [Figalli, Maggi, Pratelli (2010,13)], [Figalli, Neu-
mayer (2018)], [Neumayer (2020)], [Figalli, Zhang (2020)]
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A special family of Gagliardo-Nirenberg-Sobolev inequalities

GNS by variational methods
i Stability results by variational methods

The stability result of G. Bianchi and H. Egnell

In Sobolev’s inequality (with optimal contant S;),
0lf1:=Sa IIVfIILZ(Rd) ||f||L2* ®D =

is there a natural way to bound the Lh.s. from below in terms of a “distance”
to the set of optimal [Aubin-Talenti] functions when d =3 ?

A question raised in [Brezis-Lieb (1985)]

> [Bianchi-Egnell (1991)] There is a positive constant ¢ such that

SalV Uz gty = Nz oy = € A0 1 F =V, g

> Various improvements, e.g., [Cianchi, Fusco Maggi, Pratelli (2009)]
there are constants « and x and f — A(f) such that

Sa ||Vf||Lz(Rd) (1 +x A(f) )||f||L2* ®%
> L9-norm of gradient [Figalli, Maggi, Pratelli (2010,13)], [Figalli, Neu-

mayer (2018)], [Neumayer (2020)], [Figalli, Zhang (2020)]
> GNS by [Carlen, Figalli (2013)], [Seuffert (2017)], [Nguyen (2019)]
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A special family of Gagliardo-Nirenberg-Sobolev inequalities

GNS by variational methods
i Stability results by variational methods

The stability result of G. Bianchi and H. Egnell

In Sobolev’s inequality (with optimal contant S;),
0lf1:=Sa IIVfIILZ(Rd) ||f||L2* ®D =

is there a natural way to bound the Lh.s. from below in terms of a “distance”
to the set of optimal [Aubin-Talenti] functions when d =3 ?

A question raised in [Brezis-Lieb (1985)]

> [Bianchi-Egnell (1991)] There is a positive constant ¢ such that

Sa IIVfIILZ(Rd) ||f||L2* ®hH =€ 1nf IVf- V(PIILZ(W)
> Various improvements, e.g., [Cianchi, Fusco Maggi, Pratelli (2009)]
there are constants « and x and f — A(f) such that
Sa IIVfHLz(Rd) (1+x A )Ilflng* ®%
> L9-norm of gradient [Figalli, Maggi, Pratelli (2010,13)], [Figalli, Neu-
mayer (2018)], [Neumayer (2020)], [Figalli, Zhang (2020)]
> GNS by [Carlen, Figalli (2013)], [Seuffert (2017)], [Nguyen (2019)]

> However, the question of constructive estimates was/is still widely open
> Recent result by [Dolbeault, Esteban, Figalli, Frank, Loss 2023] (Sobolev)

Matteo Bonforte Stability in Gagliardo-Nirenberg-Sobolev inequalities



Recall the optimal GNS

(GNS) 19713 1711 2 Gans ) £z,
> (Non-scale invariant Gagliardo-Nirenberg-Sobolev inequalities)
Lemma

(GNS) is equivalent to 5[ f1 =0 if and only if

JoNs = C(p, d) 6( \[S

d+2-p(d-2)

where Y= d—p(d-4)

and C(p,d) is an explicit positive constant

d
[Proof: Take f)(x) =127 f(Ax) and optimize on A > 0]

> A simplification:



Recall the optimal GNS

(GNS) IVF12 17151 2 ons () [1£z
> Deficit functional (Non-scale invariant Gagliardo-Nirenberg-Sobolev inequalities)
d-p(d-2)
81f1:= (=D |V, +a— == Iflpi ~ Hoxs I 112"
a \—v—’
b




A special family of Gagliardo-Nirenberg-Sobolev inequalities

GNS by variational methods
i Stability results by variational methods

Deficit, scale invariance

Recall the optimal GNS
(GNS) 19712 1711 = Gans () [ £,

> Deficit functional (Non-scale invariant Gagliardo-Nirenberg-Sobolev inequalities)

. d (d-2)
61f1:= (p= V2 [V F5+4 L= | FIly1 - Hons | /1))
N——
a T/
Lemma

(GNS) is equivalent to 5[ f1 = 0 if and only if

Hans = C(p, d)E30)

where y = % and C(p,d) is an explicit positive constant

Matteo Bonforte Stability in Gagliardo-Nirenberg-Sobolev inequalities




A special family of Gagliardo-Nirenberg-Sobolev inequalities

GNS by variational methods
i Stability results by variational methods

Deficit, scale invariance

Recall the optimal GNS
(GNS) 19712 1711 = Gans () [ £,

> Deficit functional (Non-scale invariant Gagliardo-Nirenberg-Sobolev inequalities)

. d (d-2)
61f1:= (p= V2 [V F5+4 L= | FIly1 - Hons | /1))
N——
a T/
Lemma

(GNS) is equivalent to 5[ f1 = 0 if and only if

Hans = C(p, d)E30)

where y = % and C(p,d) is an explicit positive constant

[Proof: Take f3(x) = )L% f(Ax) and optimize on A > 0]
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A special family of Gagliardo-Nirenberg-Sobolev inequalities

GNS by variational methods
i Stability results by variational methods

Deficit, scale invariance

Recall the optimal GNS
(GNS) 19712 1711 = Gans () [ £,

> Deficit functional (Non-scale invariant Gagliardo-Nirenberg-Sobolev inequalities)

. d (d-2)
61f1:= (p= V2 [V F5+4 L= | FIly1 - Hons | /1))
N——
a T/
Lemma

(GNS) is equivalent to 5[ f1 = 0 if and only if

Hans = C(p, d)E30)

where y = % and C(p,d) is an explicit positive constant

da
[Proof: Take f3(x) =A2r f(Ax) and optimize on A > 0]
> A simplification: 6[f] = 6[|f]] so we shall assume that f =0 a.e.
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Relative entropy

FUf1i= 1L fou (17 - 87" - 52817 (120 -g77))dx
Deficit functional ) , )
i
81f1:=a|VFl;+ b flle - Fen | £]5, =0

Letd=1andpe(,p*). There is a ¢ >0 such that

Olf1=2€ ZIf]

forany few :={f e L'®R%, (1 +|x)?dx) : Vf e L2R?, dx)} such that

fRdfz’”(l.x)dx=fRd lg?? (1, x)dx




A special family of Gagliardo-Nirenberg-Sobolev inequalities

GNS by variational methods
i Stability results by variational methods

Relative entropy, relative Fisher information

Idea of the proof of the Abstract Stability result:
> Free energy or relative entropy functional

2p p+l_ _p+l _ 1+p 2p
SUfIgl= 1 | (17 8" = TR g (12— g)) dx

> Relative Fisher information or Entropy production

L1l := f ((p-DVf+fPVgiPPdx

It turns out that the GNS is nothing but a Entropy - Entropy Production inequality:

Lemma (Entropy - Entropy Production inequality [Del Pino - Dolbeault (2002)]) |

D oUf1= 7 fler] - a6 flgs] =0
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A special family of Gagliardo-Nirenberg-Sobolev inequalities

