Aspects of the cutoff phenomenon for diffusions

Djalil Chafaï

Paris-Dauphine and École normale supérieure – PSL

Functional inequalities Université Paris-Dauphine-PSL June 4-6 2025

Joint works with Jeanne Boursier (Columbia), Cyril Labbé (Paris-Cité), Max Fathi (Paris-Cité), and Nikita Simonov (Sorbonne Université)

Outline

Langevin diffusions

Nonlinear diffusions

About cutoff at mixing time

Langevin process $V \in C^2(\mathbb{R}^n, \mathbb{R}), \ V - \frac{\rho}{2} |\cdot|^2 \text{ convex for some } \rho > 0 \ (\rho\text{-convex})$

 $\begin{array}{l} \bullet \quad V \in \mathcal{C}^2(\mathbb{R}^n,\mathbb{R}), \ V-\frac{\rho}{2} \left|\cdot\right|^2 \text{ convex for some } \rho > 0 \ (\rho\text{-convex}) \\ \bullet \quad \text{Diffusion process } (X_t)_{t \geq 0} \ \text{on } \mathbb{R}^n \end{array}$

$$\mathrm{d}X_t = -
abla V(X_t)\mathrm{d}t + \sqrt{2}\mathrm{d}B_t, \quad X_0 = x_0$$

 $\begin{array}{l} \blacksquare \quad V \in \mathcal{C}^2(\mathbb{R}^n,\mathbb{R}), \ V-\frac{\rho}{2}\left|\cdot\right|^2 \text{ convex for some } \rho > 0 \ (\rho\text{-convex}) \\ \blacksquare \quad \text{Diffusion process } (X_t)_{t>0} \ \text{on } \mathbb{R}^n \end{array}$

$$\mathrm{d}X_t = -
abla V(X_t)\mathrm{d}t + \sqrt{2}\mathrm{d}B_t, \quad X_0 = x_0$$

Convergence to invariant probability measure

$$\mu_t = \operatorname{Law}(X_t) \xrightarrow[t o \infty]{} \mu_\infty = \mathrm{e}^{-\,V(x)} \mathrm{d}x$$

 $\begin{array}{l} \blacksquare \quad V \in \mathcal{C}^2(\mathbb{R}^n,\mathbb{R}), \ V-\frac{\rho}{2}\left|\cdot\right|^2 \text{ convex for some } \rho > 0 \ (\rho\text{-convex}) \\ \blacksquare \quad \text{Diffusion process } (X_t)_{t>0} \ \text{on } \mathbb{R}^n \end{array}$

$$\mathrm{d}X_t = -
abla V(X_t)\mathrm{d}t + \sqrt{2}\mathrm{d}B_t, \quad X_0 = x_0$$

Convergence to invariant probability measure

$$\mu_t = \operatorname{Law}(X_t) \xrightarrow[t o \infty]{} \mu_\infty = \operatorname{e}^{-V(x)} \operatorname{d} x$$

Infinitesimal generator and spectral gap in $L^2(\mu_\infty)$

 $\mathcal{L} = \Delta -
abla \, V \cdot
abla \quad ext{spec}(-\mathcal{L}) \subset \{0\} \cup [\lambda,\infty)$

 $\begin{array}{l} \blacksquare \quad V \in \mathcal{C}^2(\mathbb{R}^n,\mathbb{R}), \ V-\frac{\rho}{2}\left|\cdot\right|^2 \text{ convex for some } \rho > 0 \ (\rho\text{-convex}) \\ \blacksquare \quad \text{Diffusion process } (X_t)_{t>0} \ \text{on } \mathbb{R}^n \end{array}$

$$\mathrm{d}X_t = -
abla V(X_t)\mathrm{d}t + \sqrt{2}\mathrm{d}B_t, \quad X_0 = x_0$$

Convergence to invariant probability measure

$$\mu_t = \operatorname{Law}(X_t) \xrightarrow[t o \infty]{} \mu_\infty = \operatorname{e}^{-V(x)} \operatorname{d} x$$

Infinitesimal generator and spectral gap in $L^2(\mu_\infty)$

$$\mathcal{L} = \Delta -
abla \, V \cdot
abla \quad ext{spec}(-\mathcal{L}) \subset \{0\} \cup [\lambda,\infty)$$

Ornstein – Uhlenbeck case

$$V=rac{
ho}{2}\left|\cdot
ight|^{2}, \hspace{1em} \mu_{\infty}=\mathcal{N}(0,rac{1}{
ho}I_{n}), \hspace{1em} \lambda=
ho$$

 $\begin{array}{l} \blacksquare \quad V \in \mathcal{C}^2(\mathbb{R}^n,\mathbb{R}), \ V-\frac{\rho}{2}\left|\cdot\right|^2 \text{ convex for some } \rho > 0 \ (\rho\text{-convex}) \\ \blacksquare \quad \text{Diffusion process } (X_t)_{t>0} \ \text{on } \mathbb{R}^n \end{array}$

$$\mathrm{d}X_t = -
abla V(X_t)\mathrm{d}t + \sqrt{2}\mathrm{d}B_t, \quad X_0 = x_0$$

Convergence to invariant probability measure

$$\mu_t = \operatorname{Law}(X_t) \xrightarrow[t o \infty]{} \mu_\infty = \operatorname{e}^{-V(x)} \operatorname{d} x$$

Infinitesimal generator and spectral gap in $L^2(\mu_\infty)$

$$\mathcal{L} = \Delta -
abla \, V \cdot
abla \quad ext{spec}(-\mathcal{L}) \subset \{0\} \cup [\lambda,\infty)$$

Ornstein – Uhlenbeck case

$$V=rac{
ho}{2}\left|\cdot
ight|^{2}, \hspace{1em} \mu_{\infty}=\mathcal{N}(0,rac{1}{
ho}I_{n}), \hspace{1em} \lambda=
ho^{2}$$

Lichnerowicz, Bakry–Émery, Klartag : $\lambda \geq
ho$

3/29

Rigid Langevin : cutoff and critical time

Theorem (C. – Fathi 2024)

$$\lim_{n o \infty} \sup_{x_0 \in S} \operatorname{dist}(\mu_t \mid \mu_\infty) = egin{cases} \max & \textit{if } t \leq (1-arepsilon) T \ 0 & \textit{if } t \geq (1+arepsilon) T \end{cases}$$

max = maximum value of dist

dist = Wasserstein, Entropy, Fisher, total variation

Rigid Langevin : cutoff and critical time

Theorem (C.–Fathi 2024)

If $\lambda = \rho$ and $\underline{\lim}_{n \to \infty} \lambda > 0$, then for all $\varepsilon \in (0, 1)$

$$\lim_{n o \infty} \sup_{x_0 \in S} \operatorname{dist}(\mu_t \mid \mu_\infty) = egin{cases} \max & \textit{if } t \leq (1-arepsilon) T \ 0 & \textit{if } t \geq (1+arepsilon) T \end{cases}$$

 $\max = \max \max v$ alue of dist

dist = Wasserstein, Entropy, Fisher, total variation

works for Ornstein–Uhlenbeck : $\lambda = \rho$

Rigid Langevin : cutoff and critical time

Theorem (C. – Fathi 2024) If $\lambda = \rho$ and $\underline{\lim}_{n \to \infty} \lambda > 0$, then for all $\varepsilon \in (0, 1)$ $\lim_{n \to \infty} \sup_{x_0 \in S} \operatorname{dist}(\mu_t \mid \mu_\infty) = \begin{cases} \max & \text{if } t \leq (1 - \varepsilon) T \\ 0 & \text{if } t \geq (1 + \varepsilon) T \end{cases}$ where $S = \{x \in \mathbb{R}^n : |x - m| \leq c\sqrt{n}\}$ and $T = \frac{\log(n)}{2\lambda}$.

