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Collective behavior

macroscopic
Individuals:
animals

microscopic
Individuals:
bacteria

pictures from the internet



First-order models with attractive-
repulsive pairwise Interactions

® x,(t) : location of the i-th individual

® wW=w(),r=|xl radial interaction /

potential

® Usually used for micro-organisms,
where Inertia can be neglected.

repulsion attraction



Energy structure

. 1 .
X = o VW (x; —x;) i=1,....N
J=1,...,N, j#1%

® [tis the gradient flow of the energy functional

1
E(Xl,...,XN) = W Z W(Xz _Xj)

1,J:1F]

®* Energy dissipation rate ‘fi_lf = —% D %l

® EXxpected large time behavior: convergence to local energy
minimizers



Question: Existence/Uniqueness of
global/local energy minimizers?

How do they look like?



Energy minimizers

® Large time simulation: Kolokolnikov-Sun-Uminsky-Bertozzi
11

~W'(r)=F(r) =tanh[(1 — r)a] + b; 0 < a; —tanh(a) < b < 1.

N
J
4

® Very Complicated a=2[3=q\9<056{\/03 01 01 03 05 07 08
h
* Break of symmetry 3008 ] :
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Continuum formulation

Particle density function (¢, x)

Energy [E= //Wx y)p(y)dyp(x

Wasserstein-2 gradient flow

&gp—l—V /VWX y

u(t, x): transport velocity

Energy dissipation rate

(:(11_? = —/|u|2pdx



“Characterization” of Energy
minimizers

i )

® Steady states: VV =0 on suppp , /
or V=W=xp |Sconstant on each -/
connected component of  suppp o /—/

. oL | )

® (Wasserstein-oo) local minimizers: /

further, V Is larger nearby \/C/ :
Suppp

® Global minimizers

V =W % p : potential generated by p



Dimensionality of minimizers

® Balague-C.-Laurent-Raoul 13’; if

1
AW (x) ~ P asx — 0 0<pB<d

then the Hausdorff dimension of any Wasserstein- «~ local
minimizer is =5

b
I"l
® |f W(r)~ —5 8r—=0 Newtonian repulsion
fractional
. local min may be
POTOUS local min may have . y
medium Dirac masses

lower dimensions

—d 2—d We focus here! ) b



Part 1: Linear Interpolation convexity:
uniqgueness of local minimizers



E as a quadratic form

/fo y)p(y)dyp(x

Define an associated bilinear form

plpz ffWX YP2 dyp1

]W*pg)( )p1(x)dx p1 in the potential generated by 02

— /(W * p1)(x)p2(x)dx P2 In the potential generated by 1



Linear interpolation convexity
(LIC)

® Definition: W has LIC property If for given 0o and 01 withthe
same total mass and center of mass, the function:

o t — E[(1—t)po+1tp1]
IS strictly convexon 0 <t<1

® LIC is basically the positive-definiteness of E as a quadratic form.

d2
12 El(L = t)po +tp1] = 2E|p1 — po]

® LIC potentials have unique global minimizer (for fixed total mass and
center of mass). E

Elpo] = Elp1]

E[(1—t)po +tp1] IS smaller



Linear interpolation convexity
(LIC)

® LIC property can be guaranteed by Fourier transform:

diagonalize the quadratic
ffWX_ y)dyp(x Wi )IP(E)"de formin P

\Eigenvalues W (&) >0

Lopes 19’ uses this to prove the LIC property of power-law potentials
x| [xP

a b

and therefore obtain unigueness and radial symmetry of global minimizers.
Similar use for unigueness by Frank 21’, Davies-Lim-McCann 21".

W(x) = 2<a<4, —-d<b<0

® Equivalent to: Efu] > 0 for any signed measure p with fu = /Xp =0

* Almost equivalentto W (¢) >0, V¢



LIC applied to local
minimizers: radial symmetry

Theorem (C.-Shu 21’): in 2D, assume W has LIC property.
Then compactly supported local minimizers p are radially-
symmetric.

