Quantitative inequalities and convergence of thresholding schemes in optimal control theory

A. Chambolle, I. Mazari-Fouquer, Y. Privat, D. Ruiz-Balet

CEREMADE, Paris Dauphine Université PSL

Workshop on functional and spectral inequalities, Paris Dauphine, 2025

Objective of the talk

- Develop quantitative inequalities for spectral optimisation problems or more general optimal control problems.
- Apply them to the study of numerical schemes.
- Main reference: Chambolle, M., Privat, Math. Ann., 2025.

Reference spectral optimisation problem

 Ω : bounded, smooth domain. $V \in L^{\infty}(\Omega)$.

$$\lambda(V) := \min_{u \in W_0^{1,2}(\Omega), \int_{\Omega} u^2 = 1} \int_{\Omega} |\nabla u|^2 - \int_{\Omega} V u^2 \leadsto \begin{cases} -\Delta u = \lambda u + V u & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega. \end{cases}$$

Reference spectral optimisation problem

 Ω : bounded, smooth domain. $V \in L^{\infty}(\Omega)$.

$$\lambda(V) := \min_{u \in W_0^{1,2}(\Omega), \int_{\Omega} u^2 = 1} \int_{\Omega} |\nabla u|^2 - \int_{\Omega} V u^2 \leadsto \begin{cases} -\Delta u = \lambda u + V u & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega. \end{cases}$$

$$\min_{0\leq V\leq 1 \text{ a.e., } \int_{\Omega}V=V_0}\lambda(V).$$

Old and well understood problem:

- Composite membrane problem (Cox, Lipton, MacLaughlin...)
- Applications to mathematical biology (Cantrell, Cosner, Berestycki, Hamel, Roques, Kao, Lou, Yanagida...)

3 / 42

What do we want to do?

$$egin{aligned} \min_{0 \leq V \leq 1 \text{ a.e., } \int_{\Omega} V = V_0} \lambda(V). \ \mathscr{V}^* := & & rgmin \ 0 \leq V \leq 1 \text{ a.e., } \int_{\Omega} V = V_0 \end{aligned}$$

Fix some $V^* \in \mathscr{V}^*$.

$$\lambda(V) - \lambda(V^*) \ge C \operatorname{dist}(V, \mathscr{V}^*)^{\alpha}$$

for:

- Some distance,
- **2** Some exponent α ,
- And if both could be optimal...

What do we want to do?

$$\begin{split} \underset{0 \leq V \leq 1}{\text{min}} & \underset{\text{a.e., } \int_{\Omega} V = V_0}{\text{min}} \lambda(V). \\ \mathscr{V}^* := & \underset{0 \leq V \leq 1}{\operatorname{argmin}} & \lambda(V) \end{split}$$

Fix some $V^* \in \mathscr{V}^*$.

$$\lambda(V) - \lambda(V^*) \ge C \operatorname{dist}(V, \mathscr{V}^*)^{\alpha}$$

for:

- Some distance,
- **2** Some exponent α ,
- 4 And if both could be optimal...

Spoiler:

$$\lambda(V) - \lambda(V^*) \ge C \operatorname{dist}_{L^1}(V, \mathcal{V}^*)^2.$$

Why do we want to do it?

Several applications:

- Application to numerical schemes: allows to study the ubiquitous thresholding scheme for the numerical optimisation of potentials, see later. [Chambolle, M., Privat, Math. Ann., 2025].
- Allows to simplify qualitative questions in optimal control: turnpike in bilinear control [M., Ruiz-Balet, SIMA, 2021], optimal placement of captors [M., Privat, Trélat, AIHP-C, 2025].
- In general: allows to analyse perturbation problems.

Plan of the talk

- Basic facts about the underlying optimisation problem.
- A (short) review of the bibliography & a discussion of the coercivity norm.
- A discussion of a part of the proof.
- (Briefly) Application to numerical schemes.

Basic facts I: bang-bang property

Recall:

$$\min_{0\leq V\leq 1 \text{ a.e., } \int_{\Omega}V=V_0}\left(\lambda(V):=\min_{u\in W_0^{1,2}(\Omega),\int_{\Omega}u^2=1}\int_{\Omega}|\nabla u|^2-\int_{\Omega}Vu^2\right).$$

- **1** Inf of linear functionals: λ is (strictly) concave.
- ② Thus: any optimal V^* is an extreme point of $\{0 \le V \le 1, \int_{\Omega} V = V_0\}$.
- **3** So that: any optimal V^* is a characteristic function: $V^* = \mathbb{1}_{E^*}$.

