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General principle

Obtain new/improved inequalities under the
assumption of symmetry or centering

Heating Laplace and Legendre



General principle

Obtain new/improved inequalities under the
assumption of symmetry or centering

Two manifestations:

e functional correlation/convolution inequalities
(Brascamp-Lieb, gaussian correlation, Laplace inequalisites)

e improved Brunn-Minkowski theory in
convexity/log-concavity (log-Brunn-Minkowski,
dimensional Brunn-Minkowski, B-inequalities). Several
conjectures, and a few results.
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Laplace Transform

For nonnegative f: R” — R*, define:

Lf) = [ f@edx, VyeR”
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Laplace Transform

For nonnegative f: R” — R*, define:
Lf) = [ f@edx, VyeR”

Notation : f# 0 < {f > 0} has positive measure.
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Laplace Transform

For nonnegative f: R” — R*, define:
Lf) = [ f@edx, VyeR”
Notation : f# 0 < {f > 0} has positive measure.

We are interested in (reverse) sharp L? — L? bounds, in the regime

p
pe(:): q p—lE( a)
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Laplace Transform

For nonnegative f: R” — R*, define:
Lf) = [ f@edx, VyeR”

Notation : f# 0 < {f > 0} has positive measure.
We are interested in (reverse) sharp L? — L? bounds, in the regime

P
0,1 = —— € (—,0
pe(0.1), ¢ p_le( ,0)
@ Note that Lf : R" — [0,c0] is convex
e Note that, if f#0, then Lf(y) € (0,~| and by Holder’s
inequality, we get that logLf convex.
In particular, (Lf)? is log-concave.
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Reverse L? bound

Nakamura-Tsuji (2023) Laplace inequality
If f>0is even then
1L zarny = Cp | fll Lo (wmy)

where the best constant C, is attained for f(x) = e /2,

‘Improvement of positivity’ in the terminology of C. Borell.
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Reverse L? bound

Nakamura-Tsuji (2023) Laplace inequality
If f>0is even then
1L zarny = Cp | fll Lo (wmy)

where the best constant C, is attained for f(x) = e /2,

‘Improvement of positivity’ in the terminology of C. Borell.

ILf | o)

——— js linear invariant.
£l e (mr)

@ The quantity
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Reverse L? bound

Nakamura-Tsuji (2023) Laplace inequality
If f>0is even then
ILf larny = Cp || £l o ey

where the best constant C, is attained for f(x) = e /2,

‘Improvement of positivity’ in the terminology of C. Borell.

ILf | o)
£l e (mr)
@ The inequality cannot hold for general f > 0. Note for

instance that

@ The quantity is linear invariant.

L(7f)(x) = e*Lf(x)

where 7,(f)(x) := f(x—2z), s0 L(t.f)(x)? = e#*Lf(x)? can
degenerate.
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Reverse L Bound Theorem

Theorem (C-F-L 2024)
Forany f >0,

sup |IL(Tef) ||ormy = Cp 1 || rwr)
zER"

where C, = [p'/?(—q)~"/9"/2(2)"/4 is attained for Gaussians.
Moreover if [xf(x)’dx =0, then

ILf | zarny = Cp | fll Lo (we)
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Reverse L Bound Theorem

Theorem (C-F-L 2024)

Forany f >0,

sup ||L(Tzf)”Lq(Rn) > Cp Hf”U(R")
ZER"

where C, = [p'/?(—q)~"/9"/2(2)"/4 is attained for Gaussians.
Moreover if [xf(x)’dx =0, then
ILf | zarny = Cp | fll Lo (we)

If f # 0 then there exists z such that ||L(z.f)||, > 0 and
o either sup, ||L(T.f)||; =

@ or else the supremum is attained at a unique point,
characterized by...
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Reverse L Bound Theorem

Theorem (C-F-L 2024)
For any nonnegative f € LP(R") define

foi=PR(fP)/r

where P, is the Folcker-Planck semi-group, so that || f;||, = || f|l»-
Then

t — sup [|L(T.f;) || carey
zeR?

decreases on [0,).
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Reverse L Bound Theorem

Theorem (C-F-L 2024)
Forany f >0,

sup [|IL(Tef) ||orr) = Cp 1 | rwr)
ZER"

where C, = [p'/?(—q)~'/4]"/?(2m)"/4 is attained for Gaussians.
Moreover if [xf(x)?dx =0, then
ILf | zarny = Cp | fllzr(we)

L? — L7 inequalities for Laplace transform admit interesting
consequences and reformulations.
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Equivalent formulation 1: Hypercontractivity