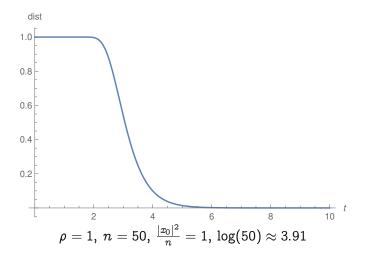
 $\max = \max \max v$ alue of dist

dist = Wasserstein, Entropy, Fisher, total variation

works for Ornstein–Uhlenbeck : $\lambda = \rho$

 $m = ext{mean of } \mu_{\infty}, \ c > 0 ext{ arbitrary constant}$

Cutoff for OU in total variation distance



Example beyond OU : Dyson !

$$V=rac{
ho}{2}\left|\cdot
ight|^{2}+\left.W,
ight.$$
 $ho>0$

 $\blacksquare W: \mathbb{R}^n o \mathbb{R}$ convex, constant on $x + \mathbb{R}(1, \dots, 1), x \in \mathbb{R}^n$

Example beyond OU : Dyson !

$$V=rac{
ho}{2}\left|\cdot
ight|^{2}+\,W,\quad
ho>0$$

 $\begin{array}{l} \blacksquare \hspace{0.1cm} W: \mathbb{R}^n \to \mathbb{R} \hspace{0.1cm} \text{convex, constant on } x + \mathbb{R}(1, \ldots, 1), \hspace{0.1cm} x \in \mathbb{R}^n \\ \blacksquare \hspace{0.1cm} \text{Example}: \hspace{0.1cm} \beta \text{-Dyson} \hspace{0.1cm} (\mu_{\infty} \hspace{0.1cm} \text{is} \hspace{0.1cm} \beta \text{-Ensemble}) \end{array}$

$$W(x) = \sum_{i < j} h(x_i - x_j), \quad h(x) = egin{cases} -eta \log(x) & ext{if } x > 0 \ +\infty & ext{if } x \leq 0 \end{cases}$$

Example beyond OU : Dyson !

$$V=rac{
ho}{2}\left|\cdot
ight|^{2}+\,W,\quad
ho>0$$

 $\begin{array}{l} \blacksquare \hspace{0.1cm} W: \mathbb{R}^n \rightarrow \mathbb{R} \hspace{0.1cm} \text{convex, constant on } x + \mathbb{R}(1, \ldots, 1), \hspace{0.1cm} x \in \mathbb{R}^n \\ \blacksquare \hspace{0.1cm} \text{Example}: \hspace{0.1cm} \beta \text{-Dyson} \hspace{0.1cm} (\mu_{\infty} \hspace{0.1cm} \text{is} \hspace{0.1cm} \beta \text{-Ensemble}) \end{array}$

$$W(x) = \sum_{i < j} h(x_i - x_j), \quad h(x) = egin{cases} -eta \log(x) & ext{if } x > 0 \ +\infty & ext{if } x \leq 0 \end{cases}$$

Gaussian factorization using $\pi(x) = \operatorname{proj}_{\mathbb{R}(1,...,1)}(x)$

$$e^{-V(x)} = e^{-\frac{\rho}{2}|\pi(x)|^2} e^{-(W(\pi^{\perp}(x)) + \frac{\rho}{2}|\pi^{\perp}(x)|^2)}$$

Example beyond OU : Dyson !

$$V=rac{
ho}{2}\left|\cdot
ight|^{2}+\left.W,
ight.$$
 $ho>0$

 $\begin{array}{l} \blacksquare \hspace{0.1cm} W: \mathbb{R}^n \rightarrow \mathbb{R} \hspace{0.1cm} \text{convex, constant on } x + \mathbb{R}(1, \ldots, 1), \hspace{0.1cm} x \in \mathbb{R}^n \\ \blacksquare \hspace{0.1cm} \text{Example}: \hspace{0.1cm} \beta \text{-Dyson} \hspace{0.1cm} (\mu_{\infty} \hspace{0.1cm} \text{is} \hspace{0.1cm} \beta \text{-Ensemble}) \end{array}$

$$W(x) = \sum_{i < j} h(x_i - x_j), \quad h(x) = egin{cases} -eta \log(x) & ext{if } x > 0 \ +\infty & ext{if } x \leq 0 \end{cases}$$

Gaussian factorization using $\pi(x) = \operatorname{proj}_{\mathbb{R}(1,...,1)}(x)$

$$e^{-V(x)} = e^{-rac{
ho}{2}|\pi(x)|^2} e^{-(W(\pi^{\perp}(x)) + rac{
ho}{2}|\pi^{\perp}(x)|^2)}$$

Spectral gap of $\mathcal{L} = \Delta - \nabla V \cdot \nabla$ is $\lambda = \rho$, free of W!

Example beyond OU : Dyson !

$$V=rac{
ho}{2}\left|\cdot
ight|^{2}+\,W,\quad
ho>0$$

 $\begin{array}{l} \blacksquare \hspace{0.1cm} W: \mathbb{R}^n \rightarrow \mathbb{R} \hspace{0.1cm} \text{convex, constant on } x + \mathbb{R}(1, \ldots, 1), \hspace{0.1cm} x \in \mathbb{R}^n \\ \blacksquare \hspace{0.1cm} \text{Example}: \hspace{0.1cm} \beta \text{-Dyson} \hspace{0.1cm} (\mu_{\infty} \hspace{0.1cm} \text{is} \hspace{0.1cm} \beta \text{-Ensemble}) \end{array}$

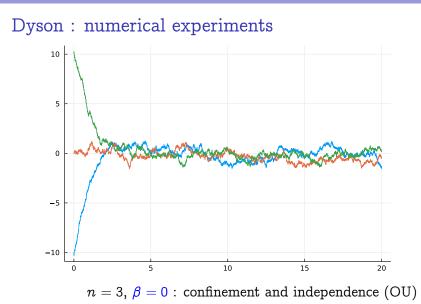
$$W(x) = \sum_{i < j} h(x_i - x_j), \quad h(x) = egin{cases} -eta \log(x) & ext{if } x > 0 \ +\infty & ext{if } x \leq 0 \end{cases}$$

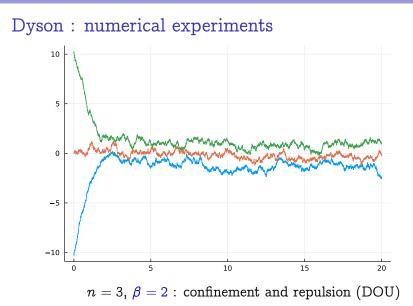
Gaussian factorization using $\pi(x) = \operatorname{proj}_{\mathbb{R}(1,...,1)}(x)$

$$\mathrm{e}^{-V(x)} = \mathrm{e}^{-rac{
ho}{2}|\pi(x)|^2} \mathrm{e}^{-(W(\pi^{\perp}(x))+rac{
ho}{2}|\pi^{\perp}(x)|^2)}$$

