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1 Gilles Pisier’s approach j 3

Let 
n denote the standard Gaussian measure on Rn, thus with density
d
n(x)
dx = (2�)� n

2 e�jx j
2=2; x 2 Rn:

In the mid 1980’s G. Pisier proposed the following inequalities involving 
n:

G. Pisier, Probabilistic methods in the geometry of Banach spaces.
1986.

Let Ψ : R! R be a convex function. For any smooth function f on RnZ
Rn

Z
Rn

Ψ(f (y)�f (x)) d
n(x) d
n(y) �
Z
Rn

Z
Rn

Ψ
��
2 hrf (x); yi

�
d
n(x) d
n(y):

In particular, if f has 
n-mean zero, thenZ
Rn

Ψ(f ) d
n �
Z
Rn

Z
Rn

Ψ
��
2 hrf (x); yi

�
d
n(x)d
n(y):

For generalizations in f�1; 1gn:

P. Ivanisvili, R. van Handel, A. Volberg, Rademacher type and Enflo
type coincide. Ann. of Math. (2020)
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1 A proof of the inequality: a simplification by B. Maurey j 4

Given independent random vectors X and Y in Rn with distribution 
n, let

X (t) = X cos t + Y sin t

for 0 � t � �
2 . Then

∆ � f (Y )� f (X ) =
Z �=2

0

d
dt f (X (t)) dt =

Z �=2

0
hrf (X (t));X 0(t)i dt;

where X 0(t) = �X sin t + Y cos t. Now Jensen’s inequality implies

Ψ(∆) � 2
�

Z �=2

0
Ψ
��
2 hrf (X (t));X 0(t)i

�
dt:

Taking the expectation, we get

EΨ(∆) � 2
�

Z �=2

0
EΨ

��
2 hrf (X (t));X 0(t)i

�
dt:

Since the Gaussian measure 
2n = 
n 
 
n is rotationally invariant on R2n,
the couple (X (t);X 0(t)) represents an independent copy of (X ;Y ): hence
the second integral does not depend on t.
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1 Some remarks j 5

Choosing Ψ(r) = jr jp with p � 1, we get a Poincaré-type inequalityZ
Rn

Z
Rn
jf (x)� f (y)jp d
n(x) d
n(x) � cp

Z
Rn
jrf jp d
n;

and, by Jensen’s inequality,Z
Rn

���f � Z
Rn

f d
n

���p d
n � cp

Z
Rn
jrf jp d
n; where

cp =
��
2

�p
E j�jp =

��
2

�p 2
p
2p
�

Γ
�p + 1

2

�
;

where � is a normal random variable with distribution 
1. In particular, for
p = 1 we have that c1 =

p
�=2 is sharp and is the best constant in the

Gaussian isoperimetric inequality


+
n (@A) � 2c�1

1 
n(A)(1� 
n(A))
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2 Generalizations to different measures j 7

Let us try to follow Pisier’s approach to a general positive Borel measure �
on Rn � Rn. Take a smooth function f on Rn and compute the
fluctuations of ∆ = f (y)� f (x) under �.

Consider the same path
x(t) = x cos t + y sin t, 0 � t � �

2 , joining x with y . Then

∆ =
Z �=2

0

d
dt f (x(t)) dt =

Z �=2

0
hrf (x(t)); x 0(t)i dt:

Hence, for a convex non-negative function Ψ, by Jensen’s inequality

Ψ(∆) � 2
�

Z �=2

0
Ψ
��
2 hrf (x(t)); x 0(t)i

�
dt;

and after integration, we get
Z
Rn

Z
Rn

Ψ(∆) d� � 2
�

Z �=2

0

Z
R2n

Ψ
��
2 hrf (x(t)); x 0(t)i

�
d� dt:
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2 Generalizations to different measures j 8

Z
Rn

Z
Rn

Ψ(∆) d� � 2
�

Z �=2

0

Z
R2n

Ψ
��
2 hrf (x(t)); x 0(t)i

�
d� dt:

Then if we consider the orthogonal linear transformation

Ut(x ; y) = (u; v) = (x(t); x 0(t)) = (x cos t + y sin t;�x sin t + y cos t);

