On Gilles Pisier's approach to Gaussian concentration, isoperimetry, and Poincaré inequalities

Bruno Volzone

Politecnico di Milano

4 June 2025, Paris: *Workshop on Functional Inequalities* joint project with S. G. Bobkov 0 Plan of the talk

Introduction: Gilles Pisier's approach to Poincaré type inequalities

② Generalizations to different measures

3 Application with isotropic measures

Application: spherically invariant measures

1 Outline

Introduction: Gilles Pisier's approach to Poincaré type inequalities

- ② Generalizations to different measures
- Application with isotropic measures
- Application: spherically invariant measures

Let γ_n denote the standard Gaussian measure on \mathbb{R}^n , thus with density

$$rac{d\gamma_n(x)}{dx} = (2\pi)^{-rac{n}{2}} e^{-|x|^2/2}, \quad x \in \mathbb{R}^n.$$

Let γ_n denote the standard Gaussian measure on \mathbb{R}^n , thus with density

$$\frac{d\gamma_n(x)}{dx} = (2\pi)^{-\frac{n}{2}} e^{-|x|^2/2}, \quad x \in \mathbb{R}^n.$$

In the mid 1980's G. Pisier proposed the following inequalities involving γ_n :

G. Pisier, Probabilistic methods in the geometry of Banach spaces. 1986.

Let γ_n denote the standard Gaussian measure on \mathbb{R}^n , thus with density

$$rac{d\gamma_n(x)}{dx} = (2\pi)^{-rac{n}{2}} e^{-|x|^2/2}, \quad x \in \mathbb{R}^n.$$

In the mid 1980's G. Pisier proposed the following inequalities involving γ_n :

G. Pisier, Probabilistic methods in the geometry of Banach spaces. 1986.

Let $\Psi: \mathbb{R} \to \mathbb{R}$ be a convex function. For any smooth function f on \mathbb{R}^n

$$\int_{\mathbb{R}^n}\int_{\mathbb{R}^n}\Psi(f(y)-f(x))\,d\gamma_n(x)\,d\gamma_n(y)\leq \int_{\mathbb{R}^n}\int_{\mathbb{R}^n}\Psi\Big(\frac{\pi}{2}\,\langle\nabla f(x),y\rangle\,\Big)\,d\gamma_n(x)\,d\gamma_n(y)$$

In particular, if f has γ_n -mean zero, then

$$\int_{\mathbb{R}^n} \Psi(f) \, d\gamma_n \leq \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \Psi\Big(\frac{\pi}{2} \, \langle \nabla f(x), y \rangle \,\Big) \, d\gamma_n(x) d\gamma_n(y).$$

Let γ_n denote the standard Gaussian measure on \mathbb{R}^n , thus with density

$$rac{d\gamma_n(x)}{dx} = (2\pi)^{-rac{n}{2}} e^{-|x|^2/2}, \quad x \in \mathbb{R}^n.$$

In the mid 1980's G. Pisier proposed the following inequalities involving γ_n :

G. Pisier, Probabilistic methods in the geometry of Banach spaces. 1986.

Let $\Psi: \mathbb{R} \to \mathbb{R}$ be a convex function. For any smooth function f on \mathbb{R}^n

$$\int_{\mathbb{R}^n}\int_{\mathbb{R}^n}\Psi(f(y)-f(x))\,d\gamma_n(x)\,d\gamma_n(y)\leq \int_{\mathbb{R}^n}\int_{\mathbb{R}^n}\Psi\Big(\frac{\pi}{2}\,\langle\nabla f(x),y\rangle\,\Big)\,d\gamma_n(x)\,d\gamma_n(y)$$

In particular, if f has γ_n -mean zero, then

$$\int_{\mathbb{R}^n} \Psi(f) \, d\gamma_n \leq \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \Psi\Big(\frac{\pi}{2} \, \langle \nabla f(x), y \rangle \,\Big) \, d\gamma_n(x) d\gamma_n(y).$$

For generalizations in $\{-1,1\}^n$:

P. Ivanisvili, R. van Handel, A. Volberg, Rademacher type and Enfloy type coincide. Ann. of Math. (2020)

Given independent random vectors X and Y in \mathbb{R}^n with distribution γ_n , let

$$X(t) = X \cos t + Y \sin t$$

for $0 \le t \le \frac{\pi}{2}$. Then

Given independent random vectors X and Y in \mathbb{R}^n with distribution γ_n , let

$$X(t) = X \cos t + Y \sin t$$

for $0 \le t \le \frac{\pi}{2}$. Then

$$\Delta \equiv f(Y) - f(X) = \int_0^{\pi/2} \frac{d}{dt} f(X(t)) dt = \int_0^{\pi/2} \langle \nabla f(X(t)), X'(t) \rangle dt,$$

where $X'(t) = -X \sin t + Y \cos t$. Now Jensen's inequality implies

Given independent random vectors X and Y in \mathbb{R}^n with distribution γ_n , let

$$X(t) = X \cos t + Y \sin t$$

for $0 \le t \le \frac{\pi}{2}$. Then

$$\Delta \equiv f(Y) - f(X) = \int_0^{\pi/2} \frac{d}{dt} f(X(t)) dt = \int_0^{\pi/2} \langle \nabla f(X(t)), X'(t) \rangle dt,$$

where $X'(t) = -X \sin t + Y \cos t$. Now Jensen's inequality implies

$$\Psi(\Delta) \leq \frac{2}{\pi} \int_0^{\pi/2} \Psi\left(\frac{\pi}{2} \langle \nabla f(X(t)), X'(t) \rangle\right) dt.$$