Spectral gap of L = Δ − ∇V · ∇ is λ = ρ, free of W!
 x₁ + · · · + x_n is an eigenfunction of −L associated to λ

6/29





$$\chi^2(
u\mid\mu) = \mathrm{Var}_{\mu}\Big(rac{\mathrm{d}
u}{\mathrm{d}\mu}\Big) = \Big\|rac{\mathrm{d}
u}{\mathrm{d}\mu} - 1\Big\|_{L^2(\mu)}^2$$

$$\chi^2(
u \mid \mu) = \operatorname{Var}_{\mu}\left(\frac{d
u}{d\mu}\right) = \left\|\frac{d
u}{d\mu} - 1\right\|_{L^2(\mu)}^2$$

Entropy $(
u \mid \mu) = \int \log \frac{d
u}{d\mu} d
u = \int \frac{d
u}{d\mu} \log \frac{d
u}{d\mu} d\mu$

$$\chi^{2}(\nu \mid \mu) = \operatorname{Var}_{\mu}\left(\frac{d\nu}{d\mu}\right) = \left\|\frac{d\nu}{d\mu} - 1\right\|_{L^{2}(\mu)}^{2}$$

Entropy $(\nu \mid \mu) = \int \log \frac{d\nu}{d\mu} d\nu = \int \frac{d\nu}{d\mu} \log \frac{d\nu}{d\mu} d\mu$
Fisher $(\nu \mid \mu) = \int \left|\nabla \log \frac{d\nu}{d\mu}\right|^{2} d\nu = 4 \int \left|\nabla \sqrt{\frac{d\nu}{d\mu}}\right|^{2} d\mu$

$$\begin{split} \chi^{2}(\nu \mid \mu) &= \operatorname{Var}_{\mu} \left(\frac{d\nu}{d\mu} \right) = \left\| \frac{d\nu}{d\mu} - 1 \right\|_{L^{2}(\mu)}^{2} \\ \operatorname{Entropy}(\nu \mid \mu) &= \int \log \frac{d\nu}{d\mu} d\nu = \int \frac{d\nu}{d\mu} \log \frac{d\nu}{d\mu} d\mu \\ \operatorname{Fisher}(\nu \mid \mu) &= \int \left| \nabla \log \frac{d\nu}{d\mu} \right|^{2} d\nu = 4 \int \left| \nabla \sqrt{\frac{d\nu}{d\mu}} \right|^{2} d\mu \\ \operatorname{Wasserstein}^{2}(\mu, \nu) &= \inf_{(X_{\mu}, X_{\nu})} \mathbb{E}(\frac{1}{2} |X_{\mu} - X_{\nu}|^{2}) = \sup_{f \neq L} \left(\int Q_{1}(f) d\mu - \int f d\nu \right) \end{split}$$

$$\begin{split} \chi^2(\nu \mid \mu) &= \operatorname{Var}_{\mu} \left(\frac{d\nu}{d\mu} \right) = \left\| \frac{d\nu}{d\mu} - 1 \right\|_{L^2(\mu)}^2 \\ \operatorname{Entropy}(\nu \mid \mu) &= \int \log \frac{d\nu}{d\mu} d\nu = \int \frac{d\nu}{d\mu} \log \frac{d\nu}{d\mu} d\mu \\ \operatorname{Fisher}(\nu \mid \mu) &= \int \left| \nabla \log \frac{d\nu}{d\mu} \right|^2 d\nu = 4 \int \left| \nabla \sqrt{\frac{d\nu}{d\mu}} \right|^2 d\mu \\ \operatorname{Wasserstein}^2(\mu, \nu) &= \inf_{(X_{\mu}, X_{\nu})} \mathbb{E}(\frac{1}{2} |X_{\mu} - X_{\nu}|^2) = \sup_{f \to L} \left(\int Q_1(f) d\mu - \int f d\nu \right) \\ \|\mu - \nu\|_{\mathrm{TV}} &= \inf_{(X_{\mu}, X_{\nu})} \mathbb{E}(1_{X_{\mu} \neq X_{\nu}}) = \sup_{\|f\|_{\infty} \leq \frac{1}{2}} \left(\int f d\mu - \int f d\nu \right) \end{split}$$

$$\begin{split} \chi^{2}(\nu \mid \mu) &= \operatorname{Var}_{\mu}\left(\frac{d\nu}{d\mu}\right) = \left\|\frac{d\nu}{d\mu} - 1\right\|_{L^{2}(\mu)}^{2}\\ \operatorname{Entropy}(\nu \mid \mu) &= \int \log \frac{d\nu}{d\mu} d\nu = \int \frac{d\nu}{d\mu} \log \frac{d\nu}{d\mu} d\mu\\ \operatorname{Fisher}(\nu \mid \mu) &= \int \left|\nabla \log \frac{d\nu}{d\mu}\right|^{2} d\nu = 4 \int \left|\nabla \sqrt{\frac{d\nu}{d\mu}}\right|^{2} d\mu\\ \operatorname{Wasserstein}^{2}(\mu, \nu) &= \inf_{(X_{\mu}, X_{\nu})} \mathbb{E}(\frac{1}{2}|X_{\mu} - X_{\nu}|^{2}) = \sup_{f \in L} \left(\int Q_{1}(f) d\mu - \int f d\nu\right)\\ &\|\mu - \nu\|_{\mathrm{TV}} = \inf_{(X_{\mu}, X_{\nu})} \mathbb{E}(1_{X_{\mu} \neq X_{\nu}}) = \sup_{\|f\|_{\infty} \leq \frac{1}{2}} \left(\int f d\mu - \int f d\nu\right)\\ &= \sup_{A} |\nu(A) - \mu(A)| = \frac{1}{2} \|\varphi_{\mu} - \varphi_{\nu}\|_{L^{1}(\lambda)} = \frac{1}{2} \|h - 1\|_{L^{1}(\mu)} \end{split}$$

$$\begin{split} \chi^2(\nu \mid \mu) &= \operatorname{Var}_{\mu} \left(\frac{d\nu}{d\mu} \right) = \left\| \frac{d\nu}{d\mu} - 1 \right\|_{L^2(\mu)}^2 \\ \operatorname{Entropy}(\nu \mid \mu) &= \int \log \frac{d\nu}{d\mu} d\nu = \int \frac{d\nu}{d\mu} \log \frac{d\nu}{d\mu} d\mu \\ \operatorname{Fisher}(\nu \mid \mu) &= \int \left| \nabla \log \frac{d\nu}{d\mu} \right|^2 d\nu = 4 \int \left| \nabla \sqrt{\frac{d\nu}{d\mu}} \right|^2 d\mu \\ \operatorname{Wasserstein}^2(\mu, \nu) &= \inf_{(X_{\mu}, X_{\nu})} \mathbb{E}(\frac{1}{2} |X_{\mu} - X_{\nu}|^2) = \sup_{f \in \mathbf{L}} \left(\int Q_1(f) d\mu - \int f d\nu \right) \\ &\| \mu - \nu \|_{\mathrm{TV}} = \inf_{(X_{\mu}, X_{\nu})} \mathbb{E}(1_{X_{\mu} \neq X_{\nu}}) = \sup_{\| f \|_{\infty} \leq \frac{1}{2}} \left(\int f d\mu - \int f d\nu \right) \\ &= \sup_{A} |\nu(A) - \mu(A)| = \frac{1}{2} \| \varphi_{\mu} - \varphi_{\nu} \|_{L^1(\lambda)} = \frac{1}{2} \| h - 1 \|_{L^1(\mu)} \\ \operatorname{Hellinger}^2(\mu, \nu) &= \frac{1}{2} \| \sqrt{\varphi_{\mu}} - \sqrt{\varphi_{\nu}} \|_{L^2(\lambda)}^2 \end{split}$$