Basic facts II: Free boundary problem

Double minimisation procedure:

$$\min_{0 \le V \le 1, \int_{\Omega} V = V_0} \lambda(V) = \min_{u \in W_0^{1,2}(\Omega), \int_{\Omega} u^2 = 1} \min_{0 \le V \le 1, \int_{\Omega} V = V_0} \int_{\Omega} |\nabla u|^2 - \int_{\Omega} V u^2.$$

1 Bathtub principle (simplified and slightly wrong): $f: \Omega \to \mathbb{R}$.

$$\max_{0 \le V \le 1, \int_{\Omega} V = V_0} \int_{\Omega} fV = \int_{\Omega} f \mathbf{1}_{\{f > c\}}$$

where c is chosen so that

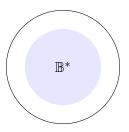
$$|\{f>c\}|=V_0.$$

Thus: if V* is optimal,

$$V^* = \mathbb{1}_{\{u_{V^*} > c^*\}} \leadsto -\Delta u_{V^*} = \lambda (V^*) u_{V^*} + u_{V^*} \mathbb{1}_{\{u_{V^*} > c^*\}}.$$

Basic fact III: rearrangement inequalities

When Ω is a ball the situation is remarkably simple: $V^* = \mathbb{1}_{\mathbb{B}^*}$.



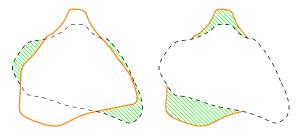
In general, the symmetries of the domain are not preserved but, if Ω is convex, so is E^* etc. We refer to [Imai, Grieser, Kurata].

Illustration

Assume: unique minimiser $V^* = \mathbb{1}_{E^*}$. We claimed:

$$\lambda(V) - \lambda(V^*) \geq C \|V - V^*\|_{L^1(\Omega)}^2.$$

For instance, if $V = \mathbb{1}_E$,



In orange, E^* , in dashed, E.

$$\lambda(\mathbb{1}_E) - \lambda(\mathbb{1}_{E^*}) \ge C ^2$$
 (1)

A. Chambolle, I. Mazari-Fouquer, Y. Privat, D. Ruiz-B

Quantitative inequalities in "true" shape optimisation

Shape optimisation problem with a certain constraint:

$$\inf_{\Omega, |\Omega| = V_0 \text{ or } Per(\Omega) = P_0} \mathcal{J}(\Omega) = \mathcal{J}(\Omega^*). \tag{2}$$

A quantitative inequality writes

$$\mathcal{J}(\Omega) - \mathcal{J}(\Omega^*) \ge C \inf_{\Omega^* \text{ optimal}} \text{Vol}(\Omega \Delta \Omega^*)^2,$$
 (3)

where Δ stands for the symmetric difference of sets. If $\Omega^* = \mathbb{B}$: Fraenkel asymmetry.

Some examples

- Isoperimetric inequality: $\mathcal{J} = \text{Per}$, with a volume constraint, and balls are the only solutions.
 - Fusco, Maggi, Pratelli, Annals of Mathematics, 2008,
 - Figalli, Maggi, Pratelli, Inventiones Mathematicae, 2010.
- Faber-Krahn inequality: $\mathcal{J} = \lambda_D$ (first eigenvalue of the Dirichlet laplacian) with a volume constraint, and balls are the only solutions.
 - Brasco, De Philippis, Velichkov, Duke Mathematical Journal, 2015,
 - Marpukhin, Nahon, Polterovich, Stern. 2021.

Thresholding schemes

12 / 42

Two related contributions

To come back to our problem:

$$\min_{0\leq V\leq 1,\int_{\Omega}V=V_0}\lambda(V).$$

Related contributions for the optimisation of the Dirichlet energy/of eigenvalues w.r.t a potential with L^p ($p < \infty$) constraints.

- 1 Brasco, Buttazzo, Calculus of Variations and Partial Differential Equations, 2014,
- 2 Carlen, Frank, Lieb, Geometric and Functional Analysis, 2014.

The norm is different and reflects the different types of constraints. The methods break down for L^{∞} constraints.

13 / 42

Towards the optimal norm

Why choose the L^1 norm squared?

