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Collective behavior

macroscopic 
individuals:
animals

microscopic 
individuals:
bacteria

pictures from the internet



First-order models with attractive-
repulsive pairwise interactions

•        : location of the i-th individual

•                           radial interaction 
potential

• Usually used for micro-organisms, 
where inertia can be neglected.

repulsion attraction



Energy structure

• It is the gradient flow of the energy functional 

• Energy dissipation rate

• Expected large time behavior: convergence to local energy 
minimizers



Question: Existence/Uniqueness of 
global/local energy minimizers? 

How do they look like?



Energy minimizers
• Large time simulation: Kolokolnikov-Sun-Uminsky-Bertozzi 

11’

• Very complicated

• Break of symmetry

graph of



Continuum formulation

• Particle density function 

• Energy 

• Wasserstein-2 gradient flow

• Energy dissipation rate
: transport velocity



“Characterization” of Energy 
minimizers

• Steady states:              on            ,        
or                   is constant on each 
connected component of

• (Wasserstein-   ) local minimizers: 
further, V is larger nearby

• Global minimizers
: potential generated by 



Dimensionality of minimizers

• Balagué-C.-Laurent-Raoul 13’: if 

then the Hausdorff dimension of any Wasserstein-     local 
minimizer is 

• If 
fractional
porous
medium

local min may have
 lower dimensions

Newtonian repulsion

local min may be
 Dirac masses

We focus here!



Part 1: Linear interpolation convexity: 
uniqueness of local minimizers



E as a quadratic form

Define an associated bilinear form

in the potential generated by

in the potential generated by



Linear interpolation convexity 
(LIC)

• Definition: W has LIC property if for given         and          with the 
same total mass and center of mass, the function:

is strictly convex on 

• LIC is basically the positive-definiteness of E as a quadratic form.

• LIC potentials have unique global minimizer (for fixed total mass and 
center of mass).

is smaller



Linear interpolation convexity 
(LIC)

• LIC property can be guaranteed by Fourier transform:

Lopes 19’ uses this to prove the LIC property of power-law potentials

and therefore obtain uniqueness and radial symmetry of global minimizers. 
Similar use for uniqueness by Frank 21’, Davies-Lim-McCann 21’. 

• Equivalent to: for any signed measure      with 

• Almost equivalent to

diagonalize the quadratic
form in 

Eigenvalues



LIC applied to local 
minimizers: radial symmetry

• Theorem (C.-Shu 21’): in 2D, assume W has LIC property. 
Then compactly supported local minimizers    are radially-
symmetric.

• Proof: suppose       is a local minimizer which is not radially-
symmetric. 

• (1) By LIC,                              has lower energy than   . 

• (2)     has higher energy than     by minimizing property,   
since     is close to      in Wasserstein-    . Contradiction!

: rotate by     around its 
center of mass 0



Part 2: Linear interpolation 
concavity: small scales and fractals



Dimensionality of minimizers

• Balagué-C.-Laurent-Raoul 13’: if 

then the Hausdorff dimension of any local minimizer is 

•        needs not to be an integer, but it was never observed 
that a local minimizer has non-integer dimension.

• We will show that non-integer dimension is possible.



Concavity

• Definition:         is infinitesimal-concave if for any           
there exists             with                 and 
such that

• Lemma (C.-Shu 21’): if         is infinitesimal-concave, then 
for any local minimizer     ,  “          ”  does not contain any 
interior point.

recall that LIC basically says 



Concavity
Suppose      is a local minimizer

mean
zero

constant
contradiction!



Concavity by Fourier 
transform

• Recall that LIC corresponds to 

• Lemma (C.-Shu 21’): Suppose        has certain 
regularity+growth, and for any          , there exists             1                     
such that

Then         is infinitesimal-concave.



Physical side

Fourier side

very small tails very small tails

scaling of the uncertainty principle



Fractals!



layer 1

layer 2

layer 2

layer 3 layer 4

layer 4

layer 5
number of perturbation terms 
—> number of layers

size ratio between two layers



Part 3: Anisotropic Potentials



Dislocations in crystals

Edge dislocation Screw dislocation

Pictures from https://www.doitpoms.ac.uk/tlplib/dislocations

https://www.doitpoms.ac.uk/tlplib/dislocations


Dislocations in crystals
• Phenomenological dislocation models have been derived 

in literature

• Each dislocation can be viewed as a particle

• Number of dislocations can be huge (say,               )

• It is typical to use a continuum model to describe the 
spatial configuration of dislocations, i.e., use a density 
function

• Roy-Peerlings-Geers-Kasyanyuk 08’, Geers-Peerlings-
Peletier-Scardia 13’



Minimization of 
2D interaction energy

•        : density of dislocations, a probability measure on 

•        : anisotropic interaction potential; 

• describes the anisotropy

• Logarithmic (s=0) case: 

anisotropic repulsion attraction/confinement



Previous results

• Previous results on the minimizers for the potential

strength of
anisotropy

preferred
direction

unpreferred
direction

𝛼𝛼

Frostman 35’
Mora-Rondi-Scardia 19’

C.-Mateu-Mora-Rondi-Scardia-Verdera 20’

0



Previous results

• Similar ellipse-shaped minimizers are obtained in 3D in 
C.-Mateu-Mora-Rondi-Scardia-Verdera 21’

• Ellipse-shaped minimizers are obtained in 2D for a 
perturbed logarithmic potential in Mateu-Mora-Rondi-
Scardia-Verdera 21’

• Questions: General singularity? General     ? Ellipses / 
Collapse to lower-dimensions?