OU : emergence of cutoff phenomenon

If
$$V = \frac{\rho}{2} |x|^2$$
 then $\mu_t = \mathcal{N}(x_0^n e^{-\rho t}, \frac{1 - e^{-2\rho t}}{\rho} I_n)$ and

OU : emergence of cutoff phenomenon

If
$$V = \frac{\rho}{2} |x|^2$$
 then $\mu_t = \mathcal{N}(x_0^n e^{-\rho t}, \frac{1-e^{-2\rho t}}{\rho} I_n)$ and
 $\chi^2(\mu_t, \mu_\infty) = \exp\left(\rho |x_0|^2 \frac{e^{-2\rho t}}{1+e^{-2\rho t}} - \frac{n}{2}\log(1-e^{-4\rho t})\right) - 1$
Entropy $(\mu_t, \mu_\infty) = \frac{1}{2} \left(\rho |x_0|^2 e^{-2\rho t} - ne^{-2\rho t} - n\log(1-e^{-2\rho t})\right)$
Fisher $(\mu_t, \mu_\infty) = \rho^2 |x_0|^2 e^{-2\rho t} + n\rho \frac{e^{-4\rho t}}{(1-e^{-2\rho t})^2}$
Hellinger² $(\mu_t, \mu_\infty) = 1 - \exp\left(-\frac{\rho |x_0|^2 e^{-2\rho t}}{4(2-e^{-2\rho t})} + \frac{n}{4}\log\left(4\frac{1-e^{-2\rho t}}{(2-e^{-2\rho t})^2}\right)^2$
Wasserstein² $(\mu_t, \mu_\infty) = |x_0|^2 e^{-2\rho t} + \frac{n}{\rho}(1-\sqrt{1-e^{-2\rho t}})^2$

)

OU : emergence of cutoff phenomenon

$$\begin{split} \text{If } V &= \frac{\rho}{2} |x|^2 \text{ then } \mu_t = \mathcal{N}(x_0^n e^{-\rho t}, \frac{1-e^{-2\rho t}}{\rho} I_n) \text{ and} \\ \chi^2(\mu_t, \mu_\infty) &= \exp\left(\rho |x_0|^2 \frac{e^{-2\rho t}}{1+e^{-2\rho t}} - \frac{n}{2}\log(1-e^{-4\rho t})\right) - 1 \\ \text{Entropy}(\mu_t, \mu_\infty) &= \frac{1}{2} \left(\rho |x_0|^2 e^{-2\rho t} - n e^{-2\rho t} - n \log(1-e^{-2\rho t})\right) \\ \text{Fisher}(\mu_t, \mu_\infty) &= \rho^2 |x_0|^2 e^{-2\rho t} + n\rho \frac{e^{-4\rho t}}{(1-e^{-2\rho t})^2} \\ \text{Hellinger}^2(\mu_t, \mu_\infty) &= 1 - \exp\left(-\frac{\rho |x_0|^2 e^{-2\rho t}}{4(2-e^{-2\rho t})} + \frac{n}{4} \log\left(4\frac{1-e^{-2\rho t}}{(2-e^{-2\rho t})^2}\right)\right) \\ \text{Wasserstein}^2(\mu_t, \mu_\infty) &= |x_0|^2 e^{-2\rho t} + \frac{n}{\rho} (1 - \sqrt{1-e^{-2\rho t}})^2 \end{split}$$

If $|x_0|^2 = n$ then cutoff at $t = rac{\log(n)}{2
ho}$ for $\operatorname{dist}(\mu_t \mid \mu_\infty)$: n versus $\mathrm{e}^{-2
ho t}$

Some universal comparisons

Functional inequalities à la Pinsker

$$egin{aligned} &\|\mu-
u\|_{ ext{TV}}^2 \leq 2 ext{Entropy}(
u \mid \mu) \ & ext{Entropy}(
u \mid \mu) \leq 2\chi(
u \mid \mu) + \chi^2(
u \mid \mu) \ & ext{Hellinger}^2(\mu,
u) \leq \|\mu-
u\|_{ ext{TV}} \ & ext{Hellinger}^2(\mu,
u)(2- ext{Hellinger}^2(\mu,
u)) \end{aligned}$$

Some universal comparisons

Functional inequalities à la Pinsker

$$egin{aligned} &\|\mu-
u\|_{ ext{TV}}^2 \leq 2 ext{Entropy}(
u \mid \mu) \ & ext{Entropy}(
u \mid \mu) \leq 2\chi(
u \mid \mu) + \chi^2(
u \mid \mu) \ & ext{Hellinger}^2(\mu,
u) \leq \|\mu-
u\|_{ ext{TV}} \ &\|\mu-
u\|_{ ext{TV}}^2 \leq ext{Hellinger}^2(\mu,
u)(2 - ext{Hellinger}^2(\mu,
u)) \end{aligned}$$

Useful for cutoff upper/lower bounds, but not enough !

If dist \in {TV, Entropy, χ^2 } then $\operatorname{dist}(\nu \circ f^{-1} \mid \mu \circ f^{-1}) \leq \operatorname{dist}(\nu \mid \mu)$

If dist ∈ {TV, Entropy, \(\chi_2\)²} then dist(\(\nu\) o f⁻¹ | \(\mu\) o f⁻¹) ≤ dist(\(\nu\) | \(\mu\))

If f : \(\mathbb{R}^n \rightarrow \(\mathbb{R}^k\) then , denoting \(\|f\|_{\Lip.} = \sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|}, \) Wasserstein(\(\mu\) o f⁻¹, \(\nu\) o f⁻¹) ≤ \(\|f\|_{\Lip.}\) Wasserstein(\(\mu, \nu\))

If dist \in {TV, Entropy, χ^2 } then $\operatorname{dist}(\nu \circ f^{-1} \mid \mu \circ f^{-1}) < \operatorname{dist}(\nu \mid \mu)$ If $f: \mathbb{R}^n \to \mathbb{R}^k$ then, denoting $\|f\|_{\text{Lip.}} = \sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|}$, Wasserstein $(\mu \circ f^{-1}, \nu \circ f^{-1}) \leq ||f||_{\text{Lin}}$ Wasserstein (μ, ν) Useful for cutoff lower/upper bounds $\operatorname{dist}(\mu_t \circ f^{-1} \mid \mu_{\infty} \circ f^{-1}) < c \operatorname{dist}(\mu_t \mid \mu_{\infty})$

