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The liquid drop model. Gamow 1928

For an open, bounded region Ω ⊂ R3, consider the energy

E(Ω) = Per(Ω) +
1

2

∫
Ω

∫
Ω

dxdy

|x − y |
,

where Per(Ω) denotes the perimeter of Ω which in the smooth
case corresponds to the area of its boundary, A(∂Ω).

In Gamow’s E(Ω) represents the energy of a nucleus, namely a
collection of nucleons (protons and neutrons) uniformly distributed
(constant density) in the region Ω, in this way its volume |Ω| is
proportional to the total number of nucleons.



E(Ω) = Per(Ω) +
1

2

∫
Ω

∫
Ω

dxdy

|x − y |
,

In the energy the term Per(Ω) corresponds to surface tension
holding the nucleons together.

1
2

∫
Ω

∫
Ω

dxdy
|x−y | represents the Coulomb repulsion among the

nucleons.

The ground state of a nucleus with a given mass m is a solution to
the variational problem

inf{E(Ω) : |Ω| = m}.

It is known that ground states (minimizers) Ω exists for
sufficiently small mass m while they do not exist for large m.



Bohr-Wheeler (1939): To compute the minimal energy required for
nuclear fission, look at critical points of E(Ω).

The problem consists in finding Ω with vanishing first variation
with respect to normal perturbations of the boundary that preserve
the volume m.

In the smooth case, this corresponds to finding a region Ω with
|Ω| = m, such that for some Lagrange multiplier λ we have

H∂Ω(x) +

∫
Ω

dy

|x − y |
= λ for all x ∈ ∂Ω (P)

H∂Ω(x) designates the mean curvature of the surface ∂Ω at x .



Derivation of problem (P).
We compute the first variation of the energy

E(Ω) = Per(Ω) +
1

2

∫
Ω

∫
Ω

dxdy

|x − y |
,

along normal domain perturbations of Ω. Let Σ = ∂Ω and ν(y)
be a smooth unit normal vector field to Σ and consider a smooth
small function h : Σ→ R. Define

Σh = {y + h(y)ν(y) : y ∈ Σ}

and let Ωh the volume enclosed by Σh.

Critical point of the energy subject to volume constraint

δhE(Ωh)|h=0 = λδh|Ωh||h=0



We have

1

2

∫
Ωh

∫
Ωh

dxdy

|x − y |
− 1

2

∫
Ω

∫
Ω

dxdy

|x − y |

=
1

2

∫
Ωh\Ω

∫
Ω

dxdy

|x − y |
+

1

2

∫
Ω

∫
Ωh\Ω

dxdy

|x − y |

≈
∫

Σ
h(x)dσ(x)

∫
Ω

dy

|x − y |

and

|Ωh| =

∫
Ωh

dx =

∫
Ω

dx +

∫
Ωh\Ω

dx

≈ |Ω|+
∫

Σ
h(x)dσ(x).



Consider now Per(Ωh) = A(Σh).

Let y = y(ω), ω ∈ S be a parametrization of a smooth surface Σ,
and ν(ω) the outer unit normal vector field. Consider the normal
graph

Σh = {yh(ω) = y(ω) + h(ω)ν(ω) : ω ∈ S}

for some smooth small function h : S → R.

Then its area is given by the formula

A(Σh) =

∫
S

√
det g(h)dω, g(h) = Y T

h Yh, Yh = Dωyh.



Setting B = Dων, it can easily be shown that

g(h) = g(0)(I + hA)2
(
I + O(h2)

)
, A = (Y TY )−1Y TB,

and then√
det g(h) =

√
det g(0)

(
1 + h trace (A) + h2 det A

)
(1 + O(h2)).

Hence, for the area of the normal perturbation Σh and its first
variation in h we get the expressions

A(Σh) = A(Σ) +

∫
S

√
det g(0) trace (A) hdω + O(h2)

δhA(Σ)[h] =

∫
Σ

HΣ h, HΣ = trace (A)



A standard expression for HΣ can be computed as follows. For
z ∈ R, we expand√

det g(z) =
√

det g(0)
(
1 + z trace (A) + z2 det A

)
(1 + O(z2)).

Differentiating both sides in z we get

HΣ = trace (A) =
d

dz
log
√

det g(z)|z=0.

Here
A = (Y TY )−1Y TB, B = Dων



Thus at a constraint critical point

δhE(Ωh)|h=0 = λδh|Ωh||h=0

satisfies∫
Σ

HΣ(y) h(y)dσ(y)+

∫
Σ

h(y)dσ(y)

∫
Ω

dx

|x − y |
= λ

∫
Σ

h(y)dσ(y)

and since h is arbitrary this is equivalent to (P)

H∂Ω(x) +

∫
Ω

dy

|x − y |
= λ for all x ∈ ∂Ω (P)



Comparison with critical points of Perimeter subject to volume
constraint:

δhPer(Ωh)|h=0 = λ δh|Ωh||h=0

Σ = ∂Ω corresponds to surfaces with constant mean curvature
(CMC):

HΣ(x) = λ ∀x ∈ Σ

Alexandrov: If Σ is a bounded and embedded CMC surface then
Σ = ∂B where B is a ball.