Given independent random vectors X and Y in \mathbb{R}^n with distribution γ_n , let

$$X(t) = X \cos t + Y \sin t$$

for $0 \le t \le \frac{\pi}{2}$. Then

$$\Delta \equiv f(Y) - f(X) = \int_0^{\pi/2} \frac{d}{dt} f(X(t)) dt = \int_0^{\pi/2} \langle \nabla f(X(t)), X'(t) \rangle dt,$$

where $X'(t) = -X \sin t + Y \cos t$. Now Jensen's inequality implies

$$\Psi(\Delta) \leq rac{2}{\pi} \int_0^{\pi/2} \Psi\Big(rac{\pi}{2} \langle
abla f(X(t)), X'(t)
angle \Big) dt.$$

Taking the expectation, we get

$$\mathbb{E}\,\Psi(\Delta) \leq \frac{2}{\pi}\int_0^{\pi/2} \mathbb{E}\,\Psi\Big(\frac{\pi}{2}\,\langle \nabla f(X(t)),X'(t)\rangle\,\Big)\,dt$$

Given independent random vectors X and Y in \mathbb{R}^n with distribution γ_n , let

$$X(t) = X \cos t + Y \sin t$$

for $0 \le t \le \frac{\pi}{2}$. Then

$$\Delta \equiv f(Y) - f(X) = \int_0^{\pi/2} \frac{d}{dt} f(X(t)) dt = \int_0^{\pi/2} \langle \nabla f(X(t)), X'(t) \rangle dt,$$

where $X'(t) = -X \sin t + Y \cos t$. Now Jensen's inequality implies

$$\Psi(\Delta) \leq rac{2}{\pi} \int_0^{\pi/2} \Psi\Big(rac{\pi}{2} \langle
abla f(X(t)), X'(t)
angle \Big) dt.$$

Taking the expectation, we get

$$\mathbb{E}\,\Psi(\Delta) \leq rac{2}{\pi}\int_0^{\pi/2}\mathbb{E}\,\Psi\Big(rac{\pi}{2}\,\langle
abla f(X(t)),X'(t)
angle\,\Big)\,dt$$

Since the Gaussian measure $\gamma_{2n} = \gamma_n \otimes \gamma_n$ is rotationally invariant on \mathbb{R}^{2n} , the couple (X(t), X'(t)) represents an independent copy of (X, Y): hence the second integral does not depend on t.

1 Some remarks

Choosing $\Psi(r) = |r|^p$ with $p \ge 1$, we get a Poincaré-type inequality

$$\int_{\mathbb{R}^n}\int_{\mathbb{R}^n}|f(x)-f(y)|^p\,d\gamma_n(x)\,d\gamma_n(x)\,\leq\,c_p\int_{\mathbb{R}^n}|\nabla f|^p\,d\gamma_n,$$

1 Some remarks

Choosing $\Psi(r) = |r|^p$ with $p \ge 1$, we get a Poincaré-type inequality

$$\int_{\mathbb{R}^n}\int_{\mathbb{R}^n}|f(x)-f(y)|^p\,d\gamma_n(x)\,d\gamma_n(x)\,\leq\,c_p\int_{\mathbb{R}^n}|\nabla f|^p\,d\gamma_n,$$

and, by Jensen's inequality,

$$\begin{split} \int_{\mathbb{R}^n} \left| f - \int_{\mathbb{R}^n} f \, d\gamma_n \right|^p d\gamma_n &\leq c_p \int_{\mathbb{R}^n} |\nabla f|^p \, d\gamma_n, \text{ where} \\ c_p &= \left(\frac{\pi}{2}\right)^p \mathbb{E} \left| \xi \right|^p = \left(\frac{\pi}{2}\right)^p \, \frac{2^{\frac{p}{2}}}{\sqrt{\pi}} \, \Gamma\left(\frac{p+1}{2}\right), \end{split}$$

where ξ is a normal random variable with distribution γ_1 .

1 Some remarks

Choosing $\Psi(r) = |r|^p$ with $p \ge 1$, we get a Poincaré-type inequality

$$\int_{\mathbb{R}^n}\int_{\mathbb{R}^n}|f(x)-f(y)|^p\,d\gamma_n(x)\,d\gamma_n(x)\,\leq\,c_p\,\int_{\mathbb{R}^n}|\nabla f|^p\,d\gamma_n,$$

and, by Jensen's inequality,

$$\begin{split} \int_{\mathbb{R}^n} \left| f - \int_{\mathbb{R}^n} f \, d\gamma_n \right|^p d\gamma_n &\leq c_p \int_{\mathbb{R}^n} |\nabla f|^p \, d\gamma_n, \text{ where} \\ c_p &= \left(\frac{\pi}{2}\right)^p \mathbb{E} \left| \xi \right|^p = \left(\frac{\pi}{2}\right)^p \, \frac{2^{\frac{p}{2}}}{\sqrt{\pi}} \, \Gamma\left(\frac{p+1}{2}\right), \end{split}$$

where ξ is a normal random variable with distribution γ_1 . In particular, for p = 1 we have that $c_1 = \sqrt{\pi/2}$ is *sharp* and is the best constant in the Gaussian isoperimetric inequality

$$\gamma_n^+(\partial A) \geq 2c_1^{-1} \gamma_n(A)(1-\gamma_n(A))$$

2 Outline

Introduction: Gilles Pisier's approach to Poincaré type inequalities

② Generalizations to different measures

3 Application with isotropic measures

Application: spherically invariant measures

Let us try to follow Pisier's approach to a general positive Borel measure μ on $\mathbb{R}^n \times \mathbb{R}^n$. Take a smooth function f on \mathbb{R}^n and compute the fluctuations of $\Delta = f(y) - f(x)$ under μ .