2
�

Z �=2

0

Z
R2n

Ψ
��
2 hrf (x(t)); x 0(t)i

�
d� dt = 2

�

Z �=2

0

Z
R2n

h(Ut(x ; y)) d� dt

= 2
�

Z �=2

0

Z
R2n

h(u; v) d�t(u; v) dt;

where �t is the push-forward measure of � through Ut . We set

b� = 2
�

Z �

2

0
�t dt and inequality (1) becomesZ

Rn

Z
Rn

Ψ(∆) d� �
Z
R2n

Ψ
��
2 hrf (u); vi

�
db�(u; v);
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2 Main results j 9

Theorem (S.Bobkov, B.V., , Elect. Journ, Prob. 2024)

If � is any positive Borel measure � on Rn �Rn, for any smooth function f
on Rn and any convex nonnegative function  we haveZ

Rn

Z
Rn

Ψ(f (y)� f (x)) d� �
Z
R2n

Ψ
��
2 hrf (u); vi

�
db�(u; v);

If � has density w(x ; y) with respect to the Lebesgue measure, we have for
any bounded measurable function g on RnZ

Rn

Z
Rn

g(u; v) d�t(u; v)

=
Z
Rn

Z
Rn

g(u; v)w(u cos t � v sin t; u sin t + v cos t) du dv ;

then b� = 2
�

R �

2
0 �t dt has density

bw(u; v) = 2
�

Z �

2

0
w(u cos t � v sin t; u sin t + v cos t) dt:
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2 Some examples for b� j 11

The measure b� is called the spherical cup of �. Such measure becomes
closer to a class of spherically invariant measures.
I If � is rotationally invariant we have b� = �, e.g. b
2n = 
2n.
I For the symmetric Bernoulli measure � = 1

2 �1 + 1
2 ��1, consider

� = � 
 � = 1
4
�
�(1;1) + �(1;�1) + �(�1;1) + �(�1;�1)

�
;

i.e. Bernoulli measure on the discrete square f�1; 1g � f�1; 1g. Thenb� is the normalized Lebesgue measure on the circle
p
2 S1 � R

2 of
radius

p
2.

I Let � be the normalized Lebegue measure on [�1; 1], let � = � 
 � be
the norm. Lebesgue measure on [�1; 1]� [�1; 1], thus with density
w(x ; y) = 1=4.Then b� is supported on the disc x2 + y2 < 2, with
density

bw(u; v) =

8><
>:

�
4 ; if u2 + v2 � 1;

arcsin 1p
u2+v2 � �

4 ; if 1 � u2 + v2 � 2;
0; if u2 + v2 � 2:

In both examples, the spherical cap is a spherically invariant measure!
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3 Disintegration of measures j 13

As a special choice of  in our result, we take  (t) = jtj2 and we obtainZ
Rn

Z
Rn
jf (y)� f (x)j2 d�(x ; y) � �2

4

Z
Rn

Z
Rn
hrf (u); vi2 db�(u; v):

Our aim is to give conditions on �, b� to simplify the RHS. If � is a finite
Borel positive measure on Rn � Rn, let � is the projection of � on the first
coordinate. By the disintegration theorem there is a (unique) family of
finite measures �u defined fo �-almost all u, such that each �u is supported
on fug � Rn and

� =
Z
Rn
�u d�(u);

that is for each nonnegative measurable function g(u; v) on Rn � Rn

Z
Rn

Z
Rn

g(u; v) d�(u; v) =
Z
Rn

� Z
Rn

g(u; v) d�u(v)
�
d�(u):
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Definition
A finite measure � on Rn � Rn is isotropic along the first coordinate, if
�-almost all conditional measures �u are isotropic on Rn, i.e.Z

Rn
h�; vi2 d�u(v) = �2(u)j�j2 (� 2 Rn)

with some finite �2(u), which we call the isotropic function of � along the
first coordinate.
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Thus if we assume b� isotropic along the first coordinate we haveZ
Rn�Rn

hrf (u); vi2 db�(u; v) =
Z
Rn

� Z
Rn
hrf (u); vi2 db�u(v)

�
d�(u)

=
Z
Rn
b�2(u) jrf (u)j2 d�(u);
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hrf (u); vi2 db�(u; v) =
Z
Rn

� Z
Rn
hrf (u); vi2 db�u(v)

