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General principle

Obtain new/improved inequalities under the
assumption of symmetry or centering

Two manifestations:

functional correlation/convolution inequalities
(Brascamp-Lieb, gaussian correlation, Laplace inequalisites)
improved Brunn-Minkowski theory in
convexity/log-concavity (log-Brunn-Minkowski,
dimensional Brunn-Minkowski, B-inequalities). Several
conjectures, and a few results.
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Laplace Transform

For nonnegative f : Rn → R+, define:

L f (y) :=
∫
Rn

f (x)ex·y dx, ∀y ∈ Rn

Notation : f ̸≡ 0 ⇔{ f > 0} has positive measure.
We are interested in (reverse) sharp Lp−Lq bounds, in the regime

p ∈ (0,1), q =
p

p−1
∈ (−∞,0)

Note that L f : Rn → [0,∞] is convex
Note that, if f ̸≡ 0, then L f (y) ∈ (0,∞] and by Hölder’s
inequality, we get that logL f convex.
In particular, (L f )q is log-concave.

Heating Laplace and Legendre 3 / 24



Laplace Transform

For nonnegative f : Rn → R+, define:

L f (y) :=
∫
Rn

f (x)ex·y dx, ∀y ∈ Rn

Notation : f ̸≡ 0 ⇔{ f > 0} has positive measure.

We are interested in (reverse) sharp Lp−Lq bounds, in the regime

p ∈ (0,1), q =
p

p−1
∈ (−∞,0)

Note that L f : Rn → [0,∞] is convex
Note that, if f ̸≡ 0, then L f (y) ∈ (0,∞] and by Hölder’s
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Reverse Lp bound

Nakamura-Tsuji (2023) Laplace inequality
If f ≥ 0 is even then

∥L f∥Lq(Rn) ≥Cp ∥ f∥Lp(Rn))

where the best constant Cp is attained for f (x) = e−|x|2/2.

’Improvement of positivity’ in the terminology of C. Borell.

The quantity
∥L f∥Lq(Rn)

∥ f∥Lp(Rn)
is linear invariant.

The inequality cannot hold for general f ≥ 0. Note for
instance that

L(τz f )(x) = ez·xL f (x)

where τz( f )(x) := f (x− z), so L(τz f )(x)q = eqz·xL f (x)q can
degenerate.
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Reverse Lp Bound Theorem

Theorem (C-F-L 2024)
For any f ≥ 0,

sup
z∈Rn

∥L(τz f )∥Lq(Rn) ≥Cp ∥ f∥Lp(Rn)

where Cp = [p1/p(−q)−1/q]n/2(2π)n/q is attained for Gaussians.

Moreover if
∫

x f (x)p dx = 0, then

∥L f∥Lq(Rn) ≥Cp ∥ f∥Lp(Rn))

Theorem
If f ̸≡ 0 then there exists z such that ∥L(τz f )∥q > 0 and

either supz ∥L(τz f )∥q = ∞

or else the supremum is attained at a unique point,
characterized by...
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Reverse Lp Bound Theorem

Theorem (C-F-L 2024)
For any nonnegative f ∈ Lp(Rn) define

ft := Pt( f p)1/p

where Pt is the Fokker-Planck semi-group, so that ∥ ft∥p = ∥ f∥p.
Then

t → sup
z∈Rn

∥L(τz ft)∥Lq(Rn)

decreases on [0,∞).
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Reverse Lp Bound Theorem

Theorem (C-F-L 2024)
For any f ≥ 0,

sup
z∈Rn

∥L(τz f )∥Lq(Rn) ≥Cp ∥ f∥Lp(Rn)

where Cp = [p1/p(−q)−1/q]n/2(2π)n/q is attained for Gaussians.

