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We continue the proof of the main step in the construction in the
previous talk. We are proving:

Proposition Let a € (0, 3) be fixed and such that /, > 0. Then for
all sufficiently large integer n, there exists a number

1
O<mm~1

and a function h with [|A|c2.« < (log n)~! such that

~
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Hig(x) + / | _y =, forallxeX)=0Q]. (2)
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> " is a “twisted n-truncated Delaunay”. Let us assume
2nR=nT.

We translate 3} to the point Re; and rotate it in the plane
(X27X3)




Recall

T/2 f(s) 1 RY: 10 \2 1 \2

b= 22— () + (L4 3F(s))(1 + F(5)?)] ds
0 (1+F(s))

where r = f(x3) parametrizes the Delaunay surface ~ with mean

curvature = 2, necksize 0 < a < % is parametrized with

y(0,x3) = (f(x3) cos b, f(x3)sinb, x3)

where f(y3) is positive, even and T-periodic.
and the twisted Delaunay " where 2rR = nT is given by

. X1 X1
Y"=X(X"), X|x2|=[(R+x)cos%E
X3 (R + x2)sin 3

with parametrization

n nT

y(0,x3) = X(y(0,x3)), (0,x3) € S =1[0,27] x [—77 >

]



First we estimate the “error of approximation” corresponding to
h =0, namely

xey”

dy
£ = He(0+ [ 2

We would like to estimate both mean curvature and Coulombian
operator for of ¥ and X} regarded as perturbations of of the
corresponding quantities for ¥ and Xj,.



For large n and x € Qg, We can approximate

/ dy i / dy
gl ~)
G ly =x| = Ja, ly + kTes — x|
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We also estimate

27 ~ ,
Hs,(x) = 2 — 77‘()@) sin@.

for a positive, even, T-periodic function f(X3).



After some computation, we find that at a point
x = X(y(0,x3)) € X" we have

V. A
E.(x) %2—A/Ta|ogn—ﬁ,/f(><3)

)4
2r . - V,
+ — sind <f(X3) — Iogn7 f(X3)>

where the functions f(x3), f(x3) are strictly positive and
T-periodic.

For h £ 0, we perturb ¥ with h in the normal direction as

Y0 =Y"+ hv, so that £ = X(Z7).



For h # 0 the following expansions hold

. 27 = . _ _
Hiﬂ(y) = sz(y) + ﬁf(X:g)Sln 0+ O(n 2) + O(n IHhHCQ(Zn))

and

Hyy = Hs, + Jea[h] + O([|hllZ2(s,) )

where Jsgn[h] is the Jacobi operator of the surface X", defined on
functions h € C%(X"), which is expressed in local coordinates as

Jsa[h] =

1 )
T (87 V/detg D,-h) + |A2h,

The quadratic remainder term can depend on first and second
derivatives of h.



For the Coulombian nonlocal operator we get

dy dy
2 - [ +ylogn [ b+ 0]
QZ |X_y‘ Qn ‘X_.y’ >, n

The problem consists of finding a function h such that for some
~ > 0 and some constant A we have

d _
Hiz(x)+fy/fz Y —\ forall xe5j 2)

g\X—Y\




From the previous computations, Problem (2) is equivalent to
finding a small function h(x) and constants v, A such that

Jsnlh] = E,(x) + ~ <;_ Inn + b(x)> /): h+ ~ £1[h](x)

+ n~Y¢[h, Dh, D?h](x) + q[h, Dh, D*h](x) + A

(3)

Being more precise in the expansion of E,, up to an additive
constant, we get

27|Qo|
72 b

E\(y) =7 F§(ys) + TF{(y) + 2 [F(ys) = vInn

o ((2—(f’)2)ff” L L3 )
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e The functions of y3 involved are all even, positive and T-periodic.

e The operators /1 and ¢ have linear growth in their arguments and
q is quadratic.

To keep at main order invariant the volume of the region, we work
with perturbations h such that on h=0.