GNS by variational methods
i Stability results by variational methods

A weak stability result and the entropy controls L! distance

Lemma (A weak stability result [Dolbeault-Toscani (2016)])

5If1Z E1f1g”

If fsz(l,x,lxlz)dx:f g2P,x1x1%)dx, geM
R4 R4

then 8iflgi=1 [ (1 -g")dx and SIA1Z IS8
1-p Jrd

Lemma (Csiszar-Kullback inequality [BDNS (2020)])
Letd =1 and p > 1. There exists a constant C,, > 0 such that

”pr_gzP“il(Rd)Scpg[ﬂg] if ”f“zp:”guzp

> The proof uses also:
@ the Carré du Champ method (nonlinear version of Bakry-Emery)
@ Concentration Compactness (that is where “we lose the constant™). []
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A special family of Gagliardo-Nirenberg-Sobolev inequalities

GNS by variational methods
i Stability results by variational methods

A constructive stability result by the “flow method”

The relative entropy

1+p 1-
Flfli=1= pfd(fp t_gh! _2ppg1 p(fZP—gZP))dx
The deficit functional

S1f1:=al| VI3 +b |10 - Han I £1507 0

Theorem (Constructive Stability for GNS BDNS (2020))

Letd=1,pe(,p*), A>0and G>0. There is an explicit constant
€ =%€(d,p, A G) >0 such that

Olf1=€ ZIf]

forany few :={f e L'®%, (1 +|x)?dx) : Vf e L2R?, dx)} such that

ffz’”dxzf lg?P dx, fxszdxzo
R R R

d—p(d—4) g
supr p-1 fz’ndXSA and g[f]SG

r>0 [x|>r
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ou

m
o Au
Letting
u=f2r so that u™ = fr
we have
pz;e(l,p*] = m= ptl €[my,1)
2m-1 2p
> and the Gagliardo-Nirenberg inequalities:

method in original variables.
> Selfsimilar variables: the
Self-similar solutions and the
> spectral analysis (Hardy-Poincaré inequality)
and to equilibrium.

>
Bringing the asymptotic improvement as ¢ — oo back to ¢ = 0.



0u_
or

Au™

Letting
u=f2r so that u™ = fr

we have

* p+1
ell,p’] <= m=
2m-1 2p

> The Rényi entropy powers and the Gagliardo-Nirenberg inequalities:
Nonlinear Carré du Champ method in original variables.

p= € [mlyl)



Original variables: Rényi entropy powers and Gag
The fast diffusion equation and the entropy methods Self-similar variables, spectral gap and asymptotics
The initial time layer improvement:

do-Nirenberg inequalities

ackward estimate

The fast diffusion equation and the entropy methods

ou
— =Au"
ot
Letting
u=f2"p so that u™ = frHl
we have

1 N p+1
p=——€e(l,p’] <= m=
2m-1 2p

> The Rényi entropy powers and the Gagliardo-Nirenberg inequalities:
Nonlinear Carré du Champ method in original variables.

> Selfsimilar variables: the Nonlinear Fokker-Plank FDE
Self-similar solutions and the entropy-entropy production method

€ [ml» ]-)
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Original variables: Rényi entropy powers and Gagliardo-Nirenberg inequalities
The fast diffusion equation and the entropy methods Self-similar variables, spectral gap and asymptotics
The initial time layer improvement: backward estimate

The fast diffusion equation and the entropy methods

ou
— =Au"
ot
Letting
u=f2"p so that u™ = frHl
we have

1 N p+1
p=2—€(1,p] <~ m= €[my,1)

m-—1 2p
> The Rényi entropy powers and the Gagliardo-Nirenberg inequalities:
Nonlinear Carré du Champ method in original variables.
> Selfsimilar variables: the Nonlinear Fokker-Plank FDE
Self-similar solutions and the entropy-entropy production method

> Large time asymptotics: spectral analysis (Hardy-Poincaré inequality)
and improved rates of convergence to equilibrium.
Constructive regularity estimates needed.
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Original variables: Rényi entropy powers and Gagliardo-Nirenberg inequalities
The fast diffusion equation and the entropy methods Self-similar variables, spectral gap and asymptotics

The initial time layer improvement: backward estimate

The fast diffusion equation and the entropy methods

ou
— =Au"
ot
Letting
u=f2"p so that u™ = frHl
we have

1 N p+1
p:z—e(l,p] <~ m= €[my,1)

m-—1 2p
> The Rényi entropy powers and the Gagliardo-Nirenberg inequalities:
Nonlinear Carré du Champ method in original variables.
> Selfsimilar variables: the Nonlinear Fokker-Plank FDE
Self-similar solutions and the entropy-entropy production method
> Large time asymptotics: spectral analysis (Hardy-Poincaré inequality)
and improved rates of convergence to equilibrium.
Constructive regularity estimates needed.
> The initial time layer improvement: backward estimate.
Bringing the asymptotic improvement as t — oo back to £ =0.
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Consider the fast diffusion equation in R, d=1,me(0,1)

ou
(FDE) TS =Au

with initial datum u(t = 0, x) = ug(x) = 0 such that

fuodx=ﬂ>0 and flxlzuodx<+oo
R4 R4



Original variables: Rényi entropy powers and Gagliardo-Nirenberg inequalities
The fast diffusion equation and the entropy methods Self-similar variables, spectral gap and asymptotics
The initial time layer improvement: backward estimate

The fast diffusion equation in original variables

Consider the fast diffusion equation in [Rd, d=1,me(0,1)
ou
or

with initial datum u(t = 0, x) = ug(x) = 0 such that

(FDE) Au™

fuodx=ﬂ>0 and flxlzuodx<+oo
R4 Rd

The large time behavior is governed by the self-similar Barenblatt solutions

1 X
B(t,x):= B
(t,x) (Ktuu)d (Kt””)

1/
where p:=2+d(m-1),x:= |2“—m| * and 2 is the Barenblatt profile

m-1

B(x):=(C+ lez)_ﬁ

> Existence and uniqueness has been proven by [Herrero-Pierre (1981)] see
also [Vazquez (2006,07)]

Matteo Bonforte Stability in Gagliardo-Nirenberg-Sobolev inequalities



(i) Mass conservation. With m = m, := (d —2)/d and ug € L} (RY)

if u(t,x)dx=0
dt Jga h

Second moment. With m > d/(d +2) and ug € LL(U%Z’/, (1+]x%) dx)

Cl ) 2 - . m
T |x|“u(t,x)dx=2d u(t,x)dx
arl Jrd R4
Entropy estimate. With m = ,ul' € L' (R%) and
up € LI (R, (1 +|x[?) dx)
d ) m m- ) m—1,2
— u(t,x)dx = ulVu |“dx
dt Jra 1-m Jpd
and

and



(i) Mass conservation. With m = m, := (d —2)/d and ug € L} (RY)

if u(t,x)dx=0
dt Jga h

i) Second moment. With m > d/(d +2) and ug € LL (R?, (1 + |x|%) dx
+

i[ |x|2u(t,x)dx=2df u™(t,x)dx
dt Jra R4



Original variables: Rényi entropy powers and Gagliardo-Nirenberg inequalities
The fast diffusion equation and the entropy methods Self-similar variables, spectral gap and asymptotics