Derivative of the eigenvalue:

$$\lim_{\varepsilon \to 0} \frac{\lambda(V + \varepsilon h) - \lambda(V)}{\varepsilon} = \lambda'(V)[h] = -\int_{\Omega} h u_V^2.$$

At an optimal potential, with $h = V' - V^*$, the concavity of λ implies

$$\lambda(V) - \lambda(V^*) \ge \lambda'(V^*)[h] = -\int_{\Omega} (V - V^*)u_V^2.$$

This is another way to get $V^* = \mathbb{1}_{\{u_{V^*} > c^*\}}$.

Natural question: Can we quantify the bathtub principle and obtain something like

$$\int_{\Omega} V u_{V^*}^2 \leq \int_{\Omega} V^* u_{V^*}^2 - C \mathrm{dist}(V,V^*)^{\alpha}?$$

The quantitative bathtub principle

Replace $u_{V^*}^2$ by φ .

$$-\int_{\Omega}\varphi\mathbb{1}_{\{\varphi>c\}}+\int_{\Omega}V\varphi.$$

1 If $|\{\varphi = c\}| = 0$ then

$$V^* = \mathbb{1}_{\{\varphi > c\}}$$
 is the unique solution of $\max_{0 \leq V \leq 1, \int_{\Omega} V = V_0} T(V) = \int \varphi V$.

What we have is a quantitative inequality for a linear problem:

$$T(V) - T(V^*) \le -C||V - V^*||_{L^1}^2.$$

To obtain it: we consider

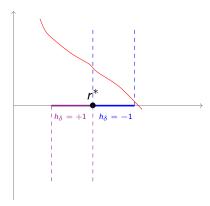
$$\max_{V,\|V-V^*\|_{I^1}=\delta} T(V) = T(V^*_\delta).$$

The quantitative bathtub principle

If we consider the one dimensional case (or radially symmetric) we have

$$\mathcal{T}(V^*) - \mathcal{T}(V^*_\delta) = \int h_\delta arphi$$

with



The quantitative bathtub principle

And we can compute explicitly

$$T(V_{\delta}^{*}) - T(V^{*}) = \int_{\mathbb{B}} h_{\delta} \varphi$$

$$= -\int_{r_{\delta}^{-}}^{r^{*}} \varphi \, d\mathbf{r} + \int_{r^{*}}^{r_{\delta}^{+}} \varphi \, d\mathbf{r}$$

$$\approx \varphi'(r^{*}) \left(\int_{r_{\delta}^{-}}^{r^{*}} |r - r^{*}| \, d\mathbf{r} + \int_{r^{*}}^{r_{\delta}^{+}} |r - r^{*}| \, d\mathbf{r} \right)$$

$$\sim C \varphi'(r^{*}) \delta^{2}.$$

This gives the expected norm.

Some references

The quantitative bathtub principle is found under a variety of guises:

- Cianchi, Ferone, quantitative Hardy-Littlewood inequality,
- Lemou, for stability issues in mathematical physics,
- Wachsmuth, for the numerical analysis of optimal control problems,
- and probably many other places.

Some results

Theorem (M., JDE, 2020, Chambolle, M., Privat, Math. Ann., 2025)

Let \mathcal{V}^* be the set of minimisers of λ .

- **1** When Ω is a ball
- ② Or when Ω is smooth and the volume constraint V_0 is big enough there exists C>0 such that

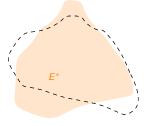
$$\lambda(V) - \lambda(V^*) \geq C \mathrm{dist}_{L^1(\Omega)}(V, \mathcal{V}^*)^2.$$

Local stability of optimal shapes

Goal:

Local stability of critical or optimal shapes

• We fix a critical/optimal set E^* (i.e. $V^* = \mathbb{1}_{E^*}$ is optimal or critical in the sense that $E^* = \{u_{V^*} > c^*\}$).



Dashed: $(\operatorname{Id} + \Phi)(E^*) = E_{\Phi}^*$. We prove that if $\|\Phi\|_{W^{2,p}}$ is small enough (independently of E^*) then

$$\lambda(\mathbb{1}_{E_{\Phi}^*}) - \lambda(\mathbb{1}_{E^*}) \ge C |E_{\Phi}^* \triangle E^*|^2 \tag{4}$$

If this inequality is satisfied critical/optimal sets are isolated.

How to show that?