�
d�(u)

=
Z
Rn
b�2(u) jrf (u)j2 d�(u);

therefore we have a weighted Poincaré inequalityZ
Rn�Rn

jf (y)� f (x)j2 d�(x ; y) �
��
2

�2 Z
Rn
b�2(u) jrf (u)j2 d�(u):
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4 The case of the uniform distribution on the sphere j 16

Now we will deal with spherically invariant measure �. Then we haveb� = � and the main inequality becomes

Z
Rn�Rn

Ψ(f (y)� f (x)) d�(x ; y) �
Z
Rn�Rn

Ψ
��
2 hrf (x); yi

�
d�(x ; y):

We take  (t) = t2 and � = �2n�1 the uniform distribution on the sphere

S2n�1 = f(x ; y) 2 Rn � Rn : jx j2 + jy j2 = 1g:

We want to evaluate the conditional measures �x of �2n�1 for x 2 B1(0).
Each section of S2n�1 is

S2n�1
x =

p
1� jx j2 Sn�1 (x 2 Rn; jx j < 1)

i.e. the sphere in Rn of radius
p
1� jx j2 thus the measure �x is the

uniform distribution on such sphere.
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4 The case of the uniform distribution on the sphere j 17

Notice that for  (t) = t2 we haveZ
S2n�1

jf (y)� f (x)j2 d�2n�1(x ; y) � �2

4

Z
B1(0)

�2(x) jrf (x)j2 d�(x):

Since �x is isotropic we can useZ
S2n�1

x

h�; yi2 d�x (y) = �2(x)j�j2 (� 2 Rn)

to find �2(x):

�2(x) = 1
n

Z
S2n�1

x

jy j2d�x (y) = 1� jx j2
n ; jx j < 1:

So we have to find the marginal measure d�(x). An explicit computation
gives

d�(x) = Γ(n)
�

n
2 Γ( n

2 )
�
1� jx j2� n

2�1dx ; jx j < 1:



4 The case of the uniform distribution on the sphere j 17

Notice that for  (t) = t2 we haveZ
S2n�1

jf (y)� f (x)j2 d�2n�1(x ; y) � �2

4

Z
B1(0)

�2(x) jrf (x)j2 d�(x):

Since �x is isotropic we can useZ
S2n�1

x

h�; yi2 d�x (y) = �2(x)j�j2 (� 2 Rn)

to find �2(x):

�2(x) = 1
n

Z
S2n�1

x

jy j2d�x (y) = 1� jx j2
n ; jx j < 1:

So we have to find the marginal measure d�(x). An explicit computation
gives

d�(x) = Γ(n)
�

n
2 Γ( n

2 )
�
1� jx j2� n

2�1dx ; jx j < 1:



4 The case of the uniform distribution on the sphere j 17

Notice that for  (t) = t2 we haveZ
S2n�1

jf (y)� f (x)j2 d�2n�1(x ; y) � �2

4

Z
B1(0)

�2(x) jrf (x)j2 d�(x):

Since �x is isotropic we can useZ
S2n�1

x

h�; yi2 d�x (y) = �2(x)j�j2 (� 2 Rn)

to find �2(x):

�2(x) = 1
n

Z
S2n�1

x

jy j2d�x (y) = 1� jx j2
n ; jx j < 1:

So we have to find the marginal measure d�(x).

An explicit computation
gives

d�(x) = Γ(n)
�

n
2 Γ( n

2 )
�
1� jx j2� n

2�1dx ; jx j < 1:



4 The case of the uniform distribution on the sphere j 17

Notice that for  (t) = t2 we haveZ
S2n�1

jf (y)� f (x)j2 d�2n�1(x ; y) � �2

4

Z
B1(0)

�2(x) jrf (x)j2 d�(x):
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S2n�1

x

h�; yi2 d�x (y) = �2(x)j�j2 (� 2 Rn)
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n
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x
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Corollary (S. G. Bobkov, B.V., 2024)

For any smooth function f on Rn,Z
S2n�1

jf (x)� f (y)j2 d�2n�1(x ; y) � �2

4n

Z
B1(0)

jrf (x)j2 (1� jx j2) d�(x):
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B1(0)

jrf (x)j2 (1� jx j2) d�(x):