Each component of the normal vector v, satisfies Jyn[v;] = 0 for
i =1,2,3 Actually for h T-periodic we have

3
Jzn[h] =0 = h= ZO(,‘V,’
i=1
This is the non-degeneracy property of the CMC surface X.
Let

C™ ={ge C™(X")/ g(y)is T-periodic in y3 and even in y; }

Given g € C%“ with fzn gri =0 for i = 1,2, 3 there exists a
unique h € C>® with f):n hv; = 0 for all i that solves the equation

Jsnlhl =g in X,

By variation of parameters formula one finds a explicit, positive
solution o € C>%, o = ¢(y3) to the equation

Jsolp] =1 in "



Consider the problem of finding constants ¢ and d and a solution h
with on h = 0 to the linear equation

Jenlh(y) =g(y) + cra(y) +d, yeX”, (4)

We can compute the numbers ¢, d as follows:

/J):n[h]ua—/ Jz"[’/a]h_o_/ gV3+C/ V§+/ V3

Zo ZO zo z0 z0
Jzn[h]soz/ Jzo[w]hz/ h:0=/ gsD+C/ V380+d/ ®

Zo ZO Zo ZO zO ):0

C:_fzosz d:_fzt)ﬂ

2 :
fzo V3 fzo ¥
Here. we have used f_Zo V3 = on v3p = 0 because 13 is an odd
function of y3 and ¢ is even.




Lemma

Given g € C% there exists a unique solution h(y) € C>® to (4)
with [, hvs = [¢, h =0 and scalars ¢, d such that

This solution defines a bounded linear operator h = T [g] so do the
scalars ¢ and d. In fact, we have the estimate

T8l c2a(zny < gl ca(zn

We want to solve Problem (3) with and h with [¢ h =0, which
becomes
Jsalh] = E, + ~{1[h] + n~ £[h, Dh, D?h] + q[h, Dh, D*h] + d

= &(h,v) +d. (3

., N y 27|Q
E ) =7 FS0) + LFi(y) + 21F(s) — yinn 2750




We look for a h € C%>® such that Jsnh =[5 ho = 0 that solves
(3). We can write the problem in the form

Jsnlh] = E(x, h,y) + cvo + d
c(h,v)=0

Thus we want to solve the system
h =T[E(h, )],

0= [ &(x,h~).
yn
We solve the fixed point equation for h = h(~y) using contraction
mapping provided that v = O(—-). To do this we decompose

log n

h = hg + h1 where HhOHCQ@‘(Zo) = O(’)/),

ho = T [y Fg'(ys) + 7 t1[ho](y) + glho, Dho, D*ho](y)]

and ||h1||C2,a():0) S %



The following relation yields the choice of 7.

0=/ &(h(7),7)v2
JyXn

= [+ b)) + 17 (A, ). D

~ [ (B 4o~ L@l ey inn +00).
Yo

l, = /}:0 F(y3)sin0v,
| g e e e s s

and hence at main order v ~ v, := @7 c= C%Ia. We indeed

have that /, > 0 for all sufficiently small 2> 0 and for ; < a < 1.



We solve the full system for h and ~ and get h with

1
Al S
ogn

and the construction of a solution to Problem (2) is concluded.



The Bohr-Wheeler bifurcation branch stemming from m = 10,
rigorously described by Frank (2019), gives rise, as pictured by
Xu-Du (2023), to two balls joined by a tiny neck, whih is not a
local minimizer.
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Bohr-Wheeler bifurcation branch [Picture from Xu-Du 2023]
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Figure 2: Computed Bohr—Wheeler bifurcation branch. Below each shape is .



0.124 0.248 0.397

The pictures by Xu-Du suggest that the Bohr-Wheeler left branch

stemming from m = 10 gives rise, as as m — 0, to two balls joined
by a tiny neck. This configuration is not a local minimizer for the

energy.




Theorem (M.d., R. Frank, M.Musso)

For each small m > 0 there exists a solution of problem (P) which
is approximately made out of two similar spheres with volume %
joined with a tiny catenoidal neck with neck size of an order ¢
approximately proportional to m.