The initial time layer improvement: backward estimate

Mass, moment, entropy and Fisher information

(i) Mass conservation. With m = m, := (d —2)/d and ug € L1 (R%)

d
—f u(t,x)dx=0
dt Jpd

(ii) Second moment. With m > d/(d +2) and ugy € L} (R?, (1 + |x|?) dx
+

d
—f |x[? u(t,x)dxzzdf u™(t,x)dx
dt R4 R4
(iii) Entropy estimate. With m= my := (d-1)/d, ug’ e LY RY) and
up € L} (R, (1 +|x/?) dx)
2

d
—f u™(t,x)dx = mn fuqum_llzdx
dt Jpd 1—m Jpd
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Original variables: Rényi entropy powers and Gagliardo-Nirenberg inequalities
The fast diffusion equation and the entropy methods Self-similar variables, spectral gap and asymptotics

The initial time layer improvement: backward estimate

Mass, moment, entropy and Fisher information

(i) Mass conservation. With m = m, := (d —2)/d and ug € L1 (R%)

d
—f u(t,x)dx=0
dt Jpd

(ii) Second moment. With m > d/(d +2) and ugy € L} (R?, (1 + |x|?) dx
+

d
—f |x|2u(t,x)dx=2df u™(t,x)dx
d[ R4 R4
] ntropy estimate. With m=my :=(d—-1)/d, u}' € L' (R%) an
iii) Entropy esti With d-1)/d, ul e LY(RY) and
up € L} (R, (1 +|x/?) dx)
d 2
—f u™(t,x)dx = mn fuqum_llzdx
dt Jpd 1—m Jpd

Entropy functional and Fisher information functional

mz

T 0-m?2

E[u]::f u"dx and |[u]: fuqum_llzdx
R R4
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> Nonlinear Carré du champ method (adapted from D. Bakry and M. Emery)

Ou_aum, Eo Aoy

=AU, ==
ar S 4 ar

deduce that | — AF is monotone non-increasing with limit 0

Mul = AF[ul



Original variables: Rényi entropy powers and Gagliardo-Nirenberg inequalities
The fast diffusion equation and the entropy methods Self-similar variables, spectral gap and asymptotics

The initial time layer improvement: backward estimate

From the carré du champ method to stability results

> Nonlinear Carré du champ method (adapted from D. Bakry and M. Emery)

ou dE

Au dl -
or ©odr

-1, —=-Al
dt

deduce that | - AF is monotone non-increasing with limit 0

I[ul = AF[u]

Consequence: is equivalent to sharp GNS| 8[f] =0
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Original variables: Rényi entropy powers and Gagliardo-Nirenberg inequalities
The fast diffusion equation and the entropy methods Self-similar variables, spectral gap and asymptotics

The initial time layer improvement: backward estimate

From the carré du champ method to stability results

> Nonlinear Carré du champ method (adapted from D. Bakry and M. Emery)

ou . dE

Au dl -
or ©odr

-1, —=-Al
dt

deduce that | - AF is monotone non-increasing with limit 0
I[ul = AF[u]

Consequence: is equivalent to sharp GNS| 8[f] =0

> Improved constant means stability
Under some restrictions on the functions, there is some A, = A such that

\ I—AFz(A*—A)F\

We use linearization and improved Hardy-Poincaré Inequalities
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The fast diffusion equation and the entropy methods

Original variables: Rényi entropy powers and Gagliardo-Nirenberg inequalities
Self-similar variables, spectral gap and asymptotics

The initial time layer improvement: backward estimate

Stability in (subcritical) Gagliardo-Nirenberg inequalities: The Flow Method

Our strategy: a deep constructive analysis of the FDE flow for all times

Choosde > 0, small enough

Get a threshold time ty (€)

. *
‘ Backward estimate

Forward estimate

by entropy methods

Initial time layer

Matteo Bonforte

based on a spectral gap

Asymptotic time layer

Stability in Gagliardo-Nirenberg-Sobolev inequalities



With a time-dependent rescaling based on self-similar variables

1 X dR _
u(t,x) = A pd U(T,ﬁ) where T =RI*, ()= % logR(¢)
%—‘t‘ = Au™ is changed into a Fokker-Planck type equation
ov mel 2\ 120
(1) 5tV v(Vv —2x)] =0| and RB(x):=(C+|x[7) Tm
T




Original variables: Rényi entropy powers and
The fast diffusion equation and the entropy methods Self-similar variables, spectral gap and asymptotics
The initial time layer improvement: backward estimate

Self-similar variables: entropy-entropy production inequality

With a time-dependent rescaling based on self-similar variables

1 x dr
= E— _— = —H = l
u(t, x) A Rd v(r, KR) where a7 RF, 1(0):=35 logR(t)
9u — Ay™ ig changed into a Fokker-Planck type equation

t

(1) L v(va_l—Zx)]zo and gg(x)::(c+|x|2)‘ﬁ

ot
Generalized entropy (free energy) and Fisher information
1
Fwli=——|[ (V"-B"-mB" " (v-RB))dx
m Jprd

Fv] :=f v|vo 4 2)c|2 dx
Rd

are such that| £[v] =4.Z[v] |by (GNS) [Del Pino-Dolbeault (2002)]
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Original variables: Rényi entropy powers and Gagliardo-Nirenberg inequalities
The fast diffusion equation and the entropy methods Self-similar variables, spectral gap and asymptotics
The initial time layer improvement: backward estimate

Self-similar variables: entropy-entropy production inequality

With a time-dependent rescaling based on self-similar variables

1 x dr
= E— _— = —H = l
u(t, x) A Rd v(r, KR) where a7 RF, 1(0):=35 logR(t)
9u — Ay™ ig changed into a Fokker-Planck type equation

t

(1) L V(Vl/m_l—Zx)]=0 and 38()6)::(C+|x|2)_ﬁ

ot
Generalized entropy (free energy) and Fisher information
1
Fwli=——|[ (V"-B"-mB" " (v-RB))dx
m Jprd

vl :=f v|vo 4 2)c|2 dx
Rd
are such that| £[v] =4.Z[v] |by (GNS) [Del Pino-Dolbeault (2002)] so that

] Flv(t,)) < Flvgle ! ‘
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Original variables: Rényi entropy powers and Gagliardo-Nirenberg inequalities
The fast diffusion equation and the entropy methods Self-similar variables, spectral gap and asymptotics
The initial time layer improvement: backward estimate

Spectral gap: sharp asymptotic rates of convergence

[Blanchet, MB, Dolbeault, Grillo, Vazquez, BBDGV (2009) and BDGV (2010)]

(H) (c0+|x|2)‘ﬁ <vp=(C+ |x|2)‘ﬁ

Let Ag, 4 > 0 be the best constant in the Hardy—Poincaré inequality
Nea [ FPduamr= [ IVfPdpa ¥ feridua), [ fdhar=0
R4 R4 R4
with dpg = (1+|x[%)® dx, for a <0