This inequality is quite similar to this Poincaré inequalityZ
jx j<1

Z
jy j<1

jf (x)� f (y)j2 d�(x) d�(y) � c
n

Z
juj<1

jrf (u)j2 d�(u);

which is derived for more general measures � in

S. G. Bobkov, Spectral gap and concentration for some spherically
symmetric probability measures. Geometric aspects of functional
analysis, 2003
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For any smooth function f on Rn,Z
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4n

Z
B1(0)
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If jrf j � 1, we haveZ
S2n�1

jf (x)� f (y)j2 d�2n�1(x ; y) � �2

8n :



4 The case of Cauchy measures j 19

The n-dimensional probability Cauchy measure mn;� on Rn of order � > n
2

has density
wn;�(x) = 1

cn;�
(1 + jx j2)��; x 2 Rn;

where
cn;� =

Γ(�� n
2 ) Γ( n

2 )
Γ(�) = �

n
2

Γ(�� n
2 )

Γ(�) :

is a normalizing constant.

Observe that the image emn;� through the map
x ! p

�x has density

ewn;�(x) = (2�)�n=2 wn;�

� 1p
2�

x
�

= 1
c 0n;�(1 + 1

2� jx j2)�
; x 2 Rn;

thus ewn;�(x) ! (2�)�n=2 e�jx j
2=2 as �!1;

emn;� ! 
n as �!1 :

the class of Cauchy measures might serve as pre-Gaussian model.



4 The case of Cauchy measures j 19

The n-dimensional probability Cauchy measure mn;� on Rn of order � > n
2

has density
wn;�(x) = 1

cn;�
(1 + jx j2)��; x 2 Rn;

where
cn;� =

Γ(�� n
2 ) Γ( n

2 )
Γ(�) = �

n
2

Γ(�� n
2 )

Γ(�) :

is a normalizing constant. Observe that the image emn;� through the map
x ! p

�x has density

ewn;�(x) = (2�)�n=2 wn;�

� 1p
2�

x
�

= 1
c 0n;�(1 + 1

2� jx j2)�
; x 2 Rn;

thus ewn;�(x) ! (2�)�n=2 e�jx j
2=2 as �!1;

emn;� ! 
n as �!1 :

the class of Cauchy measures might serve as pre-Gaussian model.



4 The case of Cauchy measures j 19

The n-dimensional probability Cauchy measure mn;� on Rn of order � > n
2

has density
wn;�(x) = 1

cn;�
(1 + jx j2)��; x 2 Rn;

where
cn;� =

Γ(�� n
2 ) Γ( n

2 )
Γ(�) = �

n
2

Γ(�� n
2 )

Γ(�) :

is a normalizing constant. Observe that the image emn;� through the map
x ! p

�x has density

ewn;�(x) = (2�)�n=2 wn;�

� 1p
2�

x
�

= 1
c 0n;�(1 + 1

2� jx j2)�
; x 2 Rn;

thus ewn;�(x) ! (2�)�n=2 e�jx j
2=2 as �!1;

emn;� ! 
n as �!1 :

the class of Cauchy measures might serve as pre-Gaussian model.



4 Poincaré type inequalities with the Cauchy measures j 20

The following inequality is well-knownZ
Rn

���f � Z
Rn

f dmn;�

���2 dmn;� � c
Z
Rn
jrf j2 (1 + jx j2) dmn;�;

where the value of the best constant c = c(�; n) is known for any
� > n=2.

Such Poincaré inequality are fundamental in the study of the
rates of convergence for the solutions to the fast diffusion equation

ut = ∆um; m 2 (0; 1) :

one of the main connection is due to the form of the self-similar profile

V (x) = (1 + jx j2)�
1

1�m ; � := 1
1�m :

Some references:
A. Blanchet, M. Bonforte, J. Dolbeault, G. Grillo and J. L. Vázquez,
ARMA-PNAS, 2009
S.G. Bobkov and M. Ledoux, Ann. Prob., 2009
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4 Poincaré type inequalities with the Cauchy measures j 21