Consider the Ornstein-Uhlenbeck semi-group

PoF (x) = / F(cos(8)x-+sin(6)y) dy(y)

for 6 € [0,7/2]. Recall that for 1 < p <r and cos(6) = ;:1 ,
1PoF || r(y) < IFllo )

Inequality is reversed for r < p < 1 (C. Borell).
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Equivalent formulation 1: Hypercontractivity

Consider the Ornstein-Uhlenbeck semi-group

PoF (x) = / F(cos(8)x-+sin(6)y) dy(y)

for 6 € [0,7/2]. Recall that for 1 < p <r and cos(0) = /=1,
1PoF |1 (y) < [1F|Lr(y)

Inequality is reversed for r < p < 1 (C. Borell).
Under the change of function f(x) = F(x)e /%", we get

Theorem (Improved hypercontractivty under centering)

For F > 0 with [xF (x)? dy(x) = 0 we have for p =1 —cos*(£), g = Ll
that
1PeFllagy) 2 I1F o)

1 —
Note that cos(§) = {/2=1 > \/‘;;‘
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Equivalent formulation 2: Inverse Brascamp-Lieb

The inequality ||Lf||, > C,||f]|, is equivalent, using that

replacing f by f'/? and setting A = % > 1 to the inequality,

For A >0, and f,g >0, with [xf(x)dx=0,

/Rann e f(x)* g(v)* dxdy > C, (/nf>’L (/ng)l-
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Equivalent formulation 3: Symmetric
transport-entropy inequality

Theorem (Symmetric entropic-transport inequality)

Given two probability measures [, 1, with [xdu;(x) =0, we have

1.
EWz(p)(Nl,#z) < Enty (i) + Enty(p2) + D).

Here 7 is the standard Gaussian measure, Ent the (relative)
entropy and

TP (g p) 1= inf [ lv— 2 d(x,9) + PERty, oy ().
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The p — 07 limit case (so g ~ —p)

To perform the limit in ||Lf||, > C,|| f
Replacing f by f!'/? we have

G [ 1) It Ml

»» let us rescale a bit.
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The p — 07 limit case (so g ~ —p)

To perform the limit in |[Lf||, > C,| f]|,, let us rescale a bit.
Replacing f by f!'/? we have

126 ([ 1) I

Note that, F — 1, and writing f =%,

(( / (e ()" dy) p) &
= ([ o))

— ef(p* ()

L(f"?)(x/ —p)!

where

@*(x) = supx-y—@(y).
yeR”
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The p — 0" limit case

So the limit of ||Lf]||, > C,]||f]|, as p— 0T is

Theorem (Centered Blaschke-Santalo)
Given ¢ : R" — RU {eo}, with [xe ?™ dx =0, we have

/e_‘p /e_"’* < (2@)".

This consequence of our result is well known (the novelty is in
the semi-group approach).
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The p — 0" limit case

So the limit of ||Lf||, > C,l||f|, as p— 07 is

Theorem (Centered Blaschke-Santalo)

Given ¢ : R" — RU {eo}, with [xe ?™ dx =0, we have

/e_‘p /e_"’* < (2@)".

This consequence of our result is well known (the novelty is in
the semi-group approach).

@ Linear invariant

e there is equality when ¢(x) = |x|?/2, which is the fixed point
of the Legendre transform.

o It implies the geometric form
vol(K)vol(K°) < vol(B%)?2.

o It suffices to prove the inequality when ¢ is convex.
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Remark on centering

We want to study the maximum of [e ¢ [e¢".
Need to assume some centering. Note, since

o0V () _ yer,— 9" (1),
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Remark on centering

We want to study the maximum of [e ¢ [e¢".
Need to assume some centering. Note, since

e (B9) (%) — pzx =0 (x)
The quantity we study is

inf/ef(p/ef(rzm* = /eﬂpinf/ez'xef"’*(x) dx
Z Z
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Remark on centering

We want to study the maximum of [e ¢ [e¢".
Need to assume some centering. Note, since

o (B0 (%) _ o9 (x).

The quantity we study is

inf/ef(p/ef(wp)* = /eﬂpinf/ez'xef‘p*(x) dx
Z Z

Attained at a unique point’, which is z = 0 iff [xe ® ¥ dx=0.
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Remark on centering

We want to study the maximum of [e ¢ [e¢".
Need to assume some centering. Note, since

o (B0 (%) _ o9 (x).