Lemma ([BBDGV (2009), BDGV (2010)])
Under assumption (H), for all m € (0,1)

Fl(t,) <Ce 2" Y120, ym):=1-m)Aym-1a
Moreover|y(m):=2| if % =my < m< 1 (the case under consideration here)
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y(m)

[Denzler, McCann, 2005]
[BBDGYV, 2009] [BDGYV, 2010] [Dolbeault, Toscani, 2015]
Much more is know, e.g., [Denzler, Koch, McCann, 2015]



> Linearized free energy and linearized Fisher information

F[g]::mf gZQBZ_mdx and I[g]:=m(1—m)f IVgIZ.Qde
2 Jrd R4

[ Weighted linearization: consider v=8+h%*™gash—0]




Original variables: Rényi entropy powers and Gag
The fast diffusion equation and the entropy methods Self-similar variables, spectral gap and asymptotics
The initial time layer improvement: backward estimate

do-Nirenberg inequalities

The asymptotic time layer improvement

> Linearized free energy and linearized Fisher information

2
[ Weighted linearization: consider v=B+h%B*> Mg ash—0 ]
> Hardy-Poincaré inequality. Letd =1, me (mp,1)and g € LZ([R{d,.%Z_m dx)
such that Vg € L2(RY, B dx), [pa g B> " dx=0and [ xg B> "dx=0

Flgl:= degzggz—mdx and |[g] ::m(1—m)fd|Vg|293dx
R R

l[gl=4aF[g] where azZ—d(l—m)‘
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Original variables: Rényi entropy powers and Gagliardo-Nirenberg inequalities
The fast diffusion equation and the entropy methods Self-similar variables, spectral gap and asymptotics

The initial time layer improvement: backward estimate

The asymptotic time layer improvement

> Linearized free energy and linearized Fisher information

Flgl:= m g A ™dx and l[gl:==m( - m)f IVg|* Bdx
2 R4 R4
[ Weighted linearization: consider v=B+h%B*> Mg ash—0 ]
> Hardy-Poincaré inequality. Letd =1, me (my,1) and g € L2(RY, 982~™ d x)
such that Vg € L2(R%, Bdx), Jpa g B> Mdx=0and Jra xg B> "dx=0

‘I[g]24aF[g] where a=2—d(1—m)‘

Proposition (Asymptotic time layer improvement [BDNS (2021)])

Letme (my,1) ifd=2, me(1/3,1) ifd=1,n=2(dm-d+1) and
x=m/(266+56m). If [pa vdx =M, [paxvdx=0 and

A-8B<v=(1+¢e)AB

for some ¢ € (0, y 1), then

]J[u] >4 +n)Fv] \
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> Rephrasing the nonlinear carré du champ method:

Il . a2
Q2(v] = Z0] is such that a7 <2(@-4)




Original variables: Rényi entropy powers and Gagliardo-Nirenberg inequalities
The fast diffusion equation and the entropy methods Self-similar variables, spectral gap and asymptotics
The initial time layer improvement: backward estimate

The initial time layer improvement: backward estimate

> Rephrasing the nonlinear carré du champ method:

Qv := Al is such that @59(9—4)
Fv] dt
Lemma (Initial time layer improvement [BDNS (2021)])

Assume that m > my and v is a solution to (1) with nonnegative initial
datum vy. If for some n>0 and T >0, we have

ane=tT

Q[U(T,')]24+77, then Q[U(t,‘)]Z‘lﬁ‘m

Vitel0,T]
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Stability in (subcritical) Gagliardo-Nirenberg inequalities

The Threshold Time and Constructive Regularity
Improved entropy — entropy production inequality

Constructive stability results

Stability in (subcritical) Gagliardo-Nirenberg inequalities

Our strategy

Choosde > 0, small enough

Get a threshold time ty (€)

. *
‘ Backward estimate

Forward estimate

by entropy methods

Initial time layer

Matteo Bonforte

based on a spectral gap

Asymptotic time layer

Stability in Gagliardo-Nirenberg-Sobolev inequalities



The Threshold Time and Constructive Regularity
Stability in (suberitical) Gagliardo-Nirenberg inequalities Improved entropy — entropy production inequality

Constructive stability results

The threshold time and the uniform convergence in relative error (UCRE)

Theorem (Uniform convergence in relative error [BDNS (2021)])

Assume that me [mq,1) ifd=2, me (1/3,1) ifd=1 and let e € (0,1/2),
small enough, A> 0, and G >0 be given. There exists an explicit
threshold time t, = 0 such that, if u is a solution of

ou

@) = -

Au™

with nonnegative initial datum ug € L' (R?) satisfying

d(m-mc¢)
(Ha) supr (-m / updx < A<oo
>0 |x|>1
Jra Uodx = [pa Bdx =4 and| Fug] < G |, then
u(t,x)
sup —1l<e V=t
xERd %(t; x)
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Letme(my,1) ifd=2,me(1/3,1) ifd=1,e€(0,em,q), A>0andG>0

1+A-m 4 G2
£a

* = Cx

Wherea=%§:—ﬁ, a=d(m-m:) and9=v/(d+v)




The Threshold Time and Constructive Regularity
Stability in (suberitical) Gagliardo-Nirenberg inequalities Improved entropy — entropy production inequality

Constructive stability results

The Explicit Threshold Time: a Journey into Constructive Regularity

Proposition (Explicit threshold time [BDNS (2021)])

Letme(my, ) ifd=2, me1/3,1) ifd=1,e€(0,ey4), A>0and G>0

1+ A"+ G2

t* =Cx
e

Whereaz%%j—’m”, a=d(m-mg) and9=v/(d+v)

cx =Ci(m,d)= sup max{ex(e,m), ek (e, m), exz(e, m)}

€€(0,&,4)
e m)'—max{ 8¢ 23 My, }
pe Q+e)l-m—1"1-(1-glm
Ga)* 1K 8a!
Ka(e,m):=——5—— and k3(e,m)i= —————
eTm 9 1-(1-¢)
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The Threshold Time and Constructive Regularity
Stability in (suberitical) Gagliardo-Nirenberg inequalities Improved entropy — entropy production inequality

Constructive stability results

Global Harnack Principle and Uniform Convergence in Relative Error
The proof of UCRE requires various constructive regularity estimates:
Theorem (Characterization of GHP and UCRE [MB-Simonov (2021)])

Assume that m € (m¢,1) where m; := d , and if u is a solution to the Cauchy
problem for (FDE). Then the following assertions are equivalent
(i) The initial datum satisfies the tail condition H,, namely

d(m-mg)
(Ha) supr a-m up dx < oo
|x|>r

r>0
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The Threshold Time and Constructive Regularity
Stability in (suberitical) Gagliardo-Nirenberg inequalities Improved entropy — entropy production inequality

Constructive stability results

Global Harnack Principle and Uniform Convergence in Relative Error
The proof of UCRE requires various constructive regularity estimates:
Theorem (Characterization of GHP and UCRE [MB-Simonov (2021)])