Let us try to follow Pisier's approach to a general positive Borel measure μ on $\mathbb{R}^n \times \mathbb{R}^n$. Take a smooth function f on \mathbb{R}^n and compute the fluctuations of $\Delta = f(y) - f(x)$ under μ . Consider the same path $x(t) = x \cos t + y \sin t$, $0 \le t \le \frac{\pi}{2}$, joining x with y. Then

Let us try to follow Pisier's approach to a general positive Borel measure μ on $\mathbb{R}^n \times \mathbb{R}^n$. Take a smooth function f on \mathbb{R}^n and compute the fluctuations of $\Delta = f(y) - f(x)$ under μ . Consider the same path $x(t) = x \cos t + y \sin t$, $0 \le t \le \frac{\pi}{2}$, joining x with y. Then

$$\Delta = \int_0^{\pi/2} \frac{d}{dt} f(x(t)) dt = \int_0^{\pi/2} \langle \nabla f(x(t)), x'(t) \rangle dt.$$

Let us try to follow Pisier's approach to a general positive Borel measure μ on $\mathbb{R}^n \times \mathbb{R}^n$. Take a smooth function f on \mathbb{R}^n and compute the fluctuations of $\Delta = f(y) - f(x)$ under μ . Consider the same path $x(t) = x \cos t + y \sin t$, $0 \le t \le \frac{\pi}{2}$, joining x with y. Then

$$\Delta = \int_0^{\pi/2} \frac{d}{dt} f(x(t)) dt = \int_0^{\pi/2} \langle \nabla f(x(t)), x'(t) \rangle dt.$$

Hence, for a convex non-negative function Ψ , by Jensen's inequality

7

Let us try to follow Pisier's approach to a general positive Borel measure μ on $\mathbb{R}^n \times \mathbb{R}^n$. Take a smooth function f on \mathbb{R}^n and compute the fluctuations of $\Delta = f(y) - f(x)$ under μ . Consider the same path $x(t) = x \cos t + y \sin t$, $0 \le t \le \frac{\pi}{2}$, joining x with y. Then

$$\Delta = \int_0^{\pi/2} \frac{d}{dt} f(x(t)) dt = \int_0^{\pi/2} \langle \nabla f(x(t)), x'(t) \rangle dt.$$

Hence, for a convex non-negative function $\Psi,$ by Jensen's inequality

$$\Psi(\Delta) \leq rac{2}{\pi} \int_0^{\pi/2} \Psi\Big(rac{\pi}{2} \left\langle
abla f(x(t)), x'(t)
ight
angle \Big) dt,$$

and after integration, we get

$$\int_{\mathbb{R}^n}\int_{\mathbb{R}^n}\Psi(\Delta)\,d\mu\leq\frac{2}{\pi}\int_0^{\pi/2}\int_{\mathbb{R}^{2n}}\Psi\Big(\frac{\pi}{2}\,\langle\nabla f(x(t)),x'(t)\rangle\,\Big)\,d\mu\,dt.$$

$$\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \Psi(\Delta) \, d\mu \leq \frac{2}{\pi} \int_0^{\pi/2} \int_{\mathbb{R}^{2n}} \Psi\Big(\frac{\pi}{2} \left\langle \nabla f(x(t)), x'(t) \right\rangle \Big) \, d\mu \, dt.$$

Then if we consider the orthogonal linear transformation

 $U_t(x, y) = (u, v) = (x(t), x'(t)) = (x \cos t + y \sin t, -x \sin t + y \cos t),$

$$\int_{\mathbb{R}^n}\int_{\mathbb{R}^n}\Psi(\Delta)\,d\mu\leq\frac{2}{\pi}\int_0^{\pi/2}\int_{\mathbb{R}^{2n}}\Psi\left(\frac{\pi}{2}\left\langle \nabla f(x(t)),x'(t)\right\rangle\right)\,d\mu\,dt.$$

Then if we consider the orthogonal linear transformation

$$U_t(x, y) = (u, v) = (x(t), x'(t)) = (x \cos t + y \sin t, -x \sin t + y \cos t),$$

$$\frac{2}{\pi} \int_0^{\pi/2} \int_{\mathbb{R}^{2n}} \Psi\Big(\frac{\pi}{2} \langle \nabla f(x(t)), x'(t) \rangle \Big) \, d\mu \, dt = \frac{2}{\pi} \int_0^{\pi/2} \int_{\mathbb{R}^{2n}} \mathfrak{h}(U_t(x, y)) \, d\mu \, dt \\ = \frac{2}{\pi} \int_0^{\pi/2} \int_{\mathbb{R}^{2n}} \mathfrak{h}(u, v) \, d\mu_t(u, v) \, dt,$$

where μ_t is the push-forward measure of μ through U_t .

$$\int_{\mathbb{R}^n}\int_{\mathbb{R}^n}\Psi(\Delta)\,d\mu\leq\frac{2}{\pi}\int_0^{\pi/2}\int_{\mathbb{R}^{2n}}\Psi\Big(\frac{\pi}{2}\,\langle\nabla f(x(t)),x'(t)\rangle\,\Big)\,d\mu\,dt.$$