The quantity we study is

inf/ef(p/ef(wp)* = /eﬂpinf/ez'xef‘p*(x) dx
Z Z

Attained at a unique point’, which is z = 0 iff [xe=® ¥ dx=0. We
can ensure this by translation, noting that e(¢(®)—2%" = ¢%(¢"),
If fxe_"’(x) dx =0, we have

/e_z'x_q’(x) dx > /e_‘P.

since ¢/ > 1++¢.
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Heat flow approach to Laplace inequality

Let P, be either the Heat semi-group, P, = ¢, or the
Fokker-Plank semi-group, P, = ¢'* with Lu = Au+div(xu).
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Heat flow approach to Laplace inequality

Let P, be either the Heat semi-group, P, = ¢, or the
Fokker-Plank semi-group, P, = ¢'* with Lu = Au+div(xu).
Theorem (C-F-L'24)

For any nonnegative f € L”(R") define f, := P(fP)"/? so that
Ifill, = lIfll,- Then

t — sup [|L(T.f;) || carey
zeR?

decreases on [0,).
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Heat flow approach to Laplace inequality

Let P, be either the Heat semi-group, P, = ¢, or the
Fokker-Plank semi-group, P, = ¢'* with Lu = Au+div(xu).
Theorem (C-F-L'24)

For any nonnegative f € L”(R") define f, := P(fP)"/? so that
Ifill, = lIfll,- Then

t — sup [|L(T.f;) || carey
zeR?

decreases on [0,).

We will study the p =0 case (which is of independent interest)
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Heat flow approach to Blaschke-Santalo

Recall e (%9)" () = g2%e=¢ ()

Theorem (C-F-L '24 , C-G-N-T '24)

For ¢ :R" — RU{} define ¢, := —logPF,(e"?) sothat [e ¥ = [e?.
Then, if we set
V= (o),
we have that
t— inf [e (=) = inf [ e V0 gy
zeR™ zeRn
increases in time [0, o).
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Heat flow approach to Blaschke-Santalo

Recall e (%9)" () = g2%e=¢ ()

Theorem (C-F-L '24 , C-G-N-T '24)

For ¢ :R" — RU{} define ¢, := —logPF,(e"?) sothat [e ¥ = [e?.
Then, if we set
V= (o),
we have that
t— inf [e (=) = inf [ e V0 gy
zeR™ zeRn
increases in time [0, o).

Comparing r =0 and ¢ = oo,

/e“p inf [ ¢*e "W dx < gaussian = (27)".
z€R”
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Evolution in time

We will prove monotonicity by computing the derivative in r. We
will assume that ¢ is convex. Then ¢, remains convex for 7 > 0.
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Evolution in time

We will prove monotonicity by computing the derivative in r. We
will assume that ¢ is convex. Then ¢, remains convex for 7 > 0.
Evolution equation of ¢, and of vy, = (¢,)*?
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Evolution in time

We will prove monotonicity by computing the derivative in r. We
will assume that ¢ is convex. Then ¢, remains convex for 7 > 0.
Evolution equation of ¢, and of vy, = (¢,)*?

For ¢, = —logP; (e~ ?), it is classical. From de ? = Ae™? we find

Q=A@ — |V(l’t’2
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Evolution in time

We will prove monotonicity by computing the derivative in r. We
will assume that ¢ is convex. Then ¢, remains convex for 7 > 0.
Evolution equation of ¢, and of vy, = (¢,)*?

For ¢, = —logP; (e~ ?), it is classical. From de ? = Ae™? we find

Q=A@ — |V(Pt’2

Evolution of the Legendre’s transform v;.

Theorem (CE-Gozlan-Nakamura-Tsuji '24)

Let ¢ : R" — RU{e} be a (super-linear) convex function, and
@ = —logP,(e~?) where P, is the heat semi-group. Let y; = (¢;)*.
Then for every z € R" and t > 0:

i (2) = 2> = Tr[(D*wi(2)) ']
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Proof of d,y;(z) = |z|? —Tl‘[(Dzz,‘l’ﬁ_l}

General property for perturbations: ‘ v (2) = =99 (Vi (2)) ‘
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Proof of d,y;(z) = |z|? —Tl‘[(Dzz,‘l’ﬁ_l}

General property for perturbations: ‘ v (2) = =99 (Vi (2)) ‘

@ Indeed: for fixed zp € R”, 1y > 0, the sup

Wi (z) = Sgpz'x—@(X)

at z=1zp, t =19 is attained for V¢, (xo) = zo;
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Proof of d,y;(z) = |z|? —Tl‘[(Dzz,‘l’ﬁ_l}

General property for perturbations: ‘ v (2) = =99 (Vi (2)) ‘

@ Indeed: for fixed zp € R”, 1y > 0, the sup

W;(z) = supz-x — ¢ (x)
X
at z=1zp, t =19 is attained for V¢, (xo) = zo;

