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The discrete coupled ODE system

Energy
HN(x1, . . . , xN) =

1
2

X

1i 6=jN

g(xi � xj), xi 2 Rd

8
<

:
g(x) =

1
s|x |s s < d Riesz case

g(x) = � log |x | s = 0 log case

Model case
s = d � 2 Coulomb

Evolution equation

ẋi = � 1
N
riHN(x1, . . . , xN) gradient flow

ẋi = � 1
N
JriHN(x1, . . . , xN) conservative flow (JT = �J)

ẍi = � 1
N
riHN(x1, . . . , xN) Newton’s law

possibly with added noise
p
✓dW t

i , N independent Brownian motions, ✓=temperature



The discrete coupled ODE system

Energy
HN(x1, . . . , xN) =

1
2

X

1i 6=jN

g(xi � xj), xi 2 Rd

8
<

:
g(x) =

1
s|x |s s < d Riesz case

g(x) = � log |x | s = 0 log case

Model case
s = d � 2 Coulomb

Evolution equation
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Questions

For a general system

ẋi =
1
N

X

j 6=i

K (xi � xj) +
p
✓dW t

i

I What is the limit of the empirical measure? Is there µt such that for each t

1
N

NX

i=1

�xti * µt

I if f 0
N(x1, . . . , xN) is the probability density of position of the system at time 0,

what is the limit behavior of f tN?
I propagation of chaos (Boltzmann, Kac, Dobrushin): if

f
0
N(x1, . . . , xN) ' µ0(x1) . . . µ0(xN) is it true that

f
t
N(x1, . . . , xN) ' µt(x1) . . . µ

t(xN)?

in the sense of convergence of the k-point marginal fN,k .
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Formal limit

We formally expect µt
N := 1

N

PN
i=1 �xti * µt where µt solves the mean-field equation

@tµ = div ((K ⇤ µ)µ)+1
2
✓�µ (MF)

So for us
@tµ+ div ((rg ⇤ µ)µ) = 1

2
✓�µ



How to prove propagation of chaos?

I Classical method [Mc Kean, Sznitman] for Lipschitz interaction kernel.
I convergence in a good metric, like Wasserstein [Braun-Hepp, Dobrushin,

Neunzert-Wick,Hauray’ 09, Carrillo-Choi-Hauray ’14, Carrillo-Ferreira-Precioso ’12,
Berman-Onnheim ’15]

I relative entropy method: show a Gronwall relation for

0  HN(fN |µ⌦N) :=
1
N

Z

(Rd )N
fN log

fN

µ⌦N
dx1 . . . dxN .

[Jabin-Wang ’16] for ✓ > 0, kernel not too irregular.
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The modulated energy method

[S, Duerinckx] Introduced for Ginzburg-Landau vortex dynamics.
Use interaction-based metric:

kµ� ⌫k2 =

ZZ

Rd⇥Rd
g(x � y)d(µ� ⌫)(x)d(µ� ⌫)(y).

Observe weak-strong uniqueness property of the solutions to (MF) for k · k:

kµt
1 � µt

2k2  e
Ctkµ0

1 � µ0
2k2

C = C (kr2(g ⇤ µ2)kL1)

In the discrete case, let XN denote (x1, . . . , xN) and take for modulated energy,

FN(XN , µ) =

ZZ

Rd⇥Rd\4
g(x � y)d

 
1
N

NX

i=1

�xi � µ

!
(x)d

 
1
N

NX

i=1

�xi � µ

!
(y)

where 4 denotes the diagonal in Rd ⇥ Rd , and µ = µt solves mean-field equation.
Analogy with “relative entropy" and “modulated entropy" methods [Dafermos ’79]
[DiPerna ’79] [Yau ’91] [Brenier ’00]....
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The commutator estimate / main functional inequality

Computing, we find that along solutions X
t
N of the ODE system with ✓ = 0,

d

dt
FN(X

t
N , µ

t) 
ZZ

Rd⇥Rd\4
(v(x)� v(y)) ·rg(x � y)d(

1
N

NX

i=1

�xi � µ)⌦2(x , y)

with v = rg ⇤ µt .



The commutator estimate / main functional inequality

Theorem (S, Nguyen-Rosenzweig-S, Rosenzweig-S, Hess-Childs-Rosenzweig-S)

All Riesz cases s < d , v Lipschitz vector field.
ZZ

Rd⇥Rd\4
(v(x)� v(y)) ·rg(x � y)d(

1
N

NX

i=1

�xi � µ)⌦2(x , y)

 CkDvkL1(FN(XN , µ) + N
�1+ s

d ).

Proof by electric formulation + stress-energy tensor structure or by commutator

estimates

Why commutator ? Let f = 1
N

PN
i=1 �xi � µZ

v ·r(g ⇤ f )� g ⇤ (r · (vf )) = hf ,
"
v ,

r
(��)

d�s
2

#
f iL2

Estimate used to treat the quantum Coulomb mean-field limit [Golse-Paul, Rosenzweig,
Ben Porat], quasi-neutral limits [Iacobelli-Han Kwan, Rosenzweig, RS]
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Theorem (S ’18, H. Q. Nguyen-Rosenzweig-S ’21, HCRS ’25)

Case ✓ = 0. Assume (MF) admits a regular enough (in particular
µt 2 L

1([0,T ], L1(Rd))) solution. There exist constants C1,C2 depending on the
norms of µt and � > 0 depending on d , s, s.t. 8t 2 [0,T ]

|FN(X t
N , µ

t)| 
⇣
|FN(X 0

N , µ
0)|+ C1N

�1+ s
d

⌘
e
C2t .