- First and second-order shape derivatives \leadsto assumes regularity of E^* \leadsto uses the free boundary theory as developed by [Chanillo, Kenig & To, JEMS, 2008]. First place where V_0 large enough is used.
- ② In [M., JDE, 2020] in the case of the ball, explicit computations.
- \odot In [Chambolle, M., Privat, Math. Ann., 2025]: indirect (non computational) argument to obtain a good enough control of the second order shape derivative. V_0 large enough also used.

Strategy of proof

We fix a minimiser V^* and V such that

$$||V-V^*||_{L^1(\Omega)}=\delta\ll 1.$$

To further simplify we assume that

$$V_{\delta} = \mathbb{1}_{E_{\delta}}$$

and we let u_δ be the associated eigenfunction. To improve the eigenvalue:

$$V_\delta'$$
 solution of $\sup_{0 \leq W \leq 1, \int_\Omega W = V_0} \int_\Omega W u_\delta^2 \geq \int_\Omega V_\delta u_\delta^2.$

Indeed

$$\lambda(V) = \inf_{u \in W_0^{1,2}, \int_{\Omega} u^2 = 1} \left(\int_{\Omega} |\nabla u|^2 - \int_{\Omega} V_{\delta} u^2 \right) = \int_{\Omega} |\nabla u_{\delta}|^2 - \int_{\Omega} V_{\delta} u_{\delta}^2$$

$$\geq \int_{\Omega} |\nabla u_{\delta}|^2 - \int_{\Omega} V_{\delta}' u_{\delta}^2$$

$$\geq \lambda(V_{\delta}').$$

Strategy of proof

We fix a minimiser V^* and V such that

$$||V-V^*||_{L^1(\Omega)}=\delta\ll 1.$$

To further simplify we assume that

$$V_{\delta} = \mathbb{1}_{E_{\delta}}$$

and we let u_δ be the associated eigenfunction. To improve the eigenvalue:

$$V_\delta'$$
 solution of $\sup_{0 \le W \le 1, \int_\Omega W = V_0} \int_\Omega W u_\delta^2 \ge \int_\Omega V_\delta u_\delta^2$.

Indeed

$$\lambda(V) = \inf_{u \in W_0^{1,2}, \int_{\Omega} u^2 = 1} \left(\int_{\Omega} |\nabla u|^2 - \int_{\Omega} V_{\delta} u^2 \right) = \int_{\Omega} |\nabla u_{\delta}|^2 - \int_{\Omega} V_{\delta} u_{\delta}^2$$

$$\geq \int_{\Omega} |\nabla u_{\delta}|^2 - \int_{\Omega} V_{\delta}' u_{\delta}^2 + remainder$$

$$\geq \lambda(V_{\delta}') + remainder.$$

The remainder

For the remainder, recall the quantitative bathtub principle; this gives

$$V_{\delta}' = \{u_{\delta} > c_{\delta}\}$$

and

$$\int_{\Omega} V_{\delta}' u_{\delta}^2 \geq \int_{\Omega} V_{\delta} u_{\delta}^2 + C \|V_{\delta} - V_{\delta}'\|_{L^1(\Omega)}^2$$

and, in turn,

$$\lambda(V_{\delta}) \geq \lambda(V_{\delta}') + C\|V_{\delta}' - V_{\delta}\|_{L^{1}(\Omega)}^{2}.$$

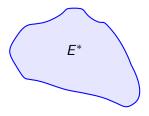


Figure: Depiction of the optimal set $E^* = \{u_{V^*} > c^*\}$.

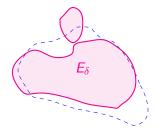


Figure: Depiction of the set E_{δ} s.t. $V_{\delta}=\mathbb{1}_{E_{\delta}}$; E^* is depicted in dashed blue.

We replace E_{δ} with $E'_{\delta} = \{u_{E_{\delta}} > c_{\delta}\}$. We have

$$\lambda(V_{\delta}) - \lambda(V_{\delta}') \ge C \|\mathbb{1}_{E_{\delta}} - \mathbb{1}_{E_{\delta}'}\|_{L^{1}(\Omega)}^{2}.$$
 (5)

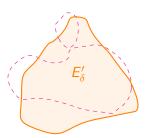


Figure: Level set E'_{δ} of the eigenfunction u_{δ} associated with E_{δ} and satisfying the volume constraint; E_{δ} is depicted in dashed magenta.