A generic example in 2D

𝛼𝛼𝛼𝛼𝐿𝐿 ≈ 0.88 𝛼𝛼𝐿𝐿,0 ≈ 0.98 𝛼𝛼∗
0

predicted 
slope

LIC
minimizer has
ellipse shape

non-LIC
‘guaranteed’ 

tilted segments

non-LIC
near-vertical 

zigzag
vertical 

minimizer



LIC and Euler-Lagrange condition

• Euler-Lagrange condition for energy minimizers 
(Balagué-Carrillo-Laurent-Raoul 13’):

                                                                
 (           achieves min on             )

• Theorem (CMMSRV 20’, C.-Shu 21’): for LIC potentials, 
the unique energy minimizer is the only probability 
measure satisfying the E-L condition (up to translation).

• The ellipse-shaped minimizers in CMMSRV 20’ are 
proved by verifying E-L condition explicitly



Fourier transform of 
anisotropic potential

• Assume        is smooth and

• Lemma (C.-Shu 22’): 

• Applying reversely, we get



LIC for anisotropic energy
• Theorem (C.-Shu 22’):        has the LIC property if and 

only if with   

• Notice that LIC is strict convexity but the Fourier condition 
is non-strict inequality. This comes from a complex 
analysis argument.        

• If LIC fails, then     is infinitesimally concave (C.-Shu 21’),  
implying superlevel sets of any Wasserstein-infinity local 
minimizer do not contain interior points. This strongly 
suggests that minimizers collapse to lower dimensions.



LIC for anisotropic energy

• If                 , then there exists a threshold 

• If                , then LIC always holds.

𝛼𝛼LIC non-LIC0



Part 3.1: Ellipse-shaped minimizers 
for the LIC case



Ellipse-shaped minimizers
• For                , the minimizer for the isotropic potential                     

is

(Caffarelli-Vázquez 11’, C.-Huang 17’, C.-Shu 21’)

• Rescaled and rotated version:

• These densities are supported on possibly degenerate 
ellipses



Ellipse-shaped minimizers

• Theorem (C.-Shu 22’): For                 ,

• If                    , then the unique energy minimizer is 
some            with

• If             , then it is some with a=0 possibly.

• This result covers all LIC cases

𝛼𝛼LIC, ellipses non-LIC, “lower-dimension minimizers”0



Key lemma
• By LIC, it suffices to verify the Euler-Lagrange condition, 

i.e., carefully calculate the potential generated by 

• Lemma (C.-Shu 22’): For                 ,

.    If             , then the generated potential is larger outside 
support

• This implies theorem by finding correct               to make 



Sketch of proof

• Decomposition of anisotropic potential into 1D potentials

• To calculate                        , we calculate                          
and assembly

• The push-forward of            by the projection operator onto        
is a rescaling of the 1D energy minimizer for the potential

1D potential along





Sketch of proof

• Integrated together, we see the following is constant on 
support

• If               then this generated potential is larger outside 
because the integration is a positive linear combination



Part 3.2: Collapse to 1D for strong 
anisotropy



Collapse to 1D
• Assume        achieves minimum at 

• Theorem (C.-Shu 22’): For                 , if      satisfies the non-
degeneracy condition

.   then minimizers collapse to 1D vertical distribution for
sufficiently large       

• The non-degeneracy is necessary

𝛼𝛼LIC, ellipses 1D vertical minimizer0



Proof by comparison
• Lemma (C.-Shu 22’): there exists a smooth           such that the 

potential                                           satisfies

•                        (LIC)

•                    achieves minimum on support

• If viewing         as an element in the family         , one has no ‘gap’ 
between ellipses and 1D vertical minimizer. In the logarithmic 
potential case, CMMSRV 20’ considered exactly such a potential

• The theorem follows from a comparison similar to CMMSRV 20’



Part 3.3: Zigzag formation in between



Local expansion around 1D 
segment

• Theorem (C.-Shu 22’): for                   and a 1D segment

the generated potential has the expansion

• The local stability of a 1D segment is related the negativity 
of the Fourier transform of        in the direction of its 
normal. 



Local expansion around 1D 
segment

• Assume          achieves the most negative value NOT at            
As        increases, the first “allowed” direction of 1D 
segment is not the vertical direction.

• This guarantees the appearance of zigzags.

𝛼𝛼LIC, ellipses 1D vertical minimizerguaranteed
zigzags

𝛼𝛼

0



A generic example

𝛼𝛼𝛼𝛼𝐿𝐿 ≈ 0.88 𝛼𝛼𝐿𝐿,0 ≈ 0.98 𝛼𝛼∗
0

predicted 
slope

LIC
minimizer has
ellipse shape

non-LIC
‘guaranteed’ 

tilted segments

non-LIC
near-vertical 

zigzag
vertical 

minimizer



Remarks
• This framework can be generalized to higher dimensions (C.-Shu 23’ in 3D)

• The logarithmic potentials can be derived as a limit              . Most results can 
be carried over. This generalizes the result in CMMSRV 20’.  

• The set of ellipse-shaped distributions is closed 
under the associated Wasserstein-2 gradient 
flows. Long time convergence to the minimizer 
can be justified in the LIC case.

• Open question:
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