In particular, if µ0
N * µ0 and is such that

lim
N!1

FN(X
0
N , µ

0) = 0,

then the same is true for every t 2 [0,T ] and

µt
N * µt .
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The electric rewriting of the energy

Set hf = g ⇤ f . In the Coulomb case

��h
f = cd f

We have by IBP
ZZ

Rd⇥Rd
g(x � y)df (x)df (y) =

Z

Rd
h
f
df = � 1

cd

Z

Rd
h
f�h

f =
1
cd

Z

Rd
|rh

f |2.

Positivity of FN not clear! Use suitable truncations obtained by replacing �xi by �(ri )xi
with ri = nearest neighbor distance. Use almost-monotonicity with respect to
truncation parameter.
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Proof in the Coulomb case

Stress-energy tensor

[rh
f ]ij = 2@ihf @jhf � |rh

f |2�ij .

For regular f ,

div [rh
f ] = 2�h

frh
f = � 2

cd
frh

f .

ZZ

Rd⇥Rd
(v(x)� v(y)) ·rg(x � y)df (x)df (y)

= 2
Z

Rd
v(x) ·rh

f (x)df (x) = �cd

Z

Rd
v · div [rh

f ]

= cd

Z

Rd
Dv · [rh

f ]  cdkDvkL1
ZZ

g(x � y)df (x)df (y)

Then needs to be renormalized by truncation procedure.
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The truncation method

[Hess-Childs - Rosenzweig - S ’25]
Use truncation scale ⌘ = N

�1/d . Find “truncation" g⌘ satisfying
I g⌘  g
I ĝ⌘ � 0
I |g � g⌘|  C�

⌘�

|x |s+� for any � > s.

Set
g⌘(x) = c�,d ,s

Z 1

⌘
t
d�s�1�t(x)dt

with �t = t
�d�( ·t ) and � is a Bessel potential, defined by �̂(⇠) = (1 + 4⇡2|⇠|2)�s/2,

hence fundamental solution to (��+ I )s/2

Handle
RR

rg⌘(x � y) · (v(x)� v(y))d( 1
N

PN
i=1 �xi � µ)⌦2(x , y) by stress-tensor

structure +Kato-Ponce commutator estimates, using Bessel nature.
Control

RR
r(g � g⌘)(x � y) · (v(x)� v(y))d( 1

N

PN
i=1 �xi � µ)⌦2(x , y) more brutally

by small-scale interaction control obtained by decomposing g as g⌘ + (g � g⌘) in
definition of FN .
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Modulated free energy

In the cases of gradient flow with noise

Modulated free energy method [Bresch-Jabin-Wang]

F✓
N(fN , µ) := ✓HN(fN |µ⌦N) +

Z
F (XN , µ)dfN(XN).

Introduce modulated Gibbs measure

QN,✓(µ) =
1

KN,✓(µ)
e
� 1

✓NFN(XN ,µ)dµ(x1) . . . dµ(xN)

Then (remark in [Rosenzweig-S])

F✓
N(fN , µ) = ✓HN(fN |QN,✓(µ))�

1
N

logKN,✓(µ)
| {z }

o(1) constant



Evolution of modulated free energy

When µt solves (MF)

d

dt
F✓
N(f

t
N , µ

t) = �✓2

N

Z �����r

s
f tN

QN,✓(µt)

�����

2

dQN,✓(µ
t)

| {z }
relative Fisher information

+
1
2

Z
df

t
N

ZZ

4c
(v t(x)� v

t(y)) ·rg(x � y)d

 
1
N

NX

i=1

�xi � µt

!⌦2

(x , y)dxdy

| {z }
commutator term

where v
t = rg ⇤ µt + ✓r logµt



Global in time convergence?

Optimized version of the functional inequality using that v t = ✓r logµt +rg ⇤ µt

d

dt
F✓
N(X

t
N , µ

t)  Ckrv
tkL1

⇣
F✓
N(X

t
N , µ

t) + N
s
d �1kµtks/dL1

⌘
,

 prove and exploit the decay rate of rv
t as t ! 1 ?

Works in the torus setting
with exponential decay rate

Theorem (Chodron de Courcel - Rosenzweig - S ’23)

Riesz case s 2 [d � 2, d), gradient flow with additive noise on the torus. We have
global in time convergence:

F✓
N(f

t
N , µ

t)  C

⇣
F✓
N(f

0
N , µ

0) + N
s
d �1
⌘
.
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In whole space, problem because kµkL1 ! 0 due to lack of confinement.
Replace with use of self-similar transformation [Rosenzweig-S ’24]

⇠ :=
xp
t + 1

⌧ := log(t + 1)

transforms the equation into

@⌧µ+ div
✓✓

�rg ⇤ µ�r(
1
4
|⇠|2)

◆
µ

◆
=

1
2
✓�µ

i.e. new added quadratic confining potential, equilibrium = Gaussian.
Modulated free energy transforms well too.



Approach by functional inequalities

I [Guillin-Le Bris-Monmarché] for relative entropy method : works for 2D point
vortex system on the torus, [Gong-Wang-Xie] same on the whole plane

I [Rosenzweig-S ’23] for modulated free energy method
Exploit Fisher information term to obtain global exponential convergence under
some modulated Logarithmic Sobolev Inequality assumption:

N HN(f
t
N |QN,✓(µ

t))
| {z }

relative entropy

 CLS

Z �����r

s
f tN

QN,✓(µt)

�����

2

dQN,✓(µ
t)

| {z }
relative Fisher

then this + commutator estimate gives

d

dt
F✓
N  �CF✓

N + o(1)

exponential convergence to tensorized state (generation of chaos)



THANK YOU FOR YOUR ATTENTION!