But now, by elliptic regularity, $u_{\delta} \approx u_{V^*}$ in $W^{2,p}$.

We use the quantitative inequality for deformation of sets:

$$\lambda(V_{\delta}') - \lambda(V_{\delta}) \ge C \|\mathbb{1}_{E_{\delta}'} - \mathbb{1}_{E^*}\|_{L^1(\Omega)}^2. \tag{5}$$

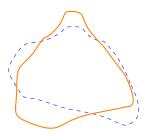


Figure: Comparison of E_{δ} " (in orange) and of E^* (in dashed blue).

Combining these two steps we obtain

$$\lambda(V_{\delta}) - \lambda(V^*) \ge C \left(\|\mathbb{1}_{E_{\delta}'} - \mathbb{1}_{E^*}\|_{L^1(\Omega)}^2 + \|\mathbb{1}_{E_{\delta}} - \mathbb{1}_{E_{\delta}'}\|_{L^1(\Omega)}^2 \right). \tag{5}$$

Since

$$\|\mathbb{1}_{E^*} - \mathbb{1}_{E_{\delta}}\|_{L^1(\Omega)} = \delta \tag{6}$$

we have either (up to a subsequence)

$$\|1_{E^*} - 1_{E'_{\delta}}\|_{L^1(\Omega)} \ge c_0 \delta$$

or

$$\|\mathbb{1}_{E_{\delta}}-\mathbb{1}_{E_{\delta}'}\|_{L^{1}(\Omega)}\geq c_{1}\delta$$

so the contradiction follows and the inequality is proved.

Summarising

Recall that at an optimiser

$$V^*=\mathbb{1}_{\{u_{V^*}>c^*\}}.$$

We say that a set E is critical (or that $V = \mathbb{1}_E$ is critical) if

$$E=\{u_{\mathbb{1}_E}>c_E\}.$$

In fact we can show that if V_0 is large enough (or in the ball) then any critical set E is locally stable: in a small L^1 ball,

$$\lambda(V) - \lambda(\mathbb{1}_E) \geq C \|V - \mathbb{1}_E\|_{L^1(\Omega)}^2.$$

How to numerically approximate the optimal potentials?

$$\min_{0 \leq V \leq 1, \int V = V_0} \lambda(V) \text{ first eigenvalue of } \begin{cases} -\Delta u_V = \lambda(V) u_V + V u_V \,, \\ u_V \in W_0^{1,2}(\Omega). \end{cases}$$

Recall that at a perturbation h

$$\lambda'(V)[h] = -\int_{\Omega} h u_V^2.$$

This suggests a gradient descent/fixed-point algorithm

1: Initialisation at V_0

2: $k \leftarrow 0$

3: Compute u_{V_k}

4: Compute c_k such that $\operatorname{Vol}(\{u_{V_k} > c_k\}) = V_0$.

5: $V_k \leftarrow \mathbb{1}_{\{u_{V_k} > c_k\}}$

6: $k \leftarrow k + 1$.

Does this algorithm converge?

The thresholding algorithm: is it successful?

The answer is **yes**. Remarkably efficient:

- First derived by Céa, Gioan and Michel for some shape optimisation problems.
- Optimisation of the Dirichlet energy, of eigenvalues etc...
 - 1 Kao, Lou, Yanagida, Mathematical biosciences and engineering, 2008
 - 2 Hintermüller, Kao, Laurain, Applied Mathematics & Optimization, 2012
 - 3 Lamboley, Laurain, Nadin, Privat, Calculus of Variations & PDEs, 2016.
- Generalises to large classes of optimal control problems
 - Ding, Finotti, Lenhart, Lou, Ye, Nonlinear analysis: Real world applications, 2010,
 - 2 M-F, Nadin, Privat, Journal de Mathématiques Pures et Appliquées, 2020,
 - 3 M-F, Ruiz-Balet, SIAM Journal on Applied Mathematics, 2021,
 - Mao, Mohammadi, Journal of Mathematical Biology, 2022.
- Topology optimisation:
 - 1 Amstutz, Optimization Methods and Software, 2011
 - 2 Amstutz, Dapogny, Ferrer, Numerische Mathematik, 2018

Main difficulties

We want to obtain convergence to a local minimiser. Let's list the difficulties:

Order of the algorithm: First-order algorithm. The most optimistic outcome is that we find a critical point. Here that means finding $V=\mathbbm{1}_F$ with

$$E = \{u_V > c_E\}.$$

② Degenerate minimisers and regularity properties: No unambiguous notion of "non-degenerate critical point". Quantitative inequalities will play the role of non-degeneracy conditions. They require some regularity of minimisers E^* .