We consider the 2n-dimensional Cauchy measures m2n;� on Rn � Rn,
having the densities

w2n;�(x ; y) = 1
c2n;�

�
1 + jx j2 + jy j2���; x ; y 2 Rn; (1)

where � > n. We wish to apply the inequality

Z
Rn�Rn

Ψ(f (y)� f (x)) d�(x ; y) �
Z
Rn�Rn

Ψ
��
2 hrf (x); yi

�
d�(x ; y):

with the choice  (t) = jtjp namelyZ
Rn�Rn

jf (y)�f (x)jp dm2n;�(x ; y) �
��
2

�p Z
Rn�Rn

j hrf (x); yi jp dm2n;�(x ; y):

Let us try to simplify the RHS.
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Z
Rn�Rn

j hrf (x); yi jp dm2n;�(x ; y) = 1
c2n;�

Z
Rn

Ip(x ;rf (x)) dx ;

where, for v 2 Rn, v = jv j�,

Ip(x ; v) =
Z
Rn

j hv ; yi jp
(1 + jx j2 + jy j2)� dy = jv jp

Z
Rn

j h�; yi jp
(1 + jx j2 + jy j2)� dy| {z }

Ip(x ;�)

:

But Ip(x ; �) does not depend on � thus

Ip(x ; �) = E�Ip(x ; �) =
Z
Rn

E�j h�; yi jp
(1 + jx j2 + jy j2)� dy ;

now
E�j h�; yi jp = jy jpG(n; p)

for some constant G(n; p) :taking y = e1 we have G(n; p) = E�j�1jp.



4 Poincaré type inequalities with the Cauchy measures j 22

Z
Rn�Rn

j hrf (x); yi jp dm2n;�(x ; y) = 1
c2n;�

Z
Rn

Ip(x ;rf (x)) dx ;

where, for v 2 Rn, v = jv j�,

Ip(x ; v) =
Z
Rn

j hv ; yi jp
(1 + jx j2 + jy j2)� dy = jv jp

Z
Rn

j h�; yi jp
(1 + jx j2 + jy j2)� dy| {z }

Ip(x ;�)

:

But Ip(x ; �) does not depend on � thus

Ip(x ; �) = E�Ip(x ; �) =
Z
Rn

E�j h�; yi jp
(1 + jx j2 + jy j2)� dy ;

now
E�j h�; yi jp = jy jpG(n; p)

for some constant G(n; p) :taking y = e1 we have G(n; p) = E�j�1jp.



4 Poincaré type inequalities with the Cauchy measures j 22

Z
Rn�Rn

j hrf (x); yi jp dm2n;�(x ; y) = 1
c2n;�

Z
Rn

Ip(x ;rf (x)) dx ;

where, for v 2 Rn, v = jv j�,

Ip(x ; v) =
Z
Rn

j hv ; yi jp
(1 + jx j2 + jy j2)� dy = jv jp

Z
Rn

j h�; yi jp
(1 + jx j2 + jy j2)� dy| {z }

Ip(x ;�)

:

But Ip(x ; �) does not depend on � thus

Ip(x ; �) = E�Ip(x ; �) =
Z
Rn

E�j h�; yi jp
(1 + jx j2 + jy j2)� dy ;

now
E�j h�; yi jp = jy jpG(n; p)

for some constant G(n; p) :taking y = e1 we have G(n; p) = E�j�1jp.



4 Poincaré type inequalities with the Cauchy measures j 22

Z
Rn�Rn

j hrf (x); yi jp dm2n;�(x ; y) = 1
c2n;�

Z
Rn

Ip(x ;rf (x)) dx ;

where, for v 2 Rn, v = jv j�,

Ip(x ; v) =
Z
Rn

j hv ; yi jp
(1 + jx j2 + jy j2)� dy = jv jp

Z
Rn

j h�; yi jp
(1 + jx j2 + jy j2)� dy| {z }

Ip(x ;�)

:

But Ip(x ; �) does not depend on � thus

Ip(x ; �) = E�Ip(x ; �) =
Z
Rn

E�j h�; yi jp
(1 + jx j2 + jy j2)� dy ;

now
E�j h�; yi jp = jy jpG(n; p)

for some constant G(n; p) :

taking y = e1 we have G(n; p) = E�j�1jp.