Then if we consider the orthogonal linear transformation

$$U_t(x, y) = (u, v) = (x(t), x'(t)) = (x \cos t + y \sin t, -x \sin t + y \cos t),$$

$$\frac{2}{\pi} \int_0^{\pi/2} \int_{\mathbb{R}^{2n}} \Psi\Big(\frac{\pi}{2} \langle \nabla f(x(t)), x'(t) \rangle \Big) \, d\mu \, dt = \frac{2}{\pi} \int_0^{\pi/2} \int_{\mathbb{R}^{2n}} \mathfrak{h}(U_t(x, y)) \, d\mu \, dt \\ = \frac{2}{\pi} \int_0^{\pi/2} \int_{\mathbb{R}^{2n}} \mathfrak{h}(u, v) \, d\mu_t(u, v) \, dt,$$

where μ_t is the push-forward measure of μ through U_t . We set

$$\widehat{\mu} = \frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} \mu_{t} dt \quad \text{and inequality (1) becomes}$$
$$\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \Psi(\Delta) d\mu \leq \int_{\mathbb{R}^{2n}} \Psi\left(\frac{\pi}{2} \left\langle \nabla f(u), v \right\rangle\right) d\widehat{\mu}(u, v),$$

8

Theorem (S.Bobkov, B.V., , Elect. Journ, Prob. 2024)

If μ is any positive Borel measure μ on $\mathbb{R}^n \times \mathbb{R}^n$, for any smooth function f on \mathbb{R}^n and any convex nonnegative function ψ we have

$$\int_{\mathbb{R}^n}\int_{\mathbb{R}^n}\Psi(f(y)-f(x))\,d\mu\leq\int_{\mathbb{R}^{2n}}\Psi\Big(\frac{\pi}{2}\left\langle \nabla f(u),v\right\rangle\Big)d\widehat{\mu}(u,v),$$

Theorem (S.Bobkov, B.V., , Elect. Journ, Prob. 2024)

If μ is any positive Borel measure μ on $\mathbb{R}^n \times \mathbb{R}^n$, for any smooth function fon \mathbb{R}^n and any convex nonnegative function ψ we have

$$\int_{\mathbb{R}^n}\int_{\mathbb{R}^n}\Psi(f(y)-f(x))\,d\mu\leq\int_{\mathbb{R}^{2n}}\Psi\Big(\frac{\pi}{2}\left\langle \nabla f(u),v\right\rangle\Big)d\widehat{\mu}(u,v),$$

If μ has density w(x, y) with respect to the Lebesgue measure, we have for any bounded measurable function g on \mathbb{R}^n

Theorem (S.Bobkov, B.V., , Elect. Journ, Prob. 2024)

If μ is any positive Borel measure μ on $\mathbb{R}^n \times \mathbb{R}^n$, for any smooth function f on \mathbb{R}^n and any convex nonnegative function ψ we have

$$\int_{\mathbb{R}^n}\int_{\mathbb{R}^n}\Psi(f(y)-f(x))\,d\mu\leq\int_{\mathbb{R}^{2n}}\Psi\Big(\frac{\pi}{2}\,\langle\nabla f(u),v\rangle\,\Big)d\widehat{\mu}(u,v),$$

If μ has density w(x, y) with respect to the Lebesgue measure, we have for any bounded measurable function g on \mathbb{R}^n

$$\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} g(u, v) d\mu_t(u, v)$$

= $\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} g(u, v) w(u \cos t - v \sin t, u \sin t + v \cos t) du dv,$

Theorem (S.Bobkov, B.V., , Elect. Journ, Prob. 2024)

If μ is any positive Borel measure μ on $\mathbb{R}^n \times \mathbb{R}^n$, for any smooth function f on \mathbb{R}^n and any convex nonnegative function ψ we have

$$\int_{\mathbb{R}^n}\int_{\mathbb{R}^n}\Psi(f(y)-f(x))\,d\mu\leq\int_{\mathbb{R}^{2n}}\Psi\Big(\frac{\pi}{2}\,\langle\nabla f(u),v\rangle\,\Big)d\widehat{\mu}(u,v),$$

If μ has density w(x, y) with respect to the Lebesgue measure, we have for any bounded measurable function g on \mathbb{R}^n

$$\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} g(u, v) d\mu_t(u, v)$$
$$= \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} g(u, v) w(u \cos t - v \sin t, u \sin t + v \cos t) du dv,$$
then $\hat{\mu} = \frac{2}{\pi} \int_0^{\frac{\pi}{2}} \mu_t dt$ has density

Theorem (S.Bobkov, B.V., , Elect. Journ, Prob. 2024)

If μ is any positive Borel measure μ on $\mathbb{R}^n \times \mathbb{R}^n$, for any smooth function f on \mathbb{R}^n and any convex nonnegative function ψ we have

$$\int_{\mathbb{R}^n}\int_{\mathbb{R}^n}\Psi(f(y)-f(x))\,d\mu\leq\int_{\mathbb{R}^{2n}}\Psi\Big(\frac{\pi}{2}\left\langle \nabla f(u),v\right\rangle\Big)d\widehat{\mu}(u,v),$$

If μ has density w(x, y) with respect to the Lebesgue measure, we have for any bounded measurable function g on \mathbb{R}^n

$$\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} g(u, v) d\mu_t(u, v)$$

=
$$\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} g(u, v) w(u \cos t - v \sin t, u \sin t + v \cos t) du dv,$$

then $\widehat{\mu} = rac{2}{\pi} \int_0^{rac{\pi}{2}} \mu_t \, dt$ has density

$$\widehat{w}(u,v) = \frac{2}{\pi} \int_0^{\frac{\pi}{2}} w(u\cos t - v\sin t, u\sin t + v\cos t) dt.$$

Theorem (S.Bobkov, B.V., 2024)

Let $\Psi : \mathbb{R} \to [0, \infty)$ be a convex function. Given a smooth function f on \mathbb{R}^n , for any non-negative Borel measurable function w(x, y) on $\mathbb{R}^n \times \mathbb{R}^n$,

$$\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \Psi(f(y) - f(x)) w(x, y) \, dx \, dy$$

$$\leq \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \Psi\left(\frac{\pi}{2} \left\langle \nabla f(u), v \right\rangle\right) \widehat{w}(u, v) \, du \, dv.$$