If dist \in {TV, Entropy, χ^2 } then $\operatorname{dist}(\nu \circ f^{-1} \mid \mu \circ f^{-1}) < \operatorname{dist}(\nu \mid \mu)$ If $f: \mathbb{R}^n \to \mathbb{R}^k$ then, denoting $\|f\|_{\text{Lip.}} = \sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|}$, Wasserstein $(\mu \circ f^{-1}, \nu \circ f^{-1}) \leq ||f||_{\text{Lin}}$ Wasserstein (μ, ν) Useful for cutoff lower/upper bounds $\operatorname{dist}(\mu_t \circ f^{-1} \mid \mu_{\infty} \circ f^{-1}) < c \operatorname{dist}(\mu_t \mid \mu_{\infty})$ If f affine eigenfunction of $-\mathcal{L}$ then $(f(X_t))_{t>0}$ is 1D OU

Monotonicity

Monotonicity and ergodicity

$$\operatorname{dist}(\mu_t \mid \mu_\infty) \operatornamewithlimits{\searrow}_{t
ightarrow \infty} 0$$

Monotonicity

Monotonicity and ergodicity

$$ext{dist}(\mu_t \mid \mu_\infty) igstarrow 0 \ t
ightarrow \infty$$

Markovianity and convexity : if $\nu \ll \mu$ then

$$\mathrm{dist}(
u\mid\mu)=\int\Phi(rac{\mathrm{d}
u}{\mathrm{d}\mu})\mathrm{d}\mu \ \Phi(u)=egin{cases} u^2-1 & ext{if dist}=\chi^2 \ u\log(u) & ext{if dist}=\mathrm{Entropy} \ rac{1}{2}|u-1| & ext{if dist}=\mathrm{TV} \ rac{1}{2}(1-\sqrt{u}) & ext{if dist}=\mathrm{Hellinger}^2 \end{cases}$$

Monotonicity

Monotonicity and ergodicity

$$\operatorname{dist}(\mu_t \mid \mu_\infty) \searrow _{t
ightarrow \infty} 0$$

Markovianity and convexity : if $\nu \ll \mu$ then

$${
m dist}(
u\mid\mu)=\int \Phi(rac{d
u}{d\mu}){
m d}\mu \ \Phi(u)=egin{cases} u^2-1 & ext{if dist}=\chi^2 \ u\log(u) & ext{if dist}= ext{Entropy} \ rac{1}{2}|u-1| & ext{if dist}= ext{TV} \ rac{1}{2}(1-\sqrt{u}) & ext{if dist}= ext{Hellinger}^2 \end{cases}$$

| Fisher and Wasserstein : involve also convexity of V

 $\begin{array}{l} \text{Curvature} \Rightarrow \text{Functional inequalities} \\ \text{Thanks to ρ-convexity of V}: \end{array}$

Log-Sobolev and Talagrand inequalities

$$\mathrm{Entropy}(\mu \mid \mu_{\infty}) \leq rac{1}{2
ho}\mathrm{Fisher}(\mu \mid \mu_{\infty})$$
 $\mathrm{Wasserstein}^2(\mu, \mu_{\infty}) \leq rac{2}{
ho}\mathrm{Entropy}(\mu \mid \mu_{\infty})$

Curvature \Rightarrow Functional inequalities Thanks to ρ -convexity of V:

Log-Sobolev and Talagrand inequalities

$$\mathrm{Entropy}(\mu \mid \mu_{\infty}) \leq rac{1}{2
ho}\mathrm{Fisher}(\mu \mid \mu_{\infty})$$
 $\mathrm{Wasserstein}^2(\mu,\mu_{\infty}) \leq rac{2}{
ho}\mathrm{Entropy}(\mu \mid \mu_{\infty})$

Monotonicity (à la Boltzmann), convexity (à la Cercignani)

$$egin{aligned} \partial_t \mathrm{Entropy}(\mu_t \mid \mu_\infty) &= -\mathrm{Fisher}(\mu_t \mid \mu) \leq 0 \ \partial_t \mathrm{Fisher}(\mu_t \mid \mu_\infty) \leq -2
ho \mathrm{Fisher}(\mu_t \mid \mu_\infty) \leq 0 \end{aligned}$$

Curvature \Rightarrow Functional inequalities Thanks to ρ -convexity of V:

Log-Sobolev and Talagrand inequalities

$$\mathrm{Entropy}(\mu \mid \mu_{\infty}) \leq rac{1}{2
ho}\mathrm{Fisher}(\mu \mid \mu_{\infty})$$
 $\mathrm{Wasserstein}^2(\mu, \mu_{\infty}) \leq rac{2}{
ho}\mathrm{Entropy}(\mu \mid \mu_{\infty})$

Monotonicity (à la Boltzmann), convexity (à la Cercignani)

$$egin{aligned} \partial_t \mathrm{Entropy}(\mu_t \mid \mu_\infty) &= -\mathrm{Fisher}(\mu_t \mid \mu) \leq 0 \ \partial_t \mathrm{Fisher}(\mu_t \mid \mu_\infty) \leq -2
ho \mathrm{Fisher}(\mu_t \mid \mu_\infty) \leq 0 \end{aligned}$$

Bochner formula and curvature $[\mathcal{L},
abla] = ext{Hess}(V)
abla \geq
ho
abla$

Curvature \Rightarrow Functional inequalities Thanks to ρ -convexity of V:

Log-Sobolev and Talagrand inequalities

$$\mathrm{Entropy}(\mu \mid \mu_{\infty}) \leq rac{1}{2
ho}\mathrm{Fisher}(\mu \mid \mu_{\infty})$$
 $\mathrm{Wasserstein}^2(\mu,\mu_{\infty}) \leq rac{2}{
ho}\mathrm{Entropy}(\mu \mid \mu_{\infty})$

Monotonicity (à la Boltzmann), convexity (à la Cercignani)

$$egin{aligned} \partial_t \mathrm{Entropy}(\mu_t \mid \mu_\infty) &= -\mathrm{Fisher}(\mu_t \mid \mu) \leq 0 \ \partial_t \mathrm{Fisher}(\mu_t \mid \mu_\infty) \leq -2
ho \mathrm{Fisher}(\mu_t \mid \mu_\infty) \leq 0 \end{aligned}$$

Bochner formula and curvature [L, ∇] = Hess(V)∇ ≥ ρ∇
 Bakry-Émery curvature-dimension criterion CD(ρ,∞)

Curvature \Rightarrow Exponential decays and regularization

Thanks to ρ -convexity of V :

Exponential decays via Grönwall

 $egin{aligned} & ext{Entropy}(\mu_t \mid \mu_\infty) \leq \mathrm{e}^{-2
ho t} ext{Entropy}(\mu_0 \mid \mu_\infty) \ & ext{Fisher}(\mu_t \mid \mu_\infty) \leq \mathrm{e}^{-2
ho t} ext{Fisher}(\mu_0 \mid \mu_\infty) \ & ext{Wasserstein}^2(\mu_t \mid \mu_\infty) \leq \mathrm{e}^{-2
ho t} ext{Wasserstein}^2(\mu_0 \mid \mu_\infty) \end{aligned}$

 $Curvature \Rightarrow Exponential decays and regularization$

Thanks to ρ -convexity of V :

Exponential decays via Grönwall

 $egin{aligned} & ext{Entropy}(\mu_t \mid \mu_\infty) \leq \mathrm{e}^{-2
ho t} ext{Entropy}(\mu_0 \mid \mu_\infty) \ & ext{Fisher}(\mu_t \mid \mu_\infty) \leq \mathrm{e}^{-2
ho t} ext{Fisher}(\mu_0 \mid \mu_\infty) \end{aligned}$ Wasserstein² $(\mu_t \mid \mu_\infty) \leq \mathrm{e}^{-2
ho t} ext{Wasserstein}^2(\mu_0 \mid \mu_\infty)$

Regularization in short-time (or short-time blowup control)

$$\mathrm{Entropy}(\mu_t \mid \mu_\infty) \leq rac{
ho \mathrm{e}^{-2
ho t}}{1-\mathrm{e}^{-2
ho t}}\mathrm{Wasserstein}^2(\mu_0,\mu_\infty)$$

If $\lambda = \rho$ (rigidity) then :

Up to rotation and translation

$$\mu_{\infty}={
m e}^{-\,V}=\mathcal{N}(0,rac{1}{\lambda})\otimes {
m factor} ext{ with curvature }\lambda$$

If f is such an eigenfunction then $(f(X_t))_{t>0}$ is 1D OU !