4 Poincaré type inequalities with the Cauchy measures j 22

Z
Rn�Rn

j hrf (x); yi jp dm2n;�(x ; y) = 1
c2n;�

Z
Rn

Ip(x ;rf (x)) dx ;

where, for v 2 Rn, v = jv j�,

Ip(x ; v) =
Z
Rn

j hv ; yi jp
(1 + jx j2 + jy j2)� dy = jv jp

Z
Rn

j h�; yi jp
(1 + jx j2 + jy j2)� dy| {z }

Ip(x ;�)

:

But Ip(x ; �) does not depend on � thus

Ip(x ; �) = E�Ip(x ; �) =
Z
Rn

E�j h�; yi jp
(1 + jx j2 + jy j2)� dy ;

now
E�j h�; yi jp = jy jpG(n; p)

for some constant G(n; p) :taking y = e1 we have G(n; p) = E�j�1jp.



4 Poincaré type inequalities with the Cauchy measures j 23

One can show that

G(n; p) =
Γ( n

2 )Γ( p+1
2 )

Γ( n+p
2 )

:

Therefore

Ip(x ; v) =
Z
Rn

j hv ; yi jp
(1 + jx j2 + jy j2)� dy = G(n; p)jv jp

Z
Rn

jy jp
(1 + jx j2 + jy j2)� dy

= G(n; p)
(1 + jx j2)�� n+p

2
jv jp

Z
Rn

jz jp
(1 + jz j2)� dz :

this last integral is finite if and only if

� >
n + p
2 :



4 Poincaré type inequalities with the Cauchy measures j 23

One can show that

G(n; p) =
Γ( n

2 )Γ( p+1
2 )

Γ( n+p
2 )

:

Therefore

Ip(x ; v) =
Z
Rn

j hv ; yi jp
(1 + jx j2 + jy j2)� dy = G(n; p)jv jp

Z
Rn

jy jp
(1 + jx j2 + jy j2)� dy

= G(n; p)
(1 + jx j2)�� n+p

2
jv jp

Z
Rn

jz jp
(1 + jz j2)� dz :

this last integral is finite if and only if

� >
n + p
2 :



4 Poincaré type inequalities with the Cauchy measures j 23

One can show that

G(n; p) =
Γ( n

2 )Γ( p+1
2 )

Γ( n+p
2 )

:

Therefore

Ip(x ; v) =
Z
Rn

j hv ; yi jp
(1 + jx j2 + jy j2)� dy = G(n; p)jv jp

Z
Rn

jy jp
(1 + jx j2 + jy j2)� dy

= G(n; p)
(1 + jx j2)�� n+p

2
jv jp

Z
Rn

jz jp
(1 + jz j2)� dz :

this last integral is finite if and only if

� >
n + p
2 :



4 Poincaré type inequalities with the Cauchy measures j 24

An explicit computation gives

Ip(x ; v) = A (1 + jx j2)�� jv jp; where � = �� n + p
2 ;

and
A = G(n; p) n!n

2 B
�
�� n + p

2 ;
n + p
2

�
:

Therefore:Z
Rn�Rn

j hrf (x); yi jp dm2n;�(x ; y) = 1
c2n;�

Z
Rn

Ip(x ;rf (x)) dx

= 1p
�

Γ( p+1
2 )Γ(�� 2n+p

2 )
Γ(�� n)

Z
Rn
jrf (x))jp dmn;� :

in order to have mn;� well defined we must impose

� = �� n + p
2 >

n
2 :
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Theorem (S.G. Bobkov, B.V, 2024)

Let � > n + 1
2 and 1 � p < 2 (�� n). For any smooth function f on Rn,Z

Rn�Rn
jf (x)� f (y)jp dm2n;�(x ; y) � C

��
2

�p Z
Rn
jrf (x)jp dmn;�(x);

where � = �� n+p
2 ,where

C = 1p
�

Γ( p+1
2 )Γ(�� n � p

2 )
Γ(�� n) :

Z
Rn

Z
Rn
jf (x)�f (y)jp d
n(x) d
n(x) �

��
2

�p 2
p
2p
�

Γ
�p + 1

2

�Z
Rn
jrf jp d
n:
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C = 1p
�

Γ( p+1
2 )Γ(�� n � p

2 )
Γ(�� n) :