Theorem (S.Bobkov, B.V., 2024)

Let $\Psi : \mathbb{R} \to [0, \infty)$ be a convex function. Given a smooth function f on \mathbb{R}^n , for any non-negative Borel measurable function w(x, y) on $\mathbb{R}^n \times \mathbb{R}^n$,

$$\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \Psi(f(y) - f(x)) w(x, y) \, dx \, dy$$

$$\leq \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \Psi\left(\frac{\pi}{2} \left\langle \nabla f(u), v \right\rangle\right) \widehat{w}(u, v) \, du \, dv.$$

In particular, for any $p \ge 1$,

$$\begin{split} &\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} |f(y) - f(x)|^p w(x, y) \, dx \, dy \\ &\leq \left(\frac{\pi}{2}\right)^p \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} |\langle \nabla f(u), v \rangle|^p \, \widehat{w}(u, v) \, du \, dv \, dy \end{split}$$

The measure $\hat{\mu}$ is called the *spherical cup* of μ . Such measure becomes closer to a class of spherically invariant measures.

The measure $\hat{\mu}$ is called the *spherical cup* of μ . Such measure becomes closer to a class of spherically invariant measures.

• If μ is rotationally invariant we have $\hat{\mu} = \mu$, e.g. $\hat{\gamma}_{2n} = \gamma_{2n}$.

The measure $\hat{\mu}$ is called the *spherical cup* of μ . Such measure becomes closer to a class of spherically invariant measures.

- If μ is rotationally invariant we have $\hat{\mu} = \mu$, e.g. $\hat{\gamma}_{2n} = \gamma_{2n}$.
- ▶ For the symmetric Bernoulli measure $\nu = \frac{1}{2} \delta_1 + \frac{1}{2} \delta_{-1}$, consider

$$\mu =
u \otimes
u = rac{1}{4} \left(\delta_{(1,1)} + \delta_{(1,-1)} + \delta_{(-1,1)} + \delta_{(-1,-1)}
ight),$$

i.e. Bernoulli measure on the discrete square $\{-1,1\}\times\{-1,1\}.$

The measure $\hat{\mu}$ is called the *spherical cup* of μ . Such measure becomes closer to a class of spherically invariant measures.

- If μ is rotationally invariant we have $\widehat{\mu} = \mu$, e.g. $\widehat{\gamma}_{2n} = \gamma_{2n}$.
- For the symmetric Bernoulli measure $\nu = \frac{1}{2} \delta_1 + \frac{1}{2} \delta_{-1}$, consider

$$\mu =
u \otimes
u = rac{1}{4} \left(\delta_{(1,1)} + \delta_{(1,-1)} + \delta_{(-1,1)} + \delta_{(-1,-1)}
ight),$$

i.e. Bernoulli measure on the discrete square $\{-1,1\} \times \{-1,1\}$. Then $\hat{\mu}$ is the normalized Lebesgue measure on the circle $\sqrt{2} S^1 \subset \mathbb{R}^2$ of radius $\sqrt{2}$.

2 Some examples for $\hat{\mu}$

The measure $\hat{\mu}$ is called the *spherical cup* of μ . Such measure becomes closer to a class of spherically invariant measures.

- If μ is rotationally invariant we have $\hat{\mu} = \mu$, e.g. $\hat{\gamma}_{2n} = \gamma_{2n}$.
- For the symmetric Bernoulli measure $\nu = \frac{1}{2} \delta_1 + \frac{1}{2} \delta_{-1}$, consider

$$\mu =
u \otimes
u = rac{1}{4} \left(\delta_{(1,1)} + \delta_{(1,-1)} + \delta_{(-1,1)} + \delta_{(-1,-1)}
ight),$$

i.e. Bernoulli measure on the discrete square $\{-1,1\} \times \{-1,1\}$. Then $\hat{\mu}$ is the normalized Lebesgue measure on the circle $\sqrt{2} S^1 \subset \mathbb{R}^2$ of radius $\sqrt{2}$.

Let v be the normalized Lebegue measure on [−1, 1], let µ = v ⊗ v be the norm. Lebesgue measure on [−1, 1] × [−1, 1], thus with density w(x, y) = 1/4.

2 Some examples for $\hat{\mu}$

The measure $\hat{\mu}$ is called the *spherical cup* of μ . Such measure becomes closer to a class of spherically invariant measures.

- If μ is rotationally invariant we have $\hat{\mu} = \mu$, e.g. $\hat{\gamma}_{2n} = \gamma_{2n}$.
- For the symmetric Bernoulli measure $\nu = \frac{1}{2} \delta_1 + \frac{1}{2} \delta_{-1}$, consider

$$\mu =
u \otimes
u = rac{1}{4} \left(\delta_{(1,1)} + \delta_{(1,-1)} + \delta_{(-1,1)} + \delta_{(-1,-1)}
ight),$$

i.e. Bernoulli measure on the discrete square $\{-1,1\} \times \{-1,1\}$. Then $\hat{\mu}$ is the normalized Lebesgue measure on the circle $\sqrt{2} S^1 \subset \mathbb{R}^2$ of radius $\sqrt{2}$.