Moreover if
∫

x f (x)p dx = 0, then

∥L f∥Lq(Rn) ≥Cp ∥ f∥Lp(Rn))

Lp −Lq inequalities for Laplace transform admit interesting
consequences and reformulations.
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Equivalent formulation 1: Hypercontractivity

Consider the Ornstein-Uhlenbeck semi-group

Pθ F(x) =
∫
Rn

F(cos(θ)x+ sin(θ)y)dγ(y)

for θ ∈ [0,π/2]. Recall that for 1 ≤ p ≤ r and cos(θ) =
√

r−1
q−1 ,

∥Pθ F∥Lr(γ) ≤ ∥F∥Lp(γ)

Inequality is reversed for r ≤ p < 1 (C. Borell).

Under the change of function f (x) = F(x)e−x2/2p, we get

Theorem (Improved hypercontractivty under centering)
For F ≥ 0 with

∫
xF(x)p dγ(x) = 0 we have for p = 1−cos2(ξ ), q = p

p−1 ,
that

∥Pξ F∥Lq(γ) ≥ ∥F∥Lp(γ).

Note that cos(ξ ) = 4
√

p−1
q−1 ≥

√
p−1
q−1 .
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Equivalent formulation 2: Inverse Brascamp-Lieb

The inequality ∥L f∥q ≥Cp∥ f∥p is equivalent, using that

∥g∥q = inf
h

∫
gh

∥h∥p

replacing f by f 1/p and setting λ = 1
p ≥ 1 to the inequality,

Theorem
For λ ≥ 0, and f ,g ≥ 0, with

∫
x f (x)dx = 0,∫

Rn×Rn
ex·y f (x)λ g(y)λ dxdy ≥ C̃p

(∫
Rn

f
)λ (∫

Rn
g
)λ

.
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Equivalent formulation 3: Symmetric
transport-entropy inequality

Theorem (Symmetric entropic-transport inequality)
Given two probability measures µ1,µ2 with

∫
xdµ1(x) = 0, we have

1
2

W̃ (p)
2 (µ1,µ2)≤ Entγ(µ1)+Entγ(µ2)+Dp.

Here γ is the standard Gaussian measure, Ent the (relative)
entropy and

W̃ (p)
2 (µ1,µ2) := inf

π

∫
|y− x|2 dπ(x,y)+ pEntµ1⊗µ2(π).
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The p → 0+ limit case (so q ∼−p)

To perform the limit in ∥L f∥q ≥Cp∥ f∥p, let us rescale a bit.
Replacing f by f 1/p we have

1 ≥ C̃p

(∫
f
)
∥L( f 1/p)(

·
−p

)∥−p
q .

Note that, −p
q → 1, and writing f = e−ϕ ,

L( f 1/p)(x/− p)q =
((∫ (

e−x·y f (y)
)1/p dy

)p) 1
p−1

=
((∫ (

ex·y−ϕ(y))1/p dy
)p) 1

p−1

−→ e−ϕ∗(x)

where
ϕ
∗(x) = sup

y∈Rn
x · y−ϕ(y).
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The p → 0+ limit case

So the limit of ∥L f∥q ≥Cp∥ f∥p as p → 0+ is

Theorem (Centered Blaschke-Santaló)
Given ϕ : Rn → R∪{∞}, with

∫
xe−ϕ(x) dx = 0, we have∫

e−ϕ

∫
e−ϕ∗ ≤ (2π)n.

This consequence of our result is well known (the novelty is in
the semi-group approach).

Linear invariant
there is equality when ϕ(x) = |x|2/2, which is the fixed point
of the Legendre transform.
It implies the geometric form

vol(K)vol(K◦)≤ vol(Bn
2)

2.

It suffices to prove the inequality when ϕ is convex.
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Remark on centering

We want to study the maximum of
∫

e−ϕ
∫

e−ϕ∗.
Need to assume some centering. Note, since

e−(τzϕ)
∗(x) = ez·xe−ϕ∗(x).