Proof: suppose p Is alocal minimizer which is not radially-
symmetric.

(1) By LIC, pg := %(p +Ryp) has lower energy thanp.

Re : rotate by 6 around its

center of mass O

(2) Po has higher energy than p by minimizing property,
since pg Is close to p In Wasserstein- co. Contradiction!



Part 2: Linear interpolation
concavity: small scales and fractals



Dimensionality of minimizers

® Balague-C.-Laurent-Raoul 13’; if

1
AW(x)N—W asx — 0 0<B<d

then the Hausdorff dimension of any local minimizer is > 8

® [ needs not to be an integer, but it was never observed
that a local minimizer has non-integer dimension.

®* We will show that non-integer dimension is possible.



Concavity

® Definition: W Is infinitesimal-concave If for any 6 >0
there exists pu € L™ with / pudx =0 and diam(supp p) <4
such that E[u] <0

recall that LIC basically says FE[u] > 0

® Lemma (C.-Shu 21’): if W Is infinitesimal-concave, then
for any local minimizer p , “suppp” does not contain any
Interior point.



Concavity

Suppose p is a local minimizer

pe = p +€p

Elpd = Elp) + ¢ [ n)(W * ))dx + Elu) < Bl
mean constant
Zero

contradiction!




Concavity by Fourler
transform

® Recall that LIC corresponds to W(¢) >0, VE#0

® Lemma (C.-Shu 21’): Suppose W has certain
regularity+growth, and for any R > 0 , there exists
suchthat JCcRy, |J|=R

A

W) < —cR %,V edJ

Then W Is infinitesimal-concave.



Physical side

L

very small tails .
/\ AN ~ very small tails ;
I U AV U B .

O(|J]7) Scalinig of the uncertainty principle

e e

Bl = 5 [ W(©)la(©)Pdg - ourier side

)
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Part 3: Anisotropic Potentials



Edge dislocation Screw dislocation

https://www.doitpoms.ac.uk/tlplib/dislocations



https://www.doitpoms.ac.uk/tlplib/dislocations

Dislocations In crystals

Phenomenological dislocation models have been derived
In literature

Each dislocation can be viewed as a particle
Number of dislocations can be huge (say, 10'*m~2 )

It Is typical to use a continuum model to describe the
spatial configuration of dislocations, I.e., use a density
function

Roy-Peerlings-Geers-Kasyanyuk 08’, Geers-Peerlings-
Peletier-Scardia 13’



Minimization of
2D Interaction energy

1
Bl = 5 | | W= () dyptx) ax
R2 JRZ
p : density of dislocations, a probability measure on R?

W . anisotropic interaction potential;

() describes the anisotropy

X

W(x) = |x|7°Q(0) + |x|*, 0<s<?2 —7 = (cost,sin0)

x|

anisotropic repulsion  attraction/confinement

Logarithmic (s=0) case: Wieg(x) = —In|x|+ Q(6) + |x|?



Previous results

unpreferred
direction

® Previous results on the minimizers for the potential oreferred

Wiog.a(X) = —In x| + aw(f) + |x|?, w(f) =cos?*h, o= 0. direction

strength of
ar =1 anisotropy

l ‘ a
Frostman 35’
\ \ Mora-Rondi-Scardia 19’ /

C.-Mateu-Mora-Rondi-Scardia-Verdera 20’




Previous results

®* Similar ellipse-shaped minimizers are obtained in 3D In
C.-Mateu-Mora-Rondi-Scardia-Verdera 21’

® Ellipse-shaped minimizers are obtained in 2D for a
perturbed logarithmic potential in Mateu-Mora-Rondi-
Scardia-Verdera 21’

® Questions: General singularity? General w ? Ellipses /
Collapse to lower-dimensions?