Let ν be the normalized Lebegue measure on [−1, 1], let µ = ν ⊗ ν be the norm. Lebesgue measure on [−1, 1] × [−1, 1], thus with density w(x, y) = 1/4. Then µ̂ is supported on the disc x² + y² < 2, with density</p>

$$\widehat{w}(u,v) = \begin{cases} \frac{\pi}{4}, & \text{if } u^2 + v^2 \leq 1, \\ \arcsin\frac{1}{\sqrt{u^2 + v^2}} - \frac{\pi}{4}, & \text{if } 1 \leq u^2 + v^2 \leq 2, \\ 0, & \text{if } u^2 + v^2 \geq 2. \end{cases}$$

3 Outline

 Introduction: Gilles Pisier's approach to Poincaré type inequalities

② Generalizations to different measures

3 Application with isotropic measures

Application: spherically invariant measures

As a special choice of ψ in our result, we take $\psi(t) = |t|^2$ and we obtain

$$\int_{\mathbb{R}^n}\int_{\mathbb{R}^n}|f(y)-f(x)|^2\,d\mu(x,y)\leq \frac{\pi^2}{4}\int_{\mathbb{R}^n}\int_{\mathbb{R}^n}\langle \nabla f(u),v\rangle^2\,d\widehat{\mu}(u,v).$$

As a special choice of ψ in our result, we take $\psi(t) = |t|^2$ and we obtain

$$\int_{\mathbb{R}^n}\int_{\mathbb{R}^n}|f(y)-f(x)|^2\,d\mu(x,y)\leq \frac{\pi^2}{4}\int_{\mathbb{R}^n}\int_{\mathbb{R}^n}\langle \nabla f(u),v\rangle^2\,d\widehat{\mu}(u,v).$$

Our aim is to give conditions on μ , $\widehat{\mu}$ to simplify the RHS.

As a special choice of ψ in our result, we take $\psi(t) = |t|^2$ and we obtain

$$\int_{\mathbb{R}^n}\int_{\mathbb{R}^n}|f(y)-f(x)|^2\,d\mu(x,y)\leq \frac{\pi^2}{4}\int_{\mathbb{R}^n}\int_{\mathbb{R}^n}\langle \nabla f(u),v\rangle^2\,d\widehat{\mu}(u,v).$$

Our aim is to give conditions on μ , $\hat{\mu}$ to simplify the RHS. If ν is a finite Borel positive measure on $\mathbb{R}^n \times \mathbb{R}^n$, let π is the projection of ν on the first coordinate.

As a special choice of ψ in our result, we take $\psi(t) = |t|^2$ and we obtain

$$\int_{\mathbb{R}^n}\int_{\mathbb{R}^n}|f(y)-f(x)|^2\,d\mu(x,y)\leq \frac{\pi^2}{4}\int_{\mathbb{R}^n}\int_{\mathbb{R}^n}\langle \nabla f(u),v\rangle^2\,d\widehat{\mu}(u,v).$$

Our aim is to give conditions on μ , $\hat{\mu}$ to simplify the RHS. If ν is a finite Borel positive measure on $\mathbb{R}^n \times \mathbb{R}^n$, let π is the projection of ν on the first coordinate. By the disintegration theorem there is a (unique) family of finite measures ν_u defined fo π -almost all u, such that each ν_u is supported on $\{u\} \times \mathbb{R}^n$ and

$$\nu=\int_{\mathbb{R}^n}\nu_u\,d\pi(u),$$

As a special choice of ψ in our result, we take $\psi(t) = |t|^2$ and we obtain

$$\int_{\mathbb{R}^n}\int_{\mathbb{R}^n}|f(y)-f(x)|^2\,d\mu(x,y)\leq \frac{\pi^2}{4}\int_{\mathbb{R}^n}\int_{\mathbb{R}^n}\langle \nabla f(u),v\rangle^2\,d\widehat{\mu}(u,v).$$

Our aim is to give conditions on μ , $\hat{\mu}$ to simplify the RHS. If ν is a finite Borel positive measure on $\mathbb{R}^n \times \mathbb{R}^n$, let π is the projection of ν on the first coordinate. By the disintegration theorem there is a (unique) family of finite measures ν_u defined fo π -almost all u, such that each ν_u is supported on $\{u\} \times \mathbb{R}^n$ and

$$\nu=\int_{\mathbb{R}^n}\nu_u\,d\pi(u),$$

that is for each nonnegative measurable function g(u, v) on $\mathbb{R}^n \times \mathbb{R}^n$

$$\int_{\mathbb{R}^n}\int_{\mathbb{R}^n}g(u,v)\,d\nu(u,v)=\int_{\mathbb{R}^n}\left[\int_{\mathbb{R}^n}g(u,v)\,d\nu_u(v)\right]d\pi(u).$$

Thus

$$\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \langle \nabla f(u), v \rangle^2 \, d\widehat{\mu}(u, v) = \int_{\mathbb{R}^n} \underbrace{\left[\int_{\mathbb{R}^n} \langle \nabla f(u), v \rangle^2 \, d\widehat{\mu}_u(v) \right]}_{d\widehat{\pi}(u).$$

how to simplify this?

Thus

$$\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \langle \nabla f(u), v \rangle^2 \, d\widehat{\mu}(u, v) = \int_{\mathbb{R}^n} \underbrace{\left[\int_{\mathbb{R}^n} \langle \nabla f(u), v \rangle^2 \, d\widehat{\mu}_u(v) \right]}_{d\widehat{\pi}(u).$$

how to simplify this?

Definition

A finite measure ν on $\mathbb{R}^n \times \mathbb{R}^n$ is *isotropic* along the first coordinate, if π -almost all conditional measures ν_u are isotropic on \mathbb{R}^n , i.e.

$$\int_{\mathbb{R}^n} \langle \theta, v \rangle^2 \, d\nu_u(v) = \sigma^2(u) |\theta|^2 \quad (\theta \in \mathbb{R}^n)$$

with some finite $\sigma^2(u)$, which we call the isotropic function of ν along the first coordinate.