What we show

With A. Chambolle, Y. Privat:

- **①** Convergence of the algorithm for large volume constraints $(V_0 \sim |\Omega|)$
- 4 Holds for the Dirichlet energy, for eigenvalue optimisation, for some classes of non-energetic optimal control problems.
- First "general" convergence result.
 - Kao, Mohammadi, Osting, Journal of Scientific Computing, 2021: linear convergence of rearrangement algorithms in the one-dimensional case, based on explicit computations.

A related scheme

$$V_k \Rightarrow -\Delta u_k = \Psi(V_k, u_{V_k}) \Rightarrow V_{k+1} = \mathbb{1}_{\{u_k > c_k\}}$$

Or, equivalently, $u_k = G_k \star \Psi(u_k, V_k), V_{k+1} = \mathbb{1}_{\{u_k > c_k\}}$

with G_k the Green kernel of a certain operator.

Falls in the category of thresholding schemes, the main one being the Bence-Merriman-Osher approximation of the mean curvature flow.

- 1 Merriman, Bence, Osher. Diffusion generated motion by mean curvature, 1992,
- Bellettini, Caselles, Chambolle, Novaga, Journal de Mathématiques Pures et Appliquées, 2009,
- 3 Esedoglu, Otto, Communications on Pure and Applied Mathematics, 2015,
- 4 Laux, Otto, Calculus of Variations and Partial Differential Equations, 2016.

Main problem here: the kernel can depend on the iteration and presence of boundary conditions.

A rough idea of the proof

Recall: λ is concave. In particular,

$$\lambda(V_{k+1}) - \lambda(V_k) \leq \lambda'(V_k)[V_{k+1} - V_k] = \int_{\Omega} V_k u_k^2 - \int_{\Omega} V_{k+1} u_k^2.$$

But we can use the quantitative bathtub principle (again...)

$$\lambda(V_{k+1}) - \lambda(V_k) \le -C \|V_{k+1} - V_k\|_{L^1(\Omega)}^2.$$

Summing:

$$\sum_{k=0}^{\infty} \|V_{k+1} - V_k\|_{L^1(\Omega)}^2 < \infty.$$

One or infinitely many closure points

$$\sum_{k=0}^{\infty} \|V_{k+1} - V_k\|_{L^1(\Omega)}^2 < \infty \Rightarrow \|V_{k+1} - V_k\|_{L^1(\Omega)} \underset{k \to \infty}{\to} 0.$$

Conclusion: the sequence $\{V_k\}_{k\in\mathbb{N}}$ has exactly one or infinitely many closure points.

One or infinitely many closure points

$$\sum_{k=0}^{\infty} \|V_{k+1} - V_k\|_{L^1(\Omega)}^2 < \infty \Rightarrow \|V_{k+1} - V_k\|_{L^1(\Omega)} \underset{k \to \infty}{\to} 0.$$

Conclusion: the sequence $\{V_k\}_{k\in\mathbb{N}}$ has exactly one or infinitely many closure points.

But: If V_{∞} is a closure point, V_{∞} is critical.

One closure point

But we saw that critical points are strongly isolated in L^1 . In particular, the sequence can only have one closure point, and so the algorithm converges to a stable local minimiser.

Generalisation to optimal control problems

$$\mathcal{L}\mathbf{u} = g(\mathbf{u}) + \Phi(\mathbf{u}, V).$$

- Ω: bounded smooth domain
- 2 L: differential operator
- u: state
- g: semilinearity
- Φ: state/control coupling.

Generalisation to optimal control problems

$$\mathcal{L}\mathbf{u} = g(\mathbf{u}) + \Phi(\mathbf{u}, V).$$

- Ω: bounded smooth domain
- ② L: differential operator
- u: state
- g: semilinearity
- V: control
- Φ: state/control coupling.

$$\max / \min_{f ext{ admissible control}} J(V) = \begin{cases} ext{Energy of the PDE,} \\ \int_{\Omega} j(x, u_V), \\ ext{Eigenvalue.} \end{cases}$$

Constraints on the controls

1 Pointwise (L^{∞}) constraints:

$$0 \le V \le 1$$
 a.e..