If f is such an eigenfunction then (f(X_t))_{t≥0} is 1D OU !
 Allows cutoff lower bound by contraction (OU comparison)

$$\sup_{x_0\in S} ext{Wasserstein}^2(\mu_t,\mu_\infty) egin{cases} \leq \mathrm{e}^{-2\lambda t} \sup_{x_0\in S} \int |x-x_0|^2 \mathrm{d}\mu_\infty(x) \ \geq rac{\mathrm{e}^{-2\lambda t}}{\lambda} \sup_{x_0\in S} \Bigl(k+\sup_{f_1,...,f_k}\sum_{i=1}^k |f_i(x_0)|^2\Bigr) \end{cases}$$

$$\sup_{x_0\in S} ext{Wasserstein}^2(\mu_t,\mu_\infty) egin{cases} \leq \mathrm{e}^{-2\lambda t} \sup_{x_0\in S} \int |x-x_0|^2 \mathrm{d}\mu_\infty(x) \ \geq rac{\mathrm{e}^{-2\lambda t}}{\lambda} \sup_{x_0\in S} \Bigl(k+\sup_{f_1,...,f_k}\sum_{i=1}^k |f_i(x_0)|^2\Bigr) \end{cases}$$

Upper bound from curvature

$$\sup_{x_0\in S} ext{Wasserstein}^2(\mu_t,\mu_\infty) egin{cases} \leq \mathrm{e}^{-2\lambda t} \sup_{x_0\in S} \int |x-x_0|^2 \mathrm{d}\mu_\infty(x) \ \geq rac{\mathrm{e}^{-2\lambda t}}{\lambda} \sup_{x_0\in S} \Bigl(k+\sup_{f_1,...,f_k}\sum_{i=1}^k |f_i(x_0)|^2\Bigr) \end{cases}$$

Upper bound from curvature

Lower bound from rigidity

$$\sup_{x_0\in S} ext{Wasserstein}^2(\mu_t,\mu_\infty) egin{cases} \leq \mathrm{e}^{-2\lambda t} \sup_{x_0\in S} \int |x-x_0|^2 \mathrm{d}\mu_\infty(x) \ \geq rac{\mathrm{e}^{-2\lambda t}}{\lambda} \sup_{x_0\in S} \Bigl(k+\sup_{f_1,...,f_k}\sum_{i=1}^k |f_i(x_0)|^2\Bigr) \end{cases}$$

Upper bound from curvature

Lower bound from rigidity

Rest of proof of theorem with functional inequalities

Aspects of the cutoff phenomenon ______Nonlinear diffusions

Outline

Langevin diffusions

Nonlinear diffusions

About cutoff at mixing time

Cutoff for high-dimensional nonlinear diffusions
■ Fast diffusion (m < 1) and porous medium (m > 1) in Rⁿ

$$\partial_t u = \Delta(u^m) = \operatorname{div}(mu^{m-1}
abla u)$$

Cutoff for high-dimensional nonlinear diffusions
■ Fast diffusion (m < 1) and porous medium (m > 1) in Rⁿ

$$\partial_t u = \Delta(u^m) = \operatorname{div}(mu^{m-1}
abla u)$$

Barenblatt profile, $m > \frac{n-2}{n}$, with $\alpha = \frac{1}{2-n(1-m)}$

$$u_t(x)=rac{1}{t^{lpha n}}Bigg(rac{x-x_0}{t^lpha}igg), \quad B(x)=igg(c+lpharac{1-m}{2m}|x|^2igg)_+^{rac{1}{m-1}}$$

Cutoff for high-dimensional nonlinear diffusions Fast diffusion (m < 1) and porous medium (m > 1) in \mathbb{R}^n $\partial_t u = \Delta(u^m) = \operatorname{div}(mu^{m-1} \nabla u)$ Barenblatt profile, $m > \frac{n-2}{n}$, with $\alpha = \frac{1}{2-n(1-m)}$ $u_t(x)=rac{1}{tlpha n}Bigg(rac{x-x_0}{tlpha}igg), \quad B(x)=igg(c+lpharac{1-m}{2m}|x|^2igg)^{rac{1}{m-1}}$ \blacksquare m < 1: Student, m = 1: Gaussian, m > 1: Beta/Riesz

Cutoff for high-dimensional nonlinear diffusions Fast diffusion (m < 1) and porous medium (m > 1) in \mathbb{R}^n $\partial_t u = \Delta(u^m) = \operatorname{div}(mu^{m-1} \nabla u)$ Barenblatt profile, $m > \frac{n-2}{n}$, with $\alpha = \frac{1}{2-n(1-m)}$ $u_t(x)=rac{1}{tlpha n}Bigg(rac{x-x_0}{tlpha}igg), \quad B(x)=igg(c+lpharac{1-m}{2m}|x|^2igg)^{rac{1}{m-1}}$ \blacksquare m < 1: Student, m = 1: Gaussian, m > 1: Beta/Riesz Fokker – Planck version of the evolution equation

$$\partial_t v_t = \Delta(v^m) + \operatorname{div}(xv).$$

Cutoff for high-dimensional nonlinear diffusions Fast diffusion (m < 1) and porous medium (m > 1) in \mathbb{R}^n $\partial_t u = \Delta(u^m) = \operatorname{div}(mu^{m-1} \nabla u)$ Barenblatt profile, $m > \frac{n-2}{n}$, with $\alpha = \frac{1}{2-n(1-m)}$ $u_t(x)=rac{1}{tlpha n}Bigg(rac{x-x_0}{tlpha}igg), \quad B(x)=igg(c+lpharac{1-m}{2m}|x|^2igg)^{rac{1}{m-1}}$ \blacksquare m < 1: Student, m = 1: Gaussian, m > 1: Beta/Riesz Fokker – Planck version of the evolution equation $\partial_t v_t = \Delta(v^m) + \operatorname{div}(xv).$

Barenblatt, Pattle, Vázquez, Demange, Dolbeault, ...