The quantity we study is

inf
z

∫
e−ϕ

∫
e−(τzϕ)

∗
=

∫
e−ϕ inf

z

∫
ez·xe−ϕ∗(x) dx

Attained at a unique point’, which is z = 0 iff
∫

xe−ϕ∗(x) dx = 0. We
can ensure this by translation, noting that e(ϕ(x)−z·x)∗ = eτz(ϕ

∗).
If

∫
xe−ϕ(x) dx = 0, we have∫

e−z·x−ϕ(x) dx ≥
∫

e−ϕ .

since et ≥ 1+ t.
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Heat flow approach to Laplace inequality

Let Pt be either the Heat semi-group, Pt = et∆, or the
Fokker-Plank semi-group, Pt = etL with Lu = ∆u+div(xu).

Theorem (C-F-L’24)
For any nonnegative f ∈ Lp(Rn) define ft := Pt( f p)1/p so that
∥ ft∥p = ∥ f∥p. Then

t → sup
z∈Rn

∥L(τz ft)∥Lq(Rn)

decreases on [0,∞).

We will study the p = 0 case (which is of independent interest)
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Heat flow approach to Blaschke-Santaló

Recall e−(τzϕ)
∗(x) = ez·xe−ϕ∗(x).

Theorem (C-F-L ’24 , C-G-N-T ’24)
For ϕ : Rn → R∪{∞} define ϕt :=− logPt(e−ϕ) so that

∫
e−ϕt =

∫
e−ϕ .

Then, if we set
ψt := (ϕt)

∗,

we have that

t → inf
z∈Rn

∫
e−(τzϕt)

∗
= inf

z∈Rn

∫
ez·x e−ψt(x) dx

increases in time [0,∞).

Comparing t = 0 and t = ∞,∫
e−ϕ inf

z∈Rn

∫
ez·x e−ϕ∗(x) dx ≤ gaussian = (2π)n.
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Evolution in time

We will prove monotonicity by computing the derivative in t. We
will assume that ϕ is convex. Then ϕt remains convex for t > 0.

Evolution equation of ϕt and of ψt = (ϕt)
∗?

For ϕt =− logPt(e−ϕt ), it is classical. From ∂te−ϕt = ∆e−ϕt we find

∂tϕt = ∆ϕt −|∇ϕt |2

Evolution of the Legendre’s transform ψt.

Theorem (CE-Gozlan-Nakamura-Tsuji ’24)
Let ϕ : Rn → R∪{∞} be a (super-linear) convex function, and
ϕt =− logPt(e−φ ) where Pt is the heat semi-group. Let ψt = (ϕt)

∗.
Then for every z ∈ Rn and t > 0:

∂tψt(z) = |z|2 −Tr
[
(D2

ψt(z))−1]
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Proof of ∂tψt(z) = |z|2 −Tr
[
(D2

z ψt)
−1]

General property for perturbations: ∂tψt(z) =−∂tφt(∇ψt(z)) .

Indeed: for fixed z0 ∈ Rn, t0 > 0, the sup

ψt(z) = sup
x

z · x−φt(x)

at z = z0, t = t0 is attained for ∇φt0(x0) = z0;
Then for ε > 0 small, we have

ψt0+ε(z0) = sup
y

z0 · (x0 + εy)−φt0+ε(x0 + εy)

= ψt0(z0)+ sup
y

{
εz0 · y

−ε(∂tφ)t=t0(x0)− ε∇φt0(x0) · y+O(ε2)
}

= ψt0(z0)− ε(∂tφ)t=t0(x0)+O(ε2).
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Proof of ∂tψt(z) = |z|2 −Tr
[
(D2

z ψt)
−1]

So we have ∂tψt(z) =−∂tφt(∇ψt(z)).

Recall that ∂tφt(x) = ∆φt(x)−|∇φt(x)|2.
So we have

∂tψt(z) = −∆φt(∇ψt(z))+ |∇φt |(∇ψt(z)2

= −Tr
[
D2

φt(∇ψt(z))
]
+ |z|2

= −Tr
[
(D2

ψt(z))−1]+ |z|2.
as wanted.
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Back to our aim: prove the

Theorem
Given φ convex (super-linear) and e−φt = Pt(e−φ ), the function

α(t) := inf
z

∫
e−(τzφt)

∗
= inf

z∈Rn

∫
ez·x e−ψt(x) dx

increases in t > 0, where ψt = (ϕt)
∗.