Our problem

E(Ω) = Per(Ω) + D(Ω), D(Ω) =
1

2

∫
Ω

∫
Ω

dxdy

|x − y |
,

and

H∂Ω(x) +

∫
Ω

dy

|x − y |
= λ for all x ∈ ∂Ω (P)

Balls B with volume m are always solutions to (P), since they are
critical for both, Perimeter and Coulomb interaction D.



• Classical isoperimetric inequality (De Giorgi, 1958).

|B| = m ⇒ Per(B) = inf{Per(Ω) : |Ω| = m}.

thus H∂B(y) = λ.

• Riesz, 1930

|B| = m ⇒ D(B) = sup{D(Ω) : |Ω| = m}.

thus
∫
B

dx
|x−y | = λ.

Hence, balls always solve (P)

H∂B(x) +

∫
B

dy

|x − y |
= λ for all x ∈ ∂B.



Since the two terms of the energy describe opposite effects, the
problem of finding nontrivial critical points is delicate.

Setting Ω = m
1
3 E , so that |E | = 1,

E(Ω) = m
2
3 (Per(E ) + m D(E ))

This suggests that for any mass m > 0 sufficiently small, there is
a global minimizer while for m large there are no global minimizers.



Consider the number m∗ > 0 given by

m∗ = 5
21/3 − 1

1− 2−2/3
≈ 3.51

This is precisely the value of mass for which the energy of one ball
and that of two balls with half that mass located at an infinite
distance become equal.

E

((
m∗
|B1|

) 1
3

B1

)
= 2E

((
m∗

2|B1|

) 1
3

B1

)
In fact

E

((
m

|B1|

) 1
3

B1

)
> 2E

((
m

2|B1|

) 1
3

B1

)
⇔ m > m∗



Conjecture Choksi-Peletier (2011):

if m < m∗ then the infimum is attained precisely when Ω is a ball

if m > m∗ the infimum is not attained.

Known facts.

There exists a number m1, 0 < m1 < m∗ such that for m < m1

balls are minimizers. Knupfer-Muratov (2014), Julin (2014),
Bonacini-Cristoferi (2014).

If 0 < m ≤ 1, balls are minimizers. Chodosh-Ruohoniemi (2024)

If 0 < m ≤ m∗, there exists a minimizer. Frank-Nam (2021)

No minimizer exists for large m Lu-Otto (2013)

If m > 8, no minimizer exists. Frank-Killip-Nam (2016).

For general Riesz potential: Knupfer-Muratov (2015); Lu-Otto (2014);

Figalli -Fusco, Maggi - Millot - Morini (2015)



Question: Solutions to Problem (P) with large mass, not
necessarily minimizers?
Recall that for CMC surface, the only compact and embedded is
the sphere.



Known facts

Balls are stable (i.e. have a positive semi-definite second variation
when restricted to variations of mean zero) if and only if m ≤ 10

Frank (2019): bifurcation branch from m = 10

[Picture from Xu-Du 2023. χ∗ corresponds to 10]



Bohr-Wheeler bifurcation branch [Picture from Xu-Du 2023]



Ren-Wei (2011): for all mass m sufficiently large, there exists an
axially symmetric torus-like solution to Problem (P)

with
R ∼ m| log m|

2
3 , r ∼ | log m|−

1
3 , as m→∞

Solution is unstable. Stable under natural axi-symmetric
perturbations
Choksi-Muratov-Topaloglu, Notices AMS (2017)



Concerning CMC surfaces, there are many non-compact solutions.
Basic examples:
Delaunay surfaces (1841)
A family Σ = Σa of periodic surfaces of revolution with constant
mean curvature = 2

a ∈ (0, 1
2 ) is the neck size

a = 1
2 : Cylinder

a = 0: Infinite array of tangent spheres



Denote x = (x̄ , x3) ∈ R3

Σ = {x ∈ R3 : |x̄ | = f (x3)}, f : R→ R+

f periodic of period T = Ta, f (x3) = f (−x3).



Hence

Σ =
∞⋃

k=−∞
Σk , Σk = {x ∈ Σ : −T

2
+ kT ≤ x3 <

T

2
+ kT}.