A generic example in 2D

Wa(x) = |x]7°(1 + aw(8)) + |x|? s =0.4, w(f) = cos* § + 0.1cos> 0

predicted
slope

LIC non-LIC non-LIC

minimizer has ‘guaranteed’ near-vertical vertical
ellipse shape tilted segments zigzag minimizer



LIC and Euler-Lagrange condition

Bl =5 | [ Wx=v)o) dyo(x) dx

® Euler-Lagrange condition for energy minimizers
(Balagué-Carrillo-Laurent-Raoul 13’):

(W = p)(x) < essinf (W = p), p a.e.
( W *p achieves min on supp p )

® Theorem (CMMSRYV 20’, C.-Shu 21’): for LIC potentials,
the unique energy minimizer is the only probability
measure satisfying the E-L condition (up to translation).

® The ellipse-shaped minimizers in CMMSRYV 20’ are
proved by verifying E-L condition explicitly



Fourier transform of
anisotropic potential

® Assume ) is smooth and 0+ 7) = Q(6)

® Lemma (C.-Shu 22’).
FlIx|7*Q(0)] = €7 Q(p), 0<s<2

Qp) = TQ_SJ |cos(p — 0)|72T5Q(0)dl, 1<s<2.

®* Applying reversely, we get

Q(0) — TSJ cos(f — )|~ *Q(0)dp, 0<s<1.



LIC for anisotropic energy

W(x) = [x|7°Q(0) + |x]°, 0<s<?2

®* Theorem (C.-Shu 22°): W has the LIC property if and
only it F[|x|=*Q(8)] = [§]*"*Q(p) with Q >0

x|[*Q(6) = 7, f x - 5| * () de

® Notice that LIC is strict convexity but the Fourier condition
IS non-strict inequality. This comes from a complex
analysis argument.

® |f LIC falls, then W is infinitesimally concave (C.-Shu 21’),
Implying superlevel sets of any Wasserstein-infinity local
minimizer do not contain interior points. This strongly
suggests that minimizers collapse to lower dimensions.



LIC for anisotropic energy

Wa(x) = x| (1 + aw(®) + [x[*  Wa(€) = [€]7*75(cs + ad(0))

® If 0<s<1,thenthere exists a threshold

0 LIC ar, non-LIC

Cs
Qay, = —— > (
— INin w

® |If 1<s<2,then LIC always holds.



Part 3.1: Ellipse-shaped minimizers
for the LIC case



Ellipse-shaped minimizers

® For 0 < s < 2, the minimizer for the isotropic potential
x|+ [x|? s

pa(x) = Ca(RE — |x[*)*/
(Caffarelli-Vazquez 11’, C.-Huang 17°, C.-Shu 21’)

® Rescaled and rotated version:

1 L1 T2

pap(®) = —p2( = ), Papn(®) = Pap(RogX)

® These densities are supported on possibly degenerate
ellipses



Ellipse-shaped minimizers

® Theorem (C.-Shu 22’): For 0<s<1, W(x)=|x|"*Q6) + |x|?

* If Q>c>0 ,then the unique energy minimizeris Pa,x
some a,b>0 With (q,b) € [0,0)2\{(0,0)}

® If Q>0 ,thenitissome rapn with a=0 possibly.

® This result covers all LIC cases

0 LIC, ellipses ar non-LIC, “lower-dimension minimizers”

Wa(x) = [x|75(1 + aw(d)) + |x|°



Key lemma

®* By LIC, it suffices to verify the Euler-Lagrange condition,
l.e., carefully calculate the potential generated by pa.b.7

®* Lemma (C.-Shu22’):. Foro<s<1 ,
(|x|~°Q(0) + A:II2] + B$22 + 2Dx122) * pap = Ca.ab, X E SUPD Pab

D(a,b) CcoS  sin

A(a,b) - cos? i
B(a,b) | = 7(R1/Ry)**® J (a? cos? p + b%sin? @)~ (2+9)/2 sin® | Q(p)dy

If Q>0 ,then the generated potential is larger outside
support

® This implies theorem by finding correct a,b,n to make
A=B=1,D=0



Sketch of proof

FIXQ0)] = [€240p)  2(0) =7 | [cos(0 - )| *RAp)dp, 0<5<1.
® Decomposition of anisotropic potential into 1D potentials