@ Then for € > 0 small, we have

Vire(z0) = supzo- (X0 +€Y) — @iy re(xo +€Y)
y
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Proof of d,y;(z) = |z|? —Tr[(DEW‘l}

General property for perturbations: ‘ v (2) = =99 (Vi (2)) ‘

@ Indeed: for fixed zp € R”, 1y > 0, the sup

W;(z) = supz-x — ¢ (x)
X
at z=1zp, t =19 is attained for V¢, (xo) = zo;

@ Then for € > 0 small, we have

Vire(z0) = supzo- (X0 +€Y) — @iy re(xo +€Y)
y

Wi (20) +SUP{EZO -y
y

— (0101 (¥0) — €V (x0) -y + O(e) }
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Proof of d,y;(z) = |z|? —Tr[(DEW‘l}

General property for perturbations: ‘ v (2) = =99 (Vi (2)) ‘

@ Indeed: for fixed zp € R”, 1y > 0, the sup

W;(z) = supz-x — ¢ (x)
X
at z=1zp, t =19 is attained for V¢, (xo) = zo;

@ Then for € > 0 small, we have

Vire(z0) = supzo- (X0 +€Y) — @iy re(xo +€Y)
y

Wi (20) +SUP{EZO -y
y

~(010)1s (x0) — €V, (x0) -y + O(e”) }
Wiy (20) — €(919)1=1 (x0) + O(€?).
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Proof of d,y;(z) = |z|? —Tl‘[(Dzz,‘l’ﬁ_l}

@ So we have J,y;(z) = —:¢:(Vy;(2)).
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Proof of d,y;(z) = |z|? —Tl‘[(Dzz,‘l’ﬁ_l}

@ So we have J,y;(z) = —:¢:(Vy;(2)).
@ Recall that 9,¢;(x) = A, (x) — [V, (x)|*.
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Proof of d,y;(z) = |z|? —Tl‘[(Dzz,‘l’ﬁ_l}

@ So we have d,y;(z) = —9,¢:(Vy,(2)).
@ Recall that 9,¢;(x) = A, (x) — [V, (x)|*.
@ So we have

Ii(z) = —A%(VWi(2) + V| (Vi(2)?
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Proof of d,y;(z) = |z|? —Tl‘[(Dzz,‘l’ﬁ_l}

@ So we have d,y;(z) = —9,¢:(Vy,(2)).
@ Recall that 9,¢;(x) = A, (x) — [V, (x)|*.
@ So we have

AW = —Ad(VW(D)+ VOl (VY (2)?
= ~Tr[D9(Vwi(2)| + 12
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Proof of d,y;(z) = |z|? —Tl‘[(Dzz,‘l’ﬁ_l}

@ So we have d,y;(z) = —9,¢:(Vy,(2)).
@ Recall that 9,¢;(x) = A, (x) — [V, (x)|*.
@ So we have

AW = —Ad(VW(D)+ VOl (VY (2)?
= ~Tr[D9(Vwi(2)| + 12

= —Tr[(D*wi(z))""] +IzI*.
as wanted.
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Back to our aim: prove the

Given ¢ convex (super-linear) and e~% = P,(e~?), the function

—1nf/ (%0)" — inf [ e ¥ gy

increases int > 0, where y; = (¢,)*.
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Back to our aim: prove the

Given ¢ convex (super-linear) and e~% = P,(e~?), the function

alt) :=inf/e*(11¢t)* — inf [ e V@ gy
%

zeR”

increases int > 0, where y; = (¢,)*.

Note that
a(t) =infL(e” ¥").
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Back to our aim: prove the

Given ¢ convex (super-linear) and e~% = P,(e~?), the function

zeR”

increases int > 0, where y; = (¢,)*.

alt) :=inf/e*(11¢t)* — inf [ e V@ gy
%

Note that
a(t) =infL(e” ¥").

We shall rather work with log(a). Introduce

0(1.) == logL(e™¥)(2) = log [ e ¥)eay,

so that
loga(t) =infQ(t,z)
Z
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For Q(t,z) =logL(e ¥)(z) = log [ ¢~ %)Y dy we prove that

Atanyt >0 and z € R",

9,0 +|V.0 >0.
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For Q(t,z) =logL(e ¥)(z) = log [ ¢~ %)Y dy we prove that

Atanyt >0 and z € R",

9,0 +|V.0 >0.