Figure: X =YX, UXoUX_




We want to find solutions €2 to the following problem:

" d
HZ(X)+/ Y=
Ja Ix =yl

8
Q| = —7m.
3

The normalization is made in such a way that the sought solution
. . 1.
looks close to two tangent spheres with radius m3 joined by a

. . : : 1z
small catenoidal neck. scaling out this factor, letting Q2 = m3Q the
problem becomes

dy
He(x) 4+ m / =A
> Ja Ix =yl
~ 8
Q| = —m.

O] ==
In this language ) is approximated by the union of two tangent
spheres with radius 1. Calling € > 0 the neck size, let us normalize

Q. = %Qs. The problem becomes



and the domain resembles two spheres radius % joined by a large
piece of a catenoid with neck size = 1.

In cylindrical coordinates Let z = Fy(r) be the parametrization of
the catenoid, as a surface of revolution. Then

Fo(r) = log(r ++/r? —1). Let us call H(P) the mean curvature of
the surface z = P(r). Then colorblueH(Fo)(r) = 0. In general, we

have

P// P/
H(P) = + :
(7 1+ |P/2):  r/1+][P?



Let us consider a sphere with radius R = % and center

(0,0, R + d). Close to the south pole, we can parametrize it with
z=G(r)=R+d— VR?—r?. We cansider a value Ry such that
G'(Ro) ~ F{(Ro) Then H(G) = 2=. We can find a small function
ho(r) such that F(r) = Fo(r) + ho(r) satisfies approximately
H(F) = ¢ + O(?) We have that for r > 1

1
F(r)=logr+ Ezsr2 + l.o.t,
We observe that
1o 124
G(r)= d+5§r + g " +lo.t

. o _3

Matching of the derivatives takes place at r ~ &~ 4. That
: _3

motivates us to choose d = loge™ 4.



We consider a smooth cut-off function xo(s) with xo(s) =1 for
s<1land =0 fors>2 Welet x(r)= Xo(eié_lr)

We interpolate the sphere and the catenoid in the form
2= P(r) = \(r)F(r) + (1 = () G(r).
The computation of H(P) leads to
H(P) = 2e + Ax(F — G) + 2VxV(F — G) + l.o.t.

NEx) = me? [ () + G0+ o),

Ni(x) = mf—:3/ a
Bgr(0,0+R+d) Ix =yl

d
No(x) = m53/ 4
Q X — ¥

N_(x) = Ny (%), X = (x1,x2,—x3).




Since N4 (x) is harmonic, and invariant under rotations on
0Br(0,0 + R + d) we see that necessarily

mf3

N+(X) = |X — Q‘v

Q=(0,0,R+d), |x—Q>R.

mp3

N_(x) = x_a

Qo ={l<r<Ry=2de4,F(r)<z< G(r)},

me3|x| | Iog(|;<|) if |x| < 5Ro
No(x) 5 md? 3 i
—c2 if ’X‘ Z 5R0.
x|



Hence, letting ¥ = the boundary of the union of the three regions.
We look for a solution of the form

Lh={y+h(y)vz(y) / y € Lo},

h(x) = 15 ho + ns+hi(x) + ng-h-(x)

where

nt =1 on X\ { small neighborhood of south pole},
o =1 on Zo,

support of s+ compact in X \ {south pole} and support of 7 is
slightly larger than Xg. h even with respect to the plane z =10 .



TIs+los+] = Ex + A(ds+, d50),  Ts,ld50] = Eo + B(¢s+, dxo)

The solvability condition for ¢+ is at main order [o, ET1p = 0.
This yields a relation between the necksize of the catenoid and the
mass.



We have

mg3 mg3

E = + -
x=Ql |x—Q

+Ax(F—G)+2VxV(F—G)+smaller terms+e

Important: choice of ¢ in terms of m: At main order we need to
solve an equation on the upper sphere o of the type

Js [hs+] = E
We need, taking into account that v3 &~ 1 near the south pole,

mf3

0= i Ev, = %
/z & [\x—Qr x—a”

+/ (Ax(F — G) +2VxV(F — G))vs
Pt

Hence we need me~! ~ 1 or m ~ . We solve the gluing system by
fixed point. We impose hy - (south pole) =0
D



Thanks for your attention