Fix a number n and consider the truncated Delaunay,

Σn =
n−1⋃
k=0

Σk , Σn
h = {x + h(x)ν(x) : x ∈ Σn}

where ν(x) is the unit normal vector to Σ at x ∈ Σ, and
h : Σ→ R is a small smooth function, even in x1, T -periodic and
even in x3.



Let
2π R = n T .

We translate Σn
h to the point Re2 and rotate it in the plane

(x2, x3)



In formulas:

Σ̃n
n = X (Σn

h) , X

x1

x2

x3

 =

 x1

(R + x2) cos x3
R

(R + x2) sin x3
R


The 3-dimensional regions enclosed

Ωn
h = {(r x̄ , x3) : (x̄ , x3) ∈ Σn

h, r ∈ [0, 1]}, Ω̃n
h = X (Ωn

h)

with
|Ω̃n

h| ∼ |Ωn
h| ∼ n Va as n→∞

for 3π
4 ≤ Va ≤ π2

2 .



Theorem del Pino-Musso-Zuñiga (2024).
For any m > 0 sufficiently large, there exists a smooth domain Ω

with |Ω| = m of the form Ω = γ
1
3 Ω̃n

h for a number γ ≈ c
log n so that

|Ω| = m ≈ n

log n
Va, ‖h‖∞ ≈

1

log n

as n→∞, such that for some constant λ,

H∂Ω(x) + NΩ(x) = λ for all x ∈ ∂Ω

where

NΩ(x) =

∫
Ω

dy

|x − y |



Sketch of the Proof of the theorem.

For a number γ > 0 we consider the scaling Ω̃ = γ−
1
3 Ω, so that

|Ω| = γ |Ω̃|. Then Ω solves Problem (P) if and only if Ω̃ satisfies

H∂Ω̃(x) + γ NΩ̃(x) = λ, for all x ∈ ∂Ω̃ (P∗)

for some constant λ.

We look for a region Ω̃ close to a twisted Delaunay Ω̃n with a large
n, so that |Ω̃| ≈ nVa where a > 0 is a chosen fixed neck size.



For a ∈ (0, 1
2 ), consider the Delaunay surface parametrized by

(f (x3) cos θ, f (x3) sin θ, x3) , θ ∈ [0, 2π), x3 ∈ (−T

2
,

T

2
).

Let

Ia =

∫ T
2

0

f

(1 + (f ′)2)
5
2

[ff ′′(2− (f ′)2) + (1 + 3(f ′)2)(1 + (f ′)2)]ds

We have that Ia > 0 for 0 < a < a∗ for some a∗ small and
1
4 < a < 1

2 .



Main Proposition.
Let a ∈ (0, 1

2 ) such that Ia > 0. For all sufficiently large n, there
exists a number

0 < γ ∼ 1

ln n

and a function h with ‖h‖ . (log n)−1 such that

HΣ̃n
h
(x) + γ NΩ̃n

h
(x) = λ, for all x ∈ Σ̃n

h ≡ ∂Ω̃n
h.

Then Ω = γ
1
3 Ω̃n

h solves Problem (P) with

|Ω| = m = γ |Ω̃n
h| ≈

n

log n
Va

The proof is based on a Lyapunov-Schmidt reduction-type

argument.



At a point ỹ = X (y) ∈ Σ̃n, y = (f (x3) cos θ, f (x3) sin θ, x3), we
can show that

HΣ̃n(ỹ) + γ NΩ̃n(ỹ) = 2− γ 2Va

T
log n − γ ĝ(x3)

+
2π

n T
sin θ

(
g̃(x3) − γ log n

Va

T
g(x3)

)
+ smaller terms

with ĝ , g̃ , g T -periodic.

We perturb Σn with h in the normal direction as Σn
h = Σn + hν.

To keep at main order the volume of the region, we work with
perturbations h such that ∫

Σn

h = 0.



The problem becomes

JΣn [h] = 2− γ 2Va

T
log n − γ ĝ(x3)

+
2π

n T
sin θ

(
g̃(x3) − γ log n

Va

T
g(x3)

)
+ O(

1

n log n
) + C

+ γ`1[h] + n−1`1[h,Dh.D2h] + q[h,Dh.D2h]

where JΣn [h] is the Jacobi operator of the surface Σn:

JΣn [h] =
1√

det g
Dj

(
g ij
√

det g Dih
)

+ |A|2h.



Conclusion
So far we have proved: For a ∈ (0, a2 ) with Ia > 0 and all integer n
sufficiently large, there exists a bounded, smooth domain Ω such
that

|Ω| ≈ n

log n
Va, H∂Ω(y) + NΩ(y) = λ

for all y ∈ ∂Ω.

An elementary continuation argument on the explicit constant
a→ Va gives the existence of a solution Ω with |Ω| = m to

H∂Ω(y) + NΩ(y) = λ

for any m large enough.



Thanks for your attention