Theorem (C. – Fathi – Simonov 2025)

For all $\varepsilon \in (0,1)$

$$\lim_{n o\infty} \sup_{x_0\in S} \operatorname{dist}(v_t \mid v_\infty) = egin{cases} +\infty & ext{if } t\leq (1-arepsilon) T \ 0 & ext{if } t\geq (1+arepsilon) T \ \end{cases}$$
 where $S=\{x\in \mathbb{R}^n: |x|\leq c\sqrt{n}\} ext{ and } T=(lphaee 1)rac{\log(n)}{2}$

$$lpha>0,\ m=rac{n-2}{n}+rac{1}{nlpha},\ c>0$$
 is arbitrary

Theorem (C. – Fathi – Simonov 2025)

For all $\varepsilon \in (0,1)$

$$\lim_{n o \infty} \sup_{x_0 \in S} \operatorname{dist}(v_t \mid v_\infty) = egin{cases} +\infty & \textit{if } t \leq (1-arepsilon) T \ 0 & \textit{if } t \geq (1+arepsilon) T \end{cases}$$

where $S = \{x \in \mathbb{R}^n : |x| \leq c\sqrt{n}\}$ and $T = (lpha \lor 1) rac{\log(n)}{2}.$

 $\alpha > 0$, $m = \frac{n-2}{n} + \frac{1}{n\alpha}$, c > 0 is arbitrary
 dist = Wasserstein, Entropy_m, Fisher_m

Theorem (C. – Fathi – Simonov 2025)

For all $\varepsilon \in (0,1)$

$$\lim_{n o \infty} \sup_{x_0 \in S} \operatorname{dist}(v_t \mid v_\infty) = egin{cases} +\infty & ext{if } t \leq (1-arepsilon) T \ 0 & ext{if } t \geq (1+arepsilon) T \end{cases}$$

where $S = \{x \in \mathbb{R}^n : |x| \leq c\sqrt{n}\}$ and $T = (\alpha \lor 1) rac{\log(n)}{2}.$

$$\begin{array}{l} \blacksquare \ \alpha > 0, \ m = \frac{n-2}{n} + \frac{1}{n\alpha}, \ c > 0 \ \text{is arbitrary} \\ \blacksquare \ \text{dist} = \text{Wasserstein, Entropy}_m, \ \text{Fisher}_m \\ \blacksquare \ \partial_t \text{Entropy}_m(v_t \mid v_{\infty}) = -\text{Fisher}_m(v_t \mid v_{\infty}) \end{array}$$

Theorem (C. – Fathi – Simonov 2025)

For all $\varepsilon \in (0,1)$

$$\lim_{n o \infty} \sup_{x_0 \in S} \operatorname{dist}(v_t \mid v_\infty) = egin{cases} +\infty & if \ t \leq (1-arepsilon) T \ 0 & if \ t \geq (1+arepsilon) T \end{cases}$$

where $S = \{x \in \mathbb{R}^n : |x| \leq c\sqrt{n}\}$ and $T = (lpha \lor 1) rac{\log(n)}{2}.$

Theorem (C. – Fathi – Simonov 2025)

For all $\varepsilon \in (0, 1)$

$$\lim_{n o \infty} \sup_{x_0 \in S} \operatorname{dist}(v_t \mid v_\infty) = egin{cases} +\infty & ext{ if } t \leq (1-arepsilon) T \ 0 & ext{ if } t \geq (1+arepsilon) T \end{cases}$$

where $S = \{x \in \mathbb{R}^n : |x| \leq c\sqrt{n}\}$ and $T = (lpha \lor 1) rac{\log(n)}{2}.$

Aspects of the cutoff phenomenon

LAbout cutoff at mixing time

Outline

Langevin diffusions

Nonlinear diffusions

About cutoff at mixing time

Aspects of the cutoff phenomenon _About cutoff at mixing time

Cutoff people (among others)

Persi Diaconis

David Aldous

Laurent Saloff-Coste

Justin Salez

From cards shuffling to Brownian motion and beyond!

Aspects of the cutoff phenomenon _About cutoff at mixing time

General setting

Family of ergodic Markov processes

$$(X_t^{(n)})_{t \ge 0}$$
 on state space $E^{(n)}$

Aspects of the cutoff phenomenon LAbout cutoff at mixing time

General setting

Family of ergodic Markov processes

$$(X_t^{(n)})_{t\geq 0}$$
 on state space $E^{(n)}$

Law and invariant law

$$\mu_t = \operatorname{Law}(X_t) \xrightarrow[t o \infty]{} \mu_\infty$$

Aspects of the cutoff phenomenon LAbout cutoff at mixing time

General setting

Family of ergodic Markov processes

$$(X_t^{(n)})_{t\geq 0}$$
 on state space $E^{(n)}$

Law and invariant law

$$\mu_t = \operatorname{Law}(X_t) \xrightarrow[t o \infty]{} \mu_\infty$$

Subset of initial conditions

 $\mathcal{P}_0\subset \mathcal{P}(E)$

Aspects of the cutoff phenomenon LAbout cutoff at mixing time

General setting

Family of ergodic Markov processes

$$(X_t^{(n)})_{t\geq 0}$$
 on state space $E^{(n)}$

Law and invariant law

$$\mu_t = \operatorname{Law}(X_t) \xrightarrow[t o \infty]{} \mu_\infty$$

Subset of initial conditions

$$\mathcal{P}_0\subset \mathcal{P}(E)$$

Markov semigroup

$$\mu P_t(f)=\mu_t(f)=\mathbb{E}(f(X_t)),\quad X_0\sim \mu$$

Cutoff phenomenon

There exists a critical time T such that for all $\varepsilon \in (0, 1)$

$$\lim_{n o \infty} \sup_{\mu_0 \in \mathcal{P}_0} \operatorname{dist}(\mu_t \mid \mu_\infty) = egin{cases} \max & ext{if } t \leq (1-arepsilon) T \ 0 & ext{if } t \geq (1+arepsilon) T \end{cases}$$

If dist = total variation, then max = 1

Cutoff phenomenon

There exists a critical time T such that for all $\varepsilon \in (0, 1)$

$$\lim_{n o \infty} \sup_{\mu_0 \in \mathcal{P}_{\mathbf{0}}} \operatorname{dist}(\mu_t \mid \mu_\infty) = egin{cases} \max & ext{if } t \leq (1-arepsilon) T \ 0 & ext{if } t \geq (1+arepsilon) T \end{cases}$$

If dist = total variation, then max = 1
Example : random walk on hypercube {0, 1}ⁿ, T = n log n

Cutoff phenomenon

There exists a critical time T such that for all $\varepsilon \in (0, 1)$

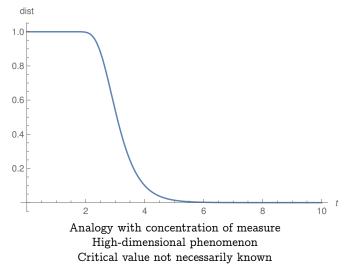
$$\lim_{n o \infty} \sup_{\mu_0 \in \mathcal{P}_{\mathbf{0}}} \operatorname{dist}(\mu_t \mid \mu_\infty) = egin{cases} \max & ext{if } t \leq (1-arepsilon) T \ 0 & ext{if } t \geq (1+arepsilon) T \end{cases}$$

If dist = total variation, then max = 1
Example : random walk on hypercube {0,1}ⁿ, T = n log n
Counter example : random walk on circle Z/nZ, CLT

Aspects of the cutoff phenomenon

About cutoff at mixing time

Threshold phenomenon



Aspects of the cutoff phenomenon _About cutoff at mixing time

More examples

Random walks on the symmetric group Σ_n

Aspects of the cutoff phenomenon _About cutoff at mixing time

More examples

Random walks on the symmetric group Σ_n
 Exclusion processes : n particles on a finite set