Q Global (L^1) constraints:

$$\int_{\Omega}V=V_{0}.$$

3 We let \mathcal{V} be the set of admissible controls.

$$\min_{0 \le V \le 1, \int V = V_0} J(V) = \begin{cases} \text{Energy of the PDE,} \\ \int_{\Omega} j(x, u_V), \\ \text{Eigenvalue,} \end{cases} \begin{cases} \mathcal{L}u = \Phi(u, V), \\ u_V \in W_0^{1,2}(\Omega). \end{cases}$$

We want to **compute good approximations of** $V \leadsto \text{fixed-point}$ on first order optimality conditions/gradient descent.

$$\min_{0 \le V \le 1, \int V = V_0} J(V) = \begin{cases} \text{Energy of the PDE,} \\ \int_{\Omega} j(x, u_V), \\ \text{Eigenvalue,} \end{cases} \begin{cases} \mathcal{L}u = \Phi(u, V), \\ u_V \in W_0^{1,2}(\Omega). \end{cases}$$

Adjoint state: V admissible control. If J is smooth enough there exists p_V (the adjoint state) such that for any h such that $V + \varepsilon h \in \mathcal{F}$,

$$J'(f)[h] = -\int_{\Omega} \rho_V h.$$

Iterative scheme: V_k given, $h = V - V_k \rightsquigarrow V_{k+1}$ chosen as a solution of

$$\min_{V \in \mathcal{V}} - \int_{\Omega} p_{V_k} (V - V_k) \Leftrightarrow \min_{V \in \mathcal{V}} - \int_{\Omega} p_{V_k} V.$$

Conclusion: by the bathtub principle

$$V_{k+1} = \mathbb{1}_{\{p_{V_k} > c_k\}}$$

A. Chambolle, I. Mazari-Fouquer, Y. Privat, D. Ruiz-B

$$\min_{0 \le V \le 1, \int V = V_0} J(V) = \begin{cases} \text{Energy of the PDE,} \\ \int_{\Omega} j(x, u_V), \\ \text{Eigenvalue,} \end{cases} \begin{cases} \mathcal{L}u = \Phi(u, V), \\ u_V \in W_0^{1,2}(\Omega). \end{cases}$$

$$J'(V)[h] = -\int_{\Omega} \frac{p_V}{h}.$$

- 1: Initialisation at $V_0 \in \mathcal{V}$
- 2: $k \leftarrow 0$
- 3: Compute $p_{V_{\nu}}$
- 4: Compute c_k such that $Vol(\{p_{V_k} > c_k\}) = V_0$.
- 5: $V_k \leftarrow \mathbb{1}_{\{p_{V_k} > c_k\}}$
- 6: $k \leftarrow k + 1$.

$$\min_{0 \le V \le 1, \int V = V_0} J(V) = \begin{cases} \text{Energy of the PDE,} \\ \int_{\Omega} j(x, u_V), \\ \text{Eigenvalue,} \end{cases} \begin{cases} \mathcal{L}u = \Phi(u, V), \\ u_V \in W_0^{1,2}(\Omega). \end{cases}$$

$$J'(V)[h] = -\int_{\Omega} \mathbf{p}_V h.$$

- 1: Initialisation at $V_0 \in \mathcal{V}$
- 2: $k \leftarrow 0$
- 3: Compute p_{V_k} as the solution of a PDE
- 4: Compute c_k such that $Vol(\{p_{V_k} > c_k\}) = V_0$.
- 5: $V_k \leftarrow \mathbb{1}_{\{p_{V_k} > c_k\}}$
- 6: $k \leftarrow k + 1$.

Usually, p_V solves a PDE.

What we show

Essentially: if J is concave and V_0 is large enough, we have convergence to stable minimisers.

Perspectives

- Lifting the large volume constraints for the study of regularity of optimisers?
- General regularity theory?
- Frank-Wolfe type methods?
- Explicit rates of convergence?

Thank you!