Thus if we assume $\hat{\mu}$ isotropic along the first coordinate we have

$$\begin{split} \int_{\mathbb{R}^n \times \mathbb{R}^n} \left\langle \nabla f(u), v \right\rangle^2 \, d\widehat{\mu}(u, v) &= \int_{\mathbb{R}^n} \left[\int_{\mathbb{R}^n} \left\langle \nabla f(u), v \right\rangle^2 \, d\widehat{\mu}_u(v) \right] \, d\pi(u) \\ &= \int_{\mathbb{R}^n} \widehat{\sigma}^2(u) \, |\nabla f(u)|^2 \, d\pi(u), \end{split}$$

Thus if we assume $\hat{\mu}$ isotropic along the first coordinate we have

$$\begin{split} \int_{\mathbb{R}^n \times \mathbb{R}^n} \left\langle \nabla f(u), v \right\rangle^2 \, d\widehat{\mu}(u, v) &= \int_{\mathbb{R}^n} \left[\int_{\mathbb{R}^n} \left\langle \nabla f(u), v \right\rangle^2 \, d\widehat{\mu}_u(v) \right] \, d\pi(u) \\ &= \int_{\mathbb{R}^n} \widehat{\sigma}^2(u) \, |\nabla f(u)|^2 \, d\pi(u), \end{split}$$

therefore we have a weighted Poincaré inequality

$$\int_{\mathbb{R}^n\times\mathbb{R}^n}|f(y)-f(x)|^2\,d\mu(x,y)\leq \left(\frac{\pi}{2}\right)^2\int_{\mathbb{R}^n}\widehat{\sigma}^2(u)\,|\nabla f(u)|^2\,d\pi(u).$$

4 Outline

 Introduction: Gilles Pisier's approach to Poincaré type inequalities

② Generalizations to different measures

Application with isotropic measures

Application: spherically invariant measures

Now we will deal with spherically invariant measure μ . Then we have $\hat{\mu} = \mu$ and the main inequality becomes

Now we will deal with spherically invariant measure $\mu.$ Then we have $\widehat{\mu}=\mu$ and the main inequality becomes

$$\int_{\mathbb{R}^n\times\mathbb{R}^n}\Psi(f(y)-f(x))\,d\mu(x,y)\leq \int_{\mathbb{R}^n\times\mathbb{R}^n}\Psi\Big(\frac{\pi}{2}\left\langle \nabla f(x),y\right\rangle\Big)\,d\mu(x,y).$$

Now we will deal with spherically invariant measure $\mu.$ Then we have $\widehat{\mu}=\mu$ and the main inequality becomes

$$\int_{\mathbb{R}^n\times\mathbb{R}^n}\Psi(f(y)-f(x))\,d\mu(x,y)\leq\int_{\mathbb{R}^n\times\mathbb{R}^n}\Psi\Big(\frac{\pi}{2}\left\langle \nabla f(x),y\right\rangle\Big)\,d\mu(x,y).$$

We take $\psi(t) = t^2$ and $\mu = \sigma_{2n-1}$ the uniform distribution on the sphere

$$S^{2n-1} = \{(x, y) \in \mathbb{R}^n \times \mathbb{R}^n : |x|^2 + |y|^2 = 1\}.$$

We want to evaluate the conditional measures μ_x of σ_{2n-1} for $x \in B_1(0)$.

Now we will deal with spherically invariant measure $\mu.$ Then we have $\widehat{\mu}=\mu$ and the main inequality becomes

$$\int_{\mathbb{R}^n\times\mathbb{R}^n}\Psi(f(y)-f(x))\,d\mu(x,y)\leq\int_{\mathbb{R}^n\times\mathbb{R}^n}\Psi\Big(\frac{\pi}{2}\left\langle \nabla f(x),y\right\rangle\Big)\,d\mu(x,y).$$

We take $\psi(t)=t^2$ and $\mu=\sigma_{2n-1}$ the uniform distribution on the sphere

$$S^{2n-1} = \{(x, y) \in \mathbb{R}^n \times \mathbb{R}^n : |x|^2 + |y|^2 = 1\}.$$

We want to evaluate the conditional measures μ_x of σ_{2n-1} for $x \in B_1(0)$. Each section of S^{2n-1} is

$$S_x^{2n-1} = \sqrt{1-|x|^2} S^{n-1}$$
 ($x \in \mathbb{R}^n, |x| < 1$)

i.e. the sphere in \mathbb{R}^n of radius $\sqrt{1-|x|^2}$

Now we will deal with spherically invariant measure $\mu.$ Then we have $\widehat{\mu}=\mu$ and the main inequality becomes

$$\int_{\mathbb{R}^n\times\mathbb{R}^n}\Psi(f(y)-f(x))\,d\mu(x,y)\leq\int_{\mathbb{R}^n\times\mathbb{R}^n}\Psi\Big(\frac{\pi}{2}\left\langle \nabla f(x),y\right\rangle\Big)\,d\mu(x,y).$$

We take $\psi(t) = t^2$ and $\mu = \sigma_{2n-1}$ the uniform distribution on the sphere

$$S^{2n-1} = \{(x, y) \in \mathbb{R}^n \times \mathbb{R}^n : |x|^2 + |y|^2 = 1\}.$$

We want to evaluate the conditional measures μ_x of σ_{2n-1} for $x \in B_1(0)$. Each section of S^{2n-1} is

$$S_x^{2n-1} = \sqrt{1-|x|^2} \ S^{n-1} \quad (x \in \mathbb{R}^n, \ |x| < 1)$$

i.e. the sphere in \mathbb{R}^n of radius $\sqrt{1-|x|^2}$ thus the measure μ_x is the uniform distribution on such sphere.