Assume that m € (m¢,1) where m; := d , and if u is a solution to the Cauchy
problem for (FDE). Then the following assertions are equivalent
(i) The initial datum satisfies the tail condition H,, namely

d(m—mg¢)

(Ha) supr @-m f up dx < oo
|x|>r

r>0

(") The solution satisfies the tail condition H,, at some time t; € [0,00).
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The Threshold Time and Constructive Regularity
Stability in (suberitical) Gagliardo-Nirenberg inequalities Improved entropy — entropy production inequality

Constructive stability results

Global Harnack Principle and Uniform Convergence in Relative Error
The proof of UCRE requires various constructive regularity estimates:
Theorem (Characterization of GHP and UCRE [MB-Simonov (2021)])

Assume that m € (m¢,1) where m; := d , and if u is a solution to the Cauchy
problem for (FDE). Then the following assertions are equivalent
(i) The initial datum satisfies the tail condition H,, namely
d(m-mg)

(Ha) supr @-m f up dx < oo

r>0 [x|>r
(") The solution satisfies the tail condition H,, at some time t; € [0,00).
(ii) The Global Harnack Principle holds true: 311,72, M1, M > 0 such that

(GHP) B, (t—71,%) < ult, x) < By, (E+72,%),
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The Threshold Time and Constructive Regularity
Stability in (subcritical) Gagliardo-Nirenberg inequalities Improved entropy — entropy production inequality
Constructive stability results

Global Harnack Principle and Uniform Convergence in Relative Error
The proof of UCRE requires various constructive regularity estimates:
Theorem (Characterization of GHP and UCRE [MB-Simonov (2021)])

Assume that m € (m¢,1) where m; := d , and if u is a solution to the Cauchy
problem for (FDE). Then the following assertions are equivalent
(i) The initial datum satisfies the tail condition H,, namely
d(m-mg)

(Ha) supr @-m f up dx < oo

r>0 [x|>r
(") The solution satisfies the tail condition H,, at some time t; € [0,00).
(ii) The Global Harnack Principle holds true: 311,72, M1, M > 0 such that

(GHP) B, (t—71,%) < ult, x) < By, (E+72,%),

(iii) The solution “converges” uniformly in relative error to the Barenblatt
solution with the same mass:

u(t) - By (1)

(UCRE) lim | B Hpomd) -

t—o00
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> If the tail condition H 4 is not satisfied, GHP and UCRE are not true:
1

(1+]x[2)T=m

Bp(t, %) S ug(x) =

then the solution u(t, x) with initial data ug satisfies

1 A+0Tm
Byt x) S —— < u(t,x) < —
[(ct+ DT +x2] T (1+2+]x2)T-m

Recall that %B),(¢, x) ~ |x|‘ﬁ



The Threshold Time and Constructive Regularity
Stability in (suberitical) Gagliardo-Nirenberg inequalities Improved entropy — entropy production inequality

Constructive stability results

More about Global Harnack Principle

> If the tail condition H 4 is not satisfied, GHP and UCRE are not true:
1

B (1,%) S up(x) = ————,
(1+|x2)T=m

then the solution u(t, x) with initial data uq satisfies

1 A+0Tm
—— < u(t,x) < y

1 — —
[(ct+1)m+|x|2 - (1+2+]x)2) Tom

By, 0) S

Recall that 8By (¢, x) ~ |x|_ﬁ

> The GHP was first proven by [Vazquez (2003)] for radial functions, then by [MB-
Vazquez (2006)] under non-sharp conditions on the data. [Carrillo-Vazquez (2003)]
introduced a condition a posteriori equivalent to H 4 and conjectured that it was sharp.

Matteo Bonforte Stability in Gagliardo-Nirenberg-Sobolev inequalities



The Threshold Time and Constructive Regularity
Stability in (suberitical) Gagliardo-Nirenberg inequalities Improved entropy — entropy production inequality

Constructive stability results

More about Global Harnack Principle

> If the tail condition H 4 is not satisfied, GHP and UCRE are not true:
1
1+ [x2)

then the solution u(t, x) with initial data uq satisfies

Bp(t, %) S up(x) =

1 A+0Tm
—— < u(t,x) < 5

Br(t, %) S - — Ty
[(ct+1)m +1x2] T (1+2+]x)2) Tom

Recall that 8By (¢, x) ~ |x|_ﬁ

> The GHP was first proven by [Vazquez (2003)] for radial functions, then by [MB-
Vazquez (2006)] under non-sharp conditions on the data. [Carrillo-Vazquez (2003)]
introduced a condition a posteriori equivalent to H 4 and conjectured that it was sharp.
> Our result, together with the results of [Denzler-Koch-McCann (2015)] provide an
optimal answer to the conjecture about sharp rates of decay for UCRE:

“ u(t) — B (1)

C
S -
By (1) HLOO(W) t
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> The GHP implies UCRE on “outer cylinders” of the type {|x| = Ct"}.
> To obtain UCRE on “inner cylinders” of the type {|x| = ct?y, we pass to selfsimilar

variables, so that the cylider becomes {|x| < C} and we have
1

bo 5| T=m
- [ /2000 +by C* Iv(T) = Byl foo a

(T, %) —Bp(x)
B () J
We can use Gagliardo’s interpolation inequality (proved with explicit constant)
_d_ a

o o d+a o d+a
(@) =BMmloogay = cllv@ -Buml 5 ®4) lv(T) - Byl L1 (Rd)

We know that || v(1) — By H/_' (RY) <Zlyle” 1T
and need an which does not depend on the solution!

for solutions to u; = Au™
Nonlinear Moser iteration, Aleksandrov Reflection principle, ...
improving on

Explicit regularity estimates for solutions to linear problems with coefficients

vy =div(A(t,x) Vv) with 0< Ay <A(t,x)= 11'”7](/,.\‘) =\



The Threshold Time and Constructive Regularity
Stability in (suberitical) Gagliardo-Nirenberg inequalities Improved entropy — entropy production inequality

Constructive stability results

Ideas of the proof of the constructive UCRE and of the threshold time

> The GHP implies UCRE on “outer cylinders” of the type {|x| = ct9y.
> To obtain UCRE on “inner cylinders” of the type {|x| < C 9}, we pass to selfsimilar
variables, so that the cylider becomes {|x| < C} and we have

1
bo T-m

v(T,x) - By ) +b1C| " 0@ = Bagll oo

Bp(x)

<

M219(17m)
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The Threshold Time and Constructive Regularity

Stability in (subcritical) Gagliardo-Nirenberg inequalities Improved entropy — entropy production inequality
Constructive stability results

Ideas of the proof of the constructive UCRE and of the threshold time

> The GHP implies UCRE on “outer cylinders” of the type {|x| = ct9y.
> To obtain UCRE on “inner cylinders” of the type {|x| < C 9}, we pass to selfsimilar
variables, so that the cylider becomes {|x| < C} and we have

1
bo T-m

v(t,x) - Bp(x) m
- it G| I =Byl jeuay

Bm(x)
We can use Gagliardo’s interpolation inequality (proved with explicit constant)
d