X00) =7 | b8l "*0(e) de.
o 1D potential along ®

® To calculate |x|7°Q(0) * pap , we calculate [x: €™ * pa,p
and assembly

® The push-forward of pPa,b by the projection operator onto ¢,
IS a rescaling of the 1D energy minimizer for the potential

2|7 + |2



2’1"@

ry = Ra(a® cos® ¢ + b?sin® @) 1/2

.
Tva

push-forward
of Pa.b




Sketch of proof

S
) , Y1 € [_T(,Oa Tﬂp]
S

— — S8 R 2+S — — —
((he-@el ™+ (T5) e @l) * pup) (e +1aey)
@)

r =V1(%
\ > V1(%) , Y1 & [—Te, Ty

® Integrated together, we see the following Is constant on
support

(x| (52) - 2P0 ) * o

* |f Q>0 then this generated potential is larger outside
because the integration Is a positive linear combination



Part 3.2: Collapse to 1D for strong
anisotropy



Collapse to 1D

(%) = %[ 7*(1 + aw(8)) + x|

® Assume W achieves minimum at w(§)=0

® Theorem (C.-Shu 22"): For 0<s <1, if W satisfies the non-
degeneracy condition

T

2
> culf = 5
L&J(g) C ‘9

, VOel0,n].

then minimizers collapse to 1D vertical distribution for
sufficiently large «

0 LIC, ellipses ar 0, 1D vertical minimizer

® The non-degeneracy Is necessary



Proof by comparison

® Lemma (C.-Shu 22'): there exists a smooth {2, such that the
potential W, (x) = |x|~Q.(0) + |x|?> satisfies

¢ WO20 ()

o Wy +*pip achieves minimum on support

* Ifviewing W. as an element in the family W, , one has no ‘gap’
petween ellipses and 1D vertical minimizer. In the logarithmic
potential case, CMMSRYV 20’ considered exactly such a potential

® The theorem follows from a comparison similar to CMMSRYV 20’



Part 3.3: Zigzag formation in between



Local expansion around 1D

segment
® Theorem (C.-Shu 22’): for 0 < s <1 and a 1D segment
p(x)
p(x) = P(w2)d(z1)

the generated potential has the expansion

Q(O)@b(O)el_S + O(e)

2_3—

(W » p)(c,0) — (W # )(0,0) = -
To_g <0
® The local stability of a 1D segment Is related the negativity

of the Fourier transform of VW In the direction of its
normal.



Local expansion around 1D
segment

Wa(x) = [x|7*(1 + aw(0)) + |x|* Wa(€) = [€]72 (cs + ()

®* Assume W achieves the most negative value NOT at ¢ =0
As «a Increases, the first “allowed” direction of 1D
segment is not the vertical direction.

® This guarantees the appearance of zigzags.

0 LIC, ellipses o7 9uaranteed ax 1D vertical minimizer a
zigzags



A generic example

Wa(x) = |x]7°(1 + aw(8)) + |x|? s =0.4, w(f) = cos* § + 0.1cos> 0

predicted
slope

LIC non-LIC non-LIC

minimizer has ‘guaranteed’ near-vertical vertical
ellipse shape tilted segments zigzag minimizer



Remarks

® This framework can be generalized to higher dimensions (C.-Shu 23’ in 3D)

* The logarithmic potentials can be derived as a limit s — 0™ . Most results can
be carried over. This generalizes the result in CMMSRYV 20'.

§ ol o jetontarn "
* The set of ellipse-shaped distributions is closed

: ° 680 é ocsp8 § -
under the associated \Wasserstein-2 gradient 'i' *% we am .
flows. Long time convergence to the minimizer g §of {3
can be justified in the LIC case. § u’ i l ! T
- - L

- ®
* Open question:  (f) = cos” 0 sin? @ 'i' ' t '.' femms s in 3 i
g il O3
: i X ""' o : E
Sl 0 000uctsciong 1000000
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