If we use the scaling f̃ (x) := f (
p
� x)Z

Rn�Rn
jf (x)� f (y)jp d em2n;�(x ; y) � C (2�)

p
2

��
2

�p Z
Rn
jrf jp d emn;� :

letting �!1 we find

Z
Rn

Z
Rn
jf (x)�f (y)jp d
n(x) d
n(x) �

��
2

�p 2
p
2p
�

Γ
�p + 1

2

�Z
Rn
jrf jp d
n:
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4 Isoperimetric inequalities for Cauchy measures j 26

Writing the inequality for p = 1 we have for � > n + 1
2 and � = �� n+1

2 ,
for any smooth function f on Rn,Z

Rn�Rn
jf (x)� f (y)j dm2n;�(x ; y) �

p
�

2
Γ(�� n � 1

2 )
Γ(�� n)

Z
Rn
jrf j dmn;� :

(2)

Scaling and passing to the limit in (2) gives the L1-Poncaré
Z
Rn

Z
Rn
jf (x)� f (y)j d
n(x) d
n(y) �

r
�

2|{z}
c1

Z
Rn
jrf j d
n:


+
n (@A) � 2c�1

1 
n(A)(1� 
n(A))
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Z
Rn
jrf j d
n:


+
n (@A) � 2c�1

1 
n(A)(1� 
n(A))
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Let � � n + 1, we have the followingZ
Rn�Rn

jf (x)� f (y)j dm2n;�(x ; y) � p
�

1p
�� n

Z
Rn
jrf j dmn;� :

It is possible to see that this implies (in fact it is equivalent) to the
isoperimetric inequality

m+
n;�(@A) � 2

p
�� np
�

m2n;�(A� Ac):

valid for any closed set A in Rn. It is possible to bound m2n;� by the tensor
product mn;� 
mn;� through

m2n;� � d mn;� 
mn;�; d = dn;� =
Γ(�� n

2 )2

Γ(�� n) Γ(�) :

thus finally we find the isoperimetric inequality for the Cauchy measures

m+
n;�(@A) � 2p

�
d
p
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Recall the Poincaré inequality

Theorem (S.G. Bobkov, B.V, 2024)

Let � > n + 1
2 and 1 � p < 2 (�� n). For any smooth function f on Rn,Z

Rn�Rn
jf (x)� f (y)jp dm2n;�(x ; y) � C

��
2

�p Z
Rn
jrf (x)jp dmn;�(x);

where � = �� n+p
2 , and where the constant depends on (n; p; �) and is

given by

C = 1p
�

Γ( p+1
2 )Γ(�� n � p

2 )
Γ(�� n) :

It follows that, for any function f on Rn with Lipschitz semi-norm
kf kLip � 1,Z

Rn

Z
Rn
jf (x)� f (y)jp dm2n;�(x ; y) � 1p

�

��
2

�p Γ( p+1
2 ) Γ(�� n � p

2 )
Γ(�� n) :

We wish to explore probabilities of moderate and large deviations of
f (x)� f (y) under the Cauchy measure m2n;�.Using suitable estimates
from above and below for the Gamma functions, for � � n + 1and
1 � p � 2 (�� n)� 1 we have

Corollary

For any function f on Rn with kf kLip � 1,Z
Rn

Z
Rn
jf (x)� f (y)jp dm2n;�(x ; y) � 2

� cp
�� n

�p=2

with c = �2=4.
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Now consider

pn;�(t) = m2n;�
�

(x ; y) 2 Rn � Rn :
p
�� n jf (x)� f (y)j � t

	
:

We have the following result

Corollary

If � � n + 1, for any function f on Rn with kf kLip � 1,

pn;�(t) �
8<
:

2 exp
�� t2=14

	
; 0 � t � t0;

2 exp
�� (t log t)=5

	
; t0 � t � t1;

2
� 2t0

t
�t1
; t � t1;

(3)

where t0 =
p
�� n and t1 = �� n.

Analogous relations for similar regions for the product measures
mn;� 
mn;� have been explored in

S.G. Bobkov and M. Ledoux Weighted Poincaré-type inequalities for
Cauchy and other convex measures, Ann. Prob., 2009
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I Study more properties about the spherical cap measure b� and relevant
implications.

I More explicit examples.
I Generalize Pisier’s approach in the discrete setting.
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Thank you for your attention!
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