<

Tra Tra
0@ = Bumllpeo ey < cllv(®) =Byl Gfpa, 1@~ Bumll i g,
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Constructive stability results

Ideas of the proof of the constructive UCRE and of the threshold time

> The GHP implies UCRE on “outer cylinders” of the type {|x| = ct9y.
> To obtain UCRE on “inner cylinders” of the type {|x| < C 9}, we pass to selfsimilar
variables, so that the cylider becomes {|x| < C} and we have

bo
M219(17m)

v(r,x) - By (x)

Bm(x)
We can use Gagliardo’s interpolation inequality (proved with eXpllClt constant)

51| 0 - Bl ey

d+a d+a
v(1) = Bpl oo gay = cllv(@) - BMIICa(Rd)Ilv(T) Bmlly R9)

B> We know that | v(7) =Bl 1 gay S Flvole™ 4
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Ideas of the proof of the constructive UCRE and of the threshold time

> The GHP implies UCRE on “outer cylinders” of the type {|x| = ct9y.
> To obtain UCRE on “inner cylinders” of the type {|x| < C 9}, we pass to selfsimilar
variables, so that the cylider becomes {|x| < C} and we have

bo
M219(17m)

v(r,x) - By (x)

Bm(x)
We can use Gagliardo’s interpolation inequality (proved with eXpllClt constant)

51| 0 - Bl ey

d+a d+a
v(1) = Bpl oo gay = cllv(@) - BMIICa(Rd)Ilv(T) Bmlly R9)

> We know that ||v(r) — BMIILl(Rd)<9[U0]e 4

> We need to bound ||v(t) — Byl Card) uniformly
and need an explicit 0 < a < 1 which does not depend on the solution!
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Ideas of the proof of the constructive UCRE and of the threshold time

> The GHP implies UCRE on “outer cylinders” of the type {|x| = ct9y.
> To obtain UCRE on “inner cylinders” of the type {|x| < C 9}, we pass to selfsimilar
variables, so that the cylider becomes {|x| < C} and we have

bo
M219(17m)

v(r,x) - By (x)

Bm(x)
We can use Gagliardo’s interpolation inequality (proved with eXpllClt constant)

51| 0 - Bl ey

d+a d+a
v(1) = Bpl oo gay = cllv(@) - BMIICa(Rd)Ilv(T) Bmlly R9)

> We know that ||v(r) — BMIILl(Rd)<9[U0]e 4

> We need to bound ||v(t) — Byl Card) uniformly
and need an explicit 0 < a < 1 which does not depend on the solution!

> Locally uniform intrinsic Harnack estimates for solutions to u; = Au"
Nonlinear Moser iteration, Aleksandrov Reflection principle, ...

improving on [MB-Vazquez (2010), MB-Simonov (2020)]
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Ideas of the proof of the constructive UCRE and of the threshold time

> The GHP implies UCRE on “outer cylinders” of the type {|x| = ct9y.
> To obtain UCRE on “inner cylinders” of the type {|x| < C 9}, we pass to selfsimilar
variables, so that the cylider becomes {|x| < C} and we have

bo
M219(17m)

v(r,x) - By (x)

Bm(x)
We can use Gagliardo’s interpolation inequality (proved with eXpllClt constant)

b | v - Bl oo )

d+ d+
v(1) = Bpl oo gay = cllv(@) - BMIIC(,‘;W)IIU(T) BMIIU‘[&d)

> We know that ||v(r) — BMIILl(Rd)<9[U0]€ 4

> We need to bound ||v(t) — Byl Card) uniformly
and need an explicit 0 < a < 1 which does not depend on the solution!

> Locally uniform intrinsic Harnack estimates for solutions to u; = Au"
Nonlinear Moser iteration, Aleksandrov Reflection principle, ...

improving on [MB-Vazquez (2010), MB-Simonov (2020)]
> Explicit regularity estimates for solutions to linear problems with coefficients
vy =div(A(t, x) Vo) with 0<Ao< AL =u"lx) <)
Explicit constant in Moser’s Harnack ineq. [Moser (1964,71)], explicit Holder exponents.
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Improved entropy — entropy production inequality: already a stability result

Theorem (Improved entropy — entropy production inequality [BDNS (2021)])

Letme (my,1) ifd=2, me(1/2,1)ifd=1, A>0 and G>0. Then there
is a positive number { such that

Tz @+ F[v]

for any nonnegative function v € L' (R%) such that Z[v] =G,
Jpa vdx =M, [paxvdx =0 and v satisfies (H)
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Improved entropy — entropy production inequality: already a stability result

Theorem (Improved entropy — entropy production inequality [BDNS (2021)])

Letme (my,1) ifd=2, me(1/2,1)ifd=1, A>0 and G>0. Then there
is a positive number { such that

Tz @+ F[v]

for any nonnegative function v € L' (R%) such that Z[v] =G,
Jpa vdx =M, [paxvdx =0 and v satisfies (H)

We have the asymptotic time layer estimate
1 1
£€(0,2e4), €4:= 3 min{e,q, xn} with T= 5 log R(ty)
Q-eB=<v(t,)<(1+e)B V=T
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Improved entropy — entropy production inequality: already a stability result

Theorem (Improved entropy — entropy production inequality [BDNS (2021)])

Letme (my,1) ifd=2, me(1/2,1)ifd=1, A>0 and G>0. Then there
is a positive number { such that

Tz @+ F[v]

for any nonnegative function v € L' (R%) such that Z[v] =G,
Jpa vdx =M, [paxvdx =0 and v satisfies (H)

We have the asymptotic time layer estimate
1 . 1
£€(0,2e4), €4:= 3 min{e,q, xn} with T= 5 log R(ty)
1-8B<v(t,)<1+e)PB Vt=T
and, as a consequence, the initial time layer estimate

J[V(t,.)]2(4+()g[l/(t,.)] Vtel[0,T], where (:W
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Two consequences

2
a a
(=Z(AF ), ZAG):= —2* =40t (5_*)

1+ A0-m2 L6’ T 4+41m \2acy
> Improved decay rate for the fast diffusion equation in rescaled variables

Corollary (Improved rates of convergence [BDNS (2021)])

Letme (my,1) ifd=2,me(1/2,1) ifd=1,A>0and G>0. Ifvisa
solution of (1) with nonnegative initial datum v, € L' (R%) such that
F ol =G, [gavodx =M, [paxvodx=0 and vy satisfies (H,), then

Flu(t, )] < ZFlvgle “9 vi=0
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Constructive stability results

Two consequences

2
a a
(=Z(AFul), Z(AG):= O -_%(5_*)

1+ A0-m2 L6’ T 4+41m \2acy
> Improved decay rate for the fast diffusion equation in rescaled variables

Corollary (Improved rates of convergence [BDNS (2021)])

Letme (my,1) ifd=2,me(1/2,1) ifd=1,A>0and G>0. Ifvisa
solution of (1) with nonnegative initial datum v, € L' (R%) such that
F ol =G, [gavodx =M, [paxvodx=0 and vy satisfies (H,), then

Flu(t, )] < ZFlvgle “9 vi=0

> The stability in the entropy - entropy production estimate:
Fv] -4.F[v] = F[v] also holds in a stronger sense
(bounded below by Fisher information)

Gl -4F[v] = ﬁﬂ[v]
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(191 1A150)77 = (e 1ll) T = &A1 171527 sy
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Constructive stability results | - Subcritical Case - Entropy Version

Theorem (Constructive stability | for Gagliardo-Nirenberg [BDNS (2020)])
Letd=1, pe(1,p*), where p* =+c0 ifd=1o0r2, p* = d > ifd=3.