- **Random walks on the symmetric group** Σ_n
- Exclusion processes : n particles on a finite set
- Brownian motion on \mathbb{S}^n , \mathbb{T}^n , \mathbb{P}^n

- Random walks on the symmetric group Σ_n
- Exclusion processes : n particles on a finite set
- Brownian motion on \mathbb{S}^n , \mathbb{T}^n , \mathbb{P}^n
- Ornstein-Uhlenbeck/Dyson/Langevin processes on \mathbb{R}^n

- Random walks on the symmetric group Σ_n
- Exclusion processes : n particles on a finite set
- Brownian motion on \mathbb{S}^n , \mathbb{T}^n , \mathbb{P}^n
- Ornstein-Uhlenbeck/Dyson/Langevin processes on \mathbb{R}^n
- Nonlinear diffusions on \mathbb{R}^n , beyond probabilistic setting

- Random walks on the symmetric group Σ_n
- Exclusion processes : n particles on a finite set
- Brownian motion on \mathbb{S}^n , \mathbb{T}^n , \mathbb{P}^n
- Ornstein-Uhlenbeck/Dyson/Langevin processes on \mathbb{R}^n
- Nonlinear diffusions on \mathbb{R}^n , beyond probabilistic setting

• Worst initial condition versus trend to equilibrium

Mixing time and relaxation

• Mixing time : for \mathcal{P}_0 , dist, $\eta \ll \max$

$$T_{ ext{mix}} = \inf\{t \geq \mathsf{0}: \sup_{\mu_0 \in \mathcal{P}_0} \operatorname{dist}(\mu_t \mid \mu_\infty) \leq \eta\}$$

Mixing time and relaxation

• Mixing time : for \mathcal{P}_0 , dist, $\eta \ll \max$

$$T_{ ext{mix}} = \inf\{t \geq 0: \sup_{\mu_0 \in \mathcal{P}_0} \operatorname{dist}(\mu_t \mid \mu_\infty) \leq \eta\}$$

Relaxation : largest $\lambda > 0$ s.t. for all $t \ge 0, f \in L^2(\mu_\infty),$

 $\|P_t(f)-\mu_\infty(f)\|_2\leq {
m e}^{-\lambda t}\|f\|_2$

Mixing time and relaxation

Mixing time : for \$\mathcal{P}_0\$, dist, \$\eta \lefty max\$ $T_{\text{mix}} = \inf\{t \ge 0: \sup_{\mu_0 \in \mathcal{P}_0} \operatorname{dist}(\mu_t \mid \mu_\infty) \le \eta\}$ Relaxation : largest $\lambda > 0$ s.t. for all $t \ge 0$, $f \in L^2(\mu_\infty)$, $\|P_t(f) - \mu_\infty(f)\|_2 \le e^{-\lambda t} \|f\|_2$

• When $P_t = e^{t\mathcal{L}}$ is reversible then

 $\lambda = {\rm spectral} ~{\rm gap}$ of infinitesimal generator ${\cal L}$

Theorem (Chen-Saloff-Coste 2008)

$$\lim_{n o\infty} \sup_{\mu_0\in\mathcal{P}_0} \|\mu_t-\mu_\infty\|_p = egin{cases} \max & ext{if } t\leq (1-arepsilon) T_{ ext{mix}} \ 0 & ext{if } t\geq (1+arepsilon) T_{ ext{mix}} \end{cases}$$

Theorem (Chen-Saloff-Coste 2008)

If $\lambda imes T_{ ext{mix}} \xrightarrow[n o \infty]{} \infty$ then for all $1 and <math>\varepsilon \in (0, 1)$

$$\lim_{n o \infty} \sup_{\mu_0 \in \mathcal{P}_0} \| \mu_t - \mu_\infty \|_p = egin{cases} \max & \textit{if } t \leq (1 - arepsilon) T_{ ext{mix}} \ 0 & \textit{if } t \geq (1 + arepsilon) T_{ ext{mix}} \end{cases}$$

Theorem (Chen-Saloff-Coste 2008)

If $\lambda imes T_{ ext{mix}} \xrightarrow[n o \infty]{} \infty$ then for all $1 and <math>\varepsilon \in (0, 1)$

$$\lim_{n o \infty} \sup_{\mu_0 \in \mathcal{P}_0} \|\mu_t - \mu_\infty\|_p = egin{cases} \max & ext{if } t \leq (1 - arepsilon) T_{ ext{mix}} \ 0 & ext{if } t \geq (1 + arepsilon) T_{ ext{mix}} \end{cases}$$

Simple, via $d_p(s+t) \leq d_p(s) d_p(t)$ and $d_p(t) \searrow \leq C_q \mathrm{e}^{-c_q \lambda t}$

Theorem (Chen-Saloff-Coste 2008, Salez 2025)

If $\lambda imes T_{ ext{mix}} \xrightarrow[n o \infty]{} \infty$ then for all $1 and <math>arepsilon \in (0,1)$

$$\lim_{n o \infty} \sup_{\mu_0 \in \mathcal{P}_0} \|\mu_t - \mu_\infty\|_p = egin{cases} \max & ext{if } t \leq (1 - arepsilon) T_{ ext{mix}} \ 0 & ext{if } t \geq (1 + arepsilon) T_{ ext{mix}} \end{cases}$$

Still works for p = 1 for non-negatively curved diffusions.

Theorem (Chen-Saloff-Coste 2008, Salez 2025)

If $\lambda imes T_{ ext{mix}} \xrightarrow[n o \infty]{} \infty$ then for all $1 and <math>\varepsilon \in (0, 1)$

$$\lim_{n o \infty} \sup_{\mu_0 \in \mathcal{P}_0} \|\mu_t - \mu_\infty\|_p = egin{cases} \max & ext{if } t \leq (1 - arepsilon) T_{ ext{mix}} \ 0 & ext{if } t \geq (1 + arepsilon) T_{ ext{mix}} \end{cases}$$

Still works for p = 1 for non-negatively curved diffusions.

Simple, via d_p(s + t) ≤ d_p(s)d_p(t) and d_p(t) ∖ ≤ C_qe^{-c_qλt}
p = 1 (TV) : counter examples by Aldous and by Pak
p = 1 (TV) : fix by Salez via reverse Pinsker and varent
Critical time T_{mix} not provided by this approach

Theorem (C. – Fathi 2025 – Beyond rigidity, for diffusions)

For a diffusion $\mathcal{L} = \Delta - \nabla V \cdot \nabla$ with Hess $V \geq \rho$, if

$$ho imes T_{ ext{mix}}^{ ext{TV}} \xrightarrow[n o \infty]{} + \infty$$

then for all $\varepsilon \in (0, 1)$ and dist $\in \{$ Entropy, Fisher, Wass., TV $\}$,

$$\lim_{n o \infty} \sup_{\mu_0 \in \mathcal{P}_0} \operatorname{dist}(\mu_t \mid \mu_\infty) = egin{cases} \max & \textit{if } t \leq (1-arepsilon) \, T_{ ext{mix}} \ 0 & \textit{if } t \geq (1+arepsilon) \, T_{ ext{mix}} \end{cases}$$

Proof : [Chen-Saloff-Coste] + [Salez] + [C.-Fathi]

Thank you for your attention!