Note that
α(t) = infL(e−ψt ).

We shall rather work with log(α). Introduce

Q(t,z) := logL(e−ψt )(z) = log
∫

e−ψt(y)ez·y dy,

so that
logα(t) = inf

z
Q(t,z)

.
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For Q(t,z) = logL(e−ψt )(z) = log
∫

e−ψt(y)ez·y dy we prove that

Theorem
At any t > 0 and z ∈ Rn,

∂tQ+ |∇zQ|2 ≥ 0.

Proof of the monotonicty of α. Let zt be such that
infz Q(t,z) = Q(t,zt) = logα(t), so

(logα)′(t) = ∂tQ(t,zt)+∂tzt ·∇zQ(t,zt)

≥ ∂tzt ·∇zQ(t,zt)−|∇zQ(t,zt)|2.
But by construction:

∇zQ(t,zt) = 0.
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Proof of ∂tQ+ |∇zQ|2 ≥ 0 for Q(t,z) = logL(e−ψt)(z)

We have

∂tQ(z) =
1

L(e−ψt )(z)

∫
−∂tψt(y)ez·y−ψt(y) dy

=
∫

−∂tψt(y)dµV (y)

where

V (y) :=Vt,z(y) := ψt(y)− z · y and dµV (y) =
e−V (y) dy∫

e−V .

Recall that

−∂tψt(y) = Tr
[
(D2

ψt(y))−1]−|y|2 = Tr
[
(D2V (y))−1]−|y|2.

So
∂tQ(z) =

∫ (
Tr

[
(D2V (y))−1]−|y|2

])
dµV (y)
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Proof of ∂tQ+ |∇zQ|2 ≥ 0 for Q(t,z) = logL(e−ψt)(z)

Theorem (Brascamp-Lieb ’76)
Let V : Rn → R be a smooth convex function with

∫
e−V < ∞, and

denote dµV (x) := e−V (x) dx∫
e−V . Then for any u ∈ L2(µV ), we have

∫
u2 dµV −

(∫
udµ

)2
≤

∫
(D2V )−1

∇u ·∇udµV

Apply this to the linear functions u(y) = yi, and sum i = 1, . . . ,n:∫
|y|2 dµV (y)−

∣∣∣∫ ydµV (y)
∣∣∣2 ≤ ∫

Tr
[
(D2V (y))−1]dµV (y).

This translates to

∂tQ(t,z)≥−
∣∣∣∫ ydµV (y)

∣∣∣2 =−|∇zQ(z, t)|2

recalling that Q(t,z) = log
∫

ez·y e−ψt(y).
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Local Maximizers

The argument gives actually a description of local maximizers:

Theorem
Let φ be an even convex (super-linear) function and ε > 0 such that

M(e−φ ) = sup
{

M(e−ψ) ; ψ even convex with ∥e−φ − e−ψ∥L1(Rn) ≤ ε

}
Then e−φ is a centered Gaussian function.

Must have M(e−φt ) = M(e−φ ) for t ∈ [0, t0] and so α ′( t0
2 ) = 0.

Equality cases in Brascamp-Lieb inequality ∈ span{∂iψt0/2}.
∂iψt0/2 is a linear combination of y → y j

D2ψt0/2 is constant on Rn

ψt0/2 and φt0/2 are quadratic, i.e. Pt0/2(e−φ ) is a centered
Gaussian.
e−φ must be a centered Gaussian function
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Advertisement

Celebrating the solution of the slicing/hyperplane conjecture !

SLICING DAY IN JUSSIEU
June, Wednesday 25, Room 15-25-104

Four lectures by Apostolos Giannopoulos (Athens) and Joseph
Lehec (Poitiers).

10h - 12h30 : A. Giannopoulos : The isotropic constant in
the theory of high-dimensional convex bodies.
14h - 16h : J. Lehec : solution to the slicing conjecture.
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