If f € Wy ®RD) := {fesz(Rd) Vfel2®D), |x| fP ELZ([Rd)},

(191 1158)°77 = (b 171p) 7 = S 1507 E

where p-1
A7 Z(AIf)EIf]) Kp,d C*

Sifl:= = ;
! pz—l C(p,d) 1+A[f](1_m)é+E[f]
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Constructive stability results | - Subcritical Case - Entropy Version

Theorem (Constructive stability | for Gagliardo-Nirenberg [BDNS (2020)])
Letd=1, pe(1,p*), where p* =+c0 ifd=1o0r2, p* = d > ifd=3.

If f € Wy ®RD) := {feLzP(Rd) Vfel2®D), |x| fP ELZ([Rd)},

(191 1158)°77 = (b 171p) 7 = S 1507 E

where p-1
sty A7 ZIAULEL) Kp,d {x
pZ—l C(p,ad) 1+A[f](1—m)é +E[f]
p+1 p
E[f]:zzi . %]“P”—g”“f]+pg1—p(’<[f]2 f217 ) o
I-pJr Mf]dﬁ 2p ALf]
d-p(d-4)
A[f]:‘*supr p-1 f |f(x+xf)\2pdx
(ﬁ 2 2p r>0 |x|>r
T R
+1 d-pd-4) 1
| 2axipp-1 W15 P 7
M "( -1 ||vf:u2 U= T,
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Constructive stability results Il - Subcritical Case - Gradient Version

d+2-p(d-2)

With Zgns = C(p, d) ¢2PY Y= Tpan consider the deficit functional

GNS>

d- p(d 2)

8f1=(p -1 VS, +4 1715 = Hans 17127

Theorem (Constructive stability Il for Gagliardo-Nirenberg  [BDNS (2020)])

Letd=1 and pe(1,p*). There is an explicit € = €[f1 such that, for
any f e L2P (R4, (1 +1x1%) dx) such that V f e 12(R%) and A[f?P] < oo,

51f1=€Lf] inff (=Y + PV
QM JRd
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Constructive stability results Il - Subcritical Case - Gradient Version

With Zgns = C(p, d) %éﬁg , Y= %, consider the deficit functional

d- p(d 2)

8f1=(p -1 VS, +4 1715 = Hans 17127

Theorem (Constructive stability Il for Gagliardo-Nirenberg  [BDNS (2020)])

Letd=1 and pe(1,p*). There is an explicit € = €[f1 such that, for
any f e L2P (R4, (1 +1x1%) dx) such that V f e 12(R%) and A[f?P] < oo,

SLf1 = €Lf) inff |(p—D)Vf+fPVe' P dx
QM JRd

> The dependence of €[f] on A[f?P] and &[f?P] is explicit and does not
degenerate if f €9
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Constructive stability results Il - Subcritical Case - Gradient Version

With Zgns = C(p, d) %éﬁg , Y= %, consider the deficit functional

d- p(d 2)

8f1=(p -1 VS, +4 1715 = Hans 17127

Theorem (Constructive stability Il for Gagliardo-Nirenberg  [BDNS (2020)])

Letd=1 and pe(1,p*). There is an explicit € = €[f1 such that, for
any f e L2P (R4, (1 +1x1%) dx) such that V f e 12(R%) and A[f?P] < oo,

SLf1 = €Lf) inff |(p—D)Vf+fPVe' P dx
QM JRd

> The dependence of €[f] on A[f?P] and &[f?P] is explicit and does not
degenerate if f €9

> Can we remove the condition A[ f2P] < oo ?
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Constructive stability results Il - Subcritical Case - Gradient Version

With Zgns = C(p, d) %éﬁg , Y= %, consider the deficit functional

d- p(d 2)

8f1=(p -1 VS, +4 1715 = Hans 17127

Theorem (Constructive stability Il for Gagliardo-Nirenberg  [BDNS (2020)])

Letd=1 and pe(1,p*). There is an explicit € = €[f1 such that, for
any f e L2P (R4, (1 +1x1%) dx) such that V f e 12(R%) and A[f?P] < oo,

SLf1 = €Lf) inff |(p—D)Vf+fPVe' P dx
QM JRd

> The dependence of €[f] on A[f?P] and &[f?P] is explicit and does not
degenerate if f €9

> Can we remove the condition A[ f2P] < oo ? Not with this method :(
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A constructive stability result by the “flow method” (from the beginning)

The relative entropy

._ 2p p+l_ _p+l _ 1+p 1-p(f2p _42p
Zfl:=1= Rd(f g o8 (f g )]dx
The deficit functional
slf1=a |VfI+p | FIbE - Hax [ £1507 =0
Theorem (Constructive Stability for GNS BDNS (2020))

Letd=1, pe(,p*), A>0and G>0. There is an explicit constant
% >0 such that

. kp,d
S1f1 =€ FIf] with %_m

forany few :={f e L' R4 (1+|x)?dx) : Vf e L2®R?, dx)} such that

ffzﬂdx:f lg|*P dx, fxfz”’dxzo
R4 R4 R4

d-p(d—4)
supr p1 f?Pdx<A and ZIfl<G

r>0 |x|>r
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Constructive Stability in Sobolev’s inequality (critical case)

Let2p* =2d/(d—-2)=2%,d =3 and

ﬁ¢4R%={feLV*%R%:erL%R%,muw*eL%R%}

Theorem (Constructive stability for Sobolev [BDNS (2021)])

Letd =3 and A>0. Then for any nonnegative f € #,» (R?) such that
f (l,x,lxlz)fz* dx:f (l,x,lxlz)gdx and suprd fz* dx<A
R4 R4 r>0 |x|>r

we have

6« (A) L 2
U= VA5 -S5 U1 = gy i [ [0 + 452 r 2 Vg7 ax

2"“4+<5(A)

G, (A) = €, (1+AY2D) ™" and ¢, >0 depends only on d
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We can remove the normalization of f, use the r.h.s. to measure the distance
to the Aubin-Talenti manifold of optimal functions (in relative Fisher infor-
mation) and obtain for

A[f]:=suprdf 0|f|2"(x+xf) and Z[f]:=(1+u[f]‘d/1[f]dA[f])
r>

r>0

the Bianchi-Egnell type result

¢ ZIf1 .
inf Z1fg]

o[f1=
[f1= 4+ Z[f] ge

with xf, Alf] and u[f] as in the subcritical case
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Idea of the proof: Extending the subcritical result in the critical case

To improve the spectral gap for
m = mp, we need to adjust
the Barenblatt function 9, (x) =

A‘d/zﬁ(x/ﬂ) in order to match

fRd |x|? vdx where the function v
solves (1) or to further rescale v ac-

cording to
__1 X
v(t,x) = SO w(t+r(t), m),
d 1 —% (m—-mc)
& = (S Jpa 122 vdlx) ~1, =0 and R()=e2™®
Lemma (Delay estimates [BDNS (2021)])
t— 1(1) is bounded on R* (explicit estimates) J
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The End

Thank Youl!!!