The shape Lagrangian

- ① Critical set: Lagrange multiplier c s.t. $E^* = \{u_{1_{E^*}} > c\}$.
- 2 Shape Lagrangian:

$$L_{E^*}(F) = \mathscr{E}(F) + Vol(F).$$

4 Hadamard formula.

Computation of the first order shape derivative

- **1** : E^* fixed critical set, $E^* = \{u_{E^*} > c\}$. Φ : smooth enough vector field. $E_t := (Id + t\Phi)E^*$.
- ② Shape derivative u'_{Φ} : derivative at t = 0 of $t \mapsto u_{E_t}$:

$$\int_{\Omega} \langle \nabla u, \nabla v \rangle = \int_{E_t} v \Rightarrow \int_{\Omega} \langle \nabla u', \nabla v \rangle = \int_{\partial E^*} v \langle \Phi, \nu \rangle.$$

Rewrites as

$$\begin{cases} -\Delta u' = 0 \text{ in } E^* \cup (E^*)^c, \\ [\partial_{\nu} u'] = -\langle \Phi, \nu \rangle \end{cases}$$

First order derivative of the Lagrangian:

$$\begin{split} L_{E^*}(E^*)' &= \int \langle \nabla u, \nabla u' \rangle - \int_{E^*} u' - \int_{\partial E^*} u \langle \Phi, \nu \rangle + c^* \int_{\partial E^*} \langle \Phi, \nu \rangle \\ &= 0 \text{ since } u_{\mathbb{1}_{E^*}} = c^* \text{ on the boundary.} \end{split}$$

Computation of the second order shape derivative

- **1** : E^* fixed critical set, $E^* = \{u_{E^*} > c\}$. Φ : smooth enough vector field. $E_t := (Id + t\Phi)E^*$.
- 2

$$\begin{cases} -\Delta u' = 0 \text{ in } E^* \cup (E^*)^c, \\ [\partial_{\nu} u'] = -\langle \Phi, \nu \rangle \end{cases}$$

 \bigcirc For a general E,

$$L'_{E^*}(E) = \int_{\partial E} (u_E - c^*) \langle \Phi, \nu \rangle.$$

Second order derivative of the Lagrangian (Hadamard second formula):

$$L_{E^*}(E^*)'' = \int_{\partial E^*} u' \langle \Phi, \nu \rangle + \int_{\partial E^*} \frac{\partial u_{E^*}}{\partial \nu} \langle \Phi, \nu \rangle^2.$$

3 We want to find a diagonalisation basis for the shape Hessian: the expression above is not explicit enough when Ω , E^* are not balls.

Diagonalising the shape hessian

$$L_{E^*}(E^*)'' = \int_{\partial E^*} u' \langle \Phi, \nu \rangle + \int_{\partial E^*} \frac{\partial u_{E^*}}{\partial \nu} \langle \Phi, \nu \rangle^2 \text{ with } \begin{cases} -\Delta u' = 0 \text{ in } E^* \cup (E^*)^c, \\ [\![\partial_\nu u']\!] = -\langle \Phi, \nu \rangle \end{cases}$$

Diagonalisation basis:

$$\begin{cases} -\Delta \psi_k = 0 & \text{in } E^* \cup (E^*)^c, \\ [\![\partial_\nu \psi_k]\!] = -\sigma_k \frac{1}{|\partial_\nu u|} \psi_k \end{cases}$$

- Pound by looking for a suitable basis.
- In this basis we obtain

$$L_{E^*}^{"} = \sum \alpha_k^2 \left(1 - \frac{1}{\sigma_k} \right).$$

- Two consequences:
 - **1** Best coercivity norm: $L^2(\partial E^*)$
 - The coercivity is equivalent to requiring that

 $\sigma_1 > 1$.

Consequence of large volume constraints II: coercivity of shape hessians

To obtain coercivity it suffices that

$$\sigma_1 > 1 \text{ with } \sigma_1 = \inf_{v \,,\, \int_{\partial E^*} v^2 > 0} \frac{\int_{\Omega} |\nabla v|^2}{\int_{\partial E^*} \frac{1}{|u_{\nu}|} v^2}.$$

2 By regularity and $u_{\nu} \neq 0$ this is implied by

$$\mu_1\gg 1$$
 with $\mu_1=\inf_{v\,,\int_{\partial E^*}v^2>0}rac{\int_\Omega |
abla v|^2}{\int_{\partial E^*}v^2}$

3 However, we have, for v_1 the eigenfunction: $\int_{\partial E^*} v^2 = 1$, ∂E^* close to $\partial \Omega$ (large volume), $v_1 = 0$ on $\partial \Omega$. We can then show that

$$\mu_1 \to \infty$$
 as $V_0 \to |\Omega|$.

Once we have coercivity, we can adapt the tools of Dambrine & Lamboley 2019 → critical points are isolated.