Proof of the monotonicty of . Let z; be such that
inf; Q(f,Z) = Q(I,Zz) = loga(t)’ S0

(log Ot)'(t) = 0,0(t,z)+dz-V.0(t,%)
> 0z VZQ(tazt) - ’VZQ(I7ZI)‘2'

Vv

But by construction:
VZQ(tazt) — O

Heating Laplace and Legendre 20/24



Proof of 9,0 +|V,0|*> > 0 for Q(t,z) = logL(e ¥)(z)
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Proof of 9,0 +|V,0|*> > 0 for Q(t,z) = logL(e ¥)(z)

We have

= /—atq/t(y) duy(y)
where

e_v())) dy
V() :=Vi:(y):=w()—2z-y and duy(y)= W'
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Proof of 9,0 +|V,0|*> > 0 for Q(t,z) = logL(e ¥)(z)

We have
0,0(z) = L(elwr)(z)/_af"”(y) E¥0) gy
= [—owmmdu )
where
e V0 dy
V(y):=Vi:(y):=w()—z-y and duy(y)= e

Recall that

=0y (y) =Tr[(D*wi(y)) '] = y* =Tr[(D*V(y) '] — >
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Proof of 9,0 +|V,0|*> > 0 for Q(t,z) = logL(e ¥)(z)

We have
a0(z) = L(ellm)(z)/_af‘/’f(y) ZIU0) gy
= [—owmmdu )
where
e V0 dy
V() =Vi.(v) :==w()—z-y and duy(y)= e

Recall that

=0y (y) =Tr[(D*wi(y)) '] = y* =Tr[(D*V(y) '] — >
So

00() = [ (Tr[0*V (1)) = b ) v )




Proof of 9,0 +|V,0|*> > 0 for Q(t,z) = logL(e ¥)(z)

Theorem (Brascamp-Lieb '76)

Let V : R" — R be a smooth convex function with [e~" < «, and
denote dpy (x) := e*V(x)f%v. Then for any u € L*(uy), we have

2
/uzduv—</udu) §/(D2V)_1Vu-VuduV
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Proof of 9,0 +|V,0|*> > 0 for Q(t,z) = logL(e ¥)(z)

Theorem (Brascamp-Lieb '76)

LetV : R" — R be a smooth convex function with [e™" < o, and
denote dpy (x) := e*V(x)f%v. Then for any u € L*(uy), we have

2
/uzduv—(/udu) §/(D2V)_1Vu-VuduV

Apply this to the linear functions u(y) =y;, and sumi=1,...,n:
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Proof of 9,0 +|V,0|*> > 0 for Q(t,z) = logL(e ¥)(z)

Theorem (Brascamp-Lieb '76)

LetV : R" — R be a smooth convex function with [e™" < o, and
denote dpy (x) := e*V(x)f%v. Then for any u € L*(uy), we have

2
/uzduv—(/udu) §/(D2V)_1Vu-VuduV

Apply this to the linear functions u(y) =y;, and sumi=1,...,n:

[ban) | [vamo[ < [0V d ).
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Proof of 9,0 +|V,0|*> > 0 for Q(t,z) = logL(e ¥)(z)

Theorem (Brascamp-Lieb '76)

LetV : R" — R be a smooth convex function with [e™" < o, and
denote dpy (x) := e*V(x)f%v. Then for any u € L*(uy), we have

2
/uzduv—(/udu) §/(D2V)_1Vu-VuduV

Apply this to the linear functions u(y) =y;, and sumi=1,...,n:

[ban) | [vamo[ < [0V d ).

This translates to

2

2,09 = | [ydw )| = -I¥:00)P
recalling that Q(r,z) = log [ eY e~ %),

]
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Local Maximizers

The argument gives actually a description of local maximizers:

Let ¢ be an even convex (super-linear) function and € > 0 such that

M(e™?) = sup {M(e_"’) . w even convex with [le™® —e Y| gs) < e}

Then ¢~ ? is a centered Gaussian function.

Must have M(e %) =M(e ?) for ¢ € [0,1)] and so o/(%) =0.
Equality cases in Brascamp-Lieb inequality € span{d;y; >}
AT /2 1s a linear combination of y — y;

D*v, /> is constant on R”

v,2 and ¢, » are quadratic, i.e. B /2(e*‘7’) is a centered
Gaussian.

¢~ % must be a centered Gaussian function
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Advertisement

Celebrating the solution of the slicing/hyperplane conjecture !

SLICING DAY IN JUSSIEU
June, Wednesday 25, Room 15-25-104

Four lectures by Apostolos Giannopoulos (Athens) and Joseph
Lehec (Poitiers).

@ 10h - 12h30 : A. Giannopoulos : The isotropic constant in
the theory of high-dimensional convex bodies.

@ 14h - 16h : J. Lehec : solution to the slicing conjecture.
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