Muchas Gracias!!!
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The constant in Moser’s Harnack inequality 1/3

Let Q be an open domain and let us consider a nonnegative weak solution to

ov

(2) 3 =V-(A(t,x)Vv)

on Q7 := (0, T) xQ, where A(t, x) is a real symmetric matrix with bounded measurable
coefficients satistying the uniform ellipticity condition

(3) 0<AlEP <E-(AO<ALIEP YV (6,x8eRT xQr xRY,

where - (A&) = Z?j:l Aj j¢i€j and Ag, A1 are positive constants.
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The constant in Moser’s Harnack inequality 2/3
Let us consider the neighborhoods
" D} (o, x0) := (to + 3 R?, tg + R*) x Br2(x0),

Dy (1o, x9) := (to - %Rz, fo— iRz) x Bry2(x0),

We claim that the following Harnack inequality holds [Moser (1964,71)]:
Theorem (Parabolic Harnack inequality [BDNS (2020,21)])

Let T>0, Re (0,VT), and take (ty, xo) € (0, T) x Q such that
(t0— R2 1+ RZ) x By p(x9) = Q. Under Assumption (3), if v satisfies

(5) ff (-prv+Ve-(AVy))dxdt=0
0,T)xQ
for any ¢ € C°((0,T) x Q), then

(6) sup v<h inf .
D5 (10,x0) D7 (f0,%0)

> This result is known from [Moser (1964.,71)]. Howeve_r, to the best of our knowl-
edge, a complete constructive proof and an expression of h was still missing.
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The constant in Moser’s Harnack inequality 3/3

The constant in Moser’s Harnack inequality has the expression

(7) hi=hhth!
where
d
(8) h:=exp |29%439 d + ¢J 22(@+2+3 |1 4 2 o
: 0 (V2 —1)2d+2)
where
2 (d+2)(3d%+18d+24)+13 1+ (d+1)(d+2) 2d+4

(9) co=3a2"  za (W)—d) K d

dH?

& j . .n2d

(10) o=Y (&) (@+pa+p)yP.

~.
Il
(=}

The constant £ is the constant in Sobolev embedding (explicit).
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Explicit Hélder continuity exponent

> It is well known that Harnack inequalities imply Holder continuity of solutions.

> We obtain a quantitative expression of the Holder continuity exponent, which only
depends on the Harnack constant, i.e. on d, Ag and 1.

>LetQcQ)c R be bounded domains and let Q1 :=(To, T3) xQq < (11, Ty) xQp =:
Q2, where 0 < T < Tp» < T3 < T < 4. Define the parabolic distance:

(11) dist(Q1, Q2) := inf lx—yl+]t—sl2.

(t,x)eQ
(5,)€[T1, T4l x0Q2 U{T1, Ty} x Q2

Theorem (Hélder Continuity with explicit exponents [BDNS (2020,21)])

Let v be a nonnegative solution of (2) on Q. which satisfies (5) and assume
that A(t,x) satisfies (3). Then we have

(12) sup 02, %) ~ v(s Y)l < ( 128 )V vl
s,y (x—yl+1e—s11/2)" = “\dist(Q1,Q2) L@

where "

13 v:=log, | —|,

(13) 8 (=)

andh is as in (7).

From the expression of h in (8) it is clear that h=> %, so that v e (0,1).
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Local Sobolev embeddings and optimal constants
Let us denote by Bp the ball of radius R > 0 centered at the origin, and define

2d
p::ﬁ if d=3,

p:=4 if d=2,
pe(d,+o0) if d=1.

Theorem (Sobolev Inequality)
Letd=1,R>0. Ford =1, 2, we further assume that R<1. Then
(14) 1F 125y = (1911225, + 2 W12, ) ¥ fEH BR)

holds for some constant

ap( 412/
(;21 )1 if d=3,
2dn'td
(15) K< \/i; if d=2,
2
21+5max{pn—_22,%} if d=1.
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Gagliardo Interpolation inequalities

Lemma
Letd=1, p=1andve(0,1). Then there exists a positive constant C, , ,, such
that, for any ue LP (Bog(x)) N C" (Bog(x)), R>0 and x € RY

d pv P
d+pv d+pv -7
(16)  Nulliospen) = Cay,p | L ovigyp oy 141Lp (Bygxn + B 7 1ILP (Bor (e

Analogously, we have

d _pv_
d+pv d+pv P md vV md
(17)  Ntliooa) < Capp LUl iy 17 VuelP@HNC'®Y.

In both cases, the inequalities hold with the constant

(p=1)(d+pVv)+dp 1

d pv d
Cavp=2 P@m  (1+4)7

1+(pi) )d+pv ((%)dﬂwﬂ%)m

<=
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Mass displacement estimates

Lemma (BDNS-2021)

Let me (0,1) and u(t,x) be a nonnegative solution to the FDE. Then, for any
t,7=0 andr, R>0 such that por = 2R for some gy >0, we have

1
t—1|T-m
(18) f u(t,x)dxszﬁf u(r,x)dx+c\n,%,
B; r(x0) B r+r (x0) rim
where
1
16(d+1)B+m)\T-m
(19) c3;:211”mwd($ " ©o+1).
1-m
Under the same assumptions, we have that
1
m r— T-m
(20) f u(t,x)dxssz u(r,x)dx+63%-
RY\B, g+ 1 (x0) R4\Bj g (xo) roem
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Local Upper Bounds

Lemma (BDNS-2021)

Letd =1, me[my,1). Then there exists a positive constant such
that for any solution u of FDE with nonnegative initial datum
up € LY (RY) satisfies for all (t,R) € (0, +o00)? the estimate

1

21) 1 e \Tm
su u(t,y) <x (f u()d) +(—) .
yeBR/IZ(x) d 1 g 0 R?

> This is a particular case (but with explicit constants computed) of the Local
Smoothing Effects proven by many authors:

Daskalopoulos-Kenig (Moser Iteration), DiBenedetto (DeGiorgi method), [...]
and constructive proof by MB-Vazquez [2010], MB-Simonov [2019] (CKN-
weights).
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Local Lower Bounds in the good FDE range m € (m,1)

Lemma (BDNS-2021)

Letd =1 and me [m,1). Let xo € RY, u(t, x) be a solution to FDE with
nonnegative initial datum ug € L' (®%) and let R > 0 such that
MR (x0) := lluolly1 (g oy >0- Then the inequality

1

(22) inf u(t,x)2x(R26)T" Vtel0,21]

|x—xo|<R

holds with
=31, My " (x0) RY.
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