Notice that for $\psi(t) = t^2$ we have

$$\int_{S^{2n-1}} |f(y) - f(x)|^2 \, d\sigma_{2n-1}(x,y) \leq \frac{\pi^2}{4} \int_{B_1(0)} \sigma^2(x) \, |\nabla f(x)|^2 \, d\pi(x).$$

Notice that for $\psi(t) = t^2$ we have

$$\int_{S^{2n-1}} |f(y) - f(x)|^2 \, d\sigma_{2n-1}(x,y) \leq \frac{\pi^2}{4} \int_{B_1(0)} \sigma^2(x) \, |\nabla f(x)|^2 \, d\pi(x).$$

Since μ_{χ} is isotropic we can use

$$\int_{S_x^{2n-1}} \langle \theta, y \rangle^2 \ d\mu_x(y) = \sigma^2(x) |\theta|^2 \quad (\theta \in \mathbb{R}^n)$$

to find $\sigma^2(x)$:

$$\sigma^2(x) = rac{1}{n} \int_{S^{2n-1}_x} |y|^2 d
u_x(y) = rac{1-|x|^2}{n}, \quad |x| < 1.$$

Notice that for $\psi(t) = t^2$ we have

$$\int_{S^{2n-1}} |f(y) - f(x)|^2 \, d\sigma_{2n-1}(x,y) \leq \frac{\pi^2}{4} \int_{B_1(0)} \sigma^2(x) \, |\nabla f(x)|^2 \, d\pi(x).$$

Since μ_{χ} is isotropic we can use

$$\int_{S_{x}^{2n-1}} \left\langle heta, y
ight
angle^{2} \ d\mu_{x}(y) = \sigma^{2}(x) | heta|^{2} \quad (heta \in \mathbb{R}^{n})$$

to find $\sigma^2(x)$:

$$\sigma^2(x) = rac{1}{n} \int_{S^{2n-1}_x} |y|^2 d
u_x(y) = rac{1-|x|^2}{n}, \quad |x| < 1.$$

So we have to find the marginal measure $d\pi(x)$.

17

Notice that for $\psi(t) = t^2$ we have

$$\int_{S^{2n-1}} |f(y) - f(x)|^2 \, d\sigma_{2n-1}(x,y) \leq \frac{\pi^2}{4} \int_{B_1(0)} \sigma^2(x) \, |\nabla f(x)|^2 \, d\pi(x).$$

Since μ_x is isotropic we can use

$$\int_{S_x^{2n-1}} \langle \theta, y \rangle^2 \ d\mu_x(y) = \sigma^2(x) |\theta|^2 \quad (\theta \in \mathbb{R}^n)$$

to find $\sigma^2(x)$:

$$\sigma^2(x) = rac{1}{n} \int_{S^{2n-1}_x} |y|^2 d
u_x(y) = rac{1-|x|^2}{n}, \quad |x| < 1.$$

So we have to find the marginal measure $d\pi(x)$. An explicit computation gives

$$d\pi(x) = rac{\Gamma(n)}{\pi^{rac{n}{2}} \Gamma(rac{n}{2})} \left(1 - |x|^2\right)^{rac{n}{2} - 1} dx, \quad |x| < 1.$$

Corollary (S. G. Bobkov, B.V., 2024)

For any smooth function f on \mathbb{R}^n ,

$$\int_{S^{2n-1}} |f(x) - f(y)|^2 \, d\sigma_{2n-1}(x,y) \, \leq \, \frac{\pi^2}{4n} \int_{B_1(0)} |\nabla f(x)|^2 \, (1-|x|^2) \, d\pi(x).$$

Corollary (S. G. Bobkov, B.V., 2024)

For any smooth function f on \mathbb{R}^n ,

$$\int_{S^{2n-1}} |f(x) - f(y)|^2 \, d\sigma_{2n-1}(x,y) \, \leq \, \frac{\pi^2}{4n} \int_{B_1(0)} |\nabla f(x)|^2 \, (1-|x|^2) \, d\pi(x).$$

This inequality is quite similar to this Poincaré inequality

$$\int_{|x|<1}\int_{|y|<1}|f(x)-f(y)|^2\,d\pi(x)\,d\pi(y)\,\leq\,\frac{c}{n}\int_{|u|<1}|\nabla f(u)|^2\,d\pi(u),$$

which is derived for more general measures $\boldsymbol{\pi}$ in

S. G. Bobkov, Spectral gap and concentration for some spherically symmetric probability measures. Geometric aspects of functional analysis, 2003

Corollary (S. G. Bobkov, B.V., 2024)

For any smooth function f on \mathbb{R}^n ,

$$\int_{S^{2n-1}} |f(x) - f(y)|^2 \, d\sigma_{2n-1}(x,y) \, \leq \, \frac{\pi^2}{4n} \int_{B_1(0)} |\nabla f(x)|^2 \, (1 - |x|^2) \, d\pi(x).$$

If $|\nabla f| \leq 1$, we have

$$\int_{S^{2n-1}} |f(x) - f(y)|^2 \, d\sigma_{2n-1}(x,y) \, \leq \, \frac{\pi^2}{8n}$$

4 The case of Cauchy measures

The *n*-dimensional probability Cauchy measure $\mathfrak{m}_{n,\alpha}$ on \mathbb{R}^n of order $\alpha > \frac{n}{2}$ has density

$$w_{n,\alpha}(x)=rac{1}{c_{n,\alpha}}\,(1+|x|^2)^{-lpha},\quad x\in\,\mathbb{R}^n,$$

where

$$c_{n,\alpha}=\frac{\Gamma(\alpha-\frac{n}{2})\Gamma(\frac{n}{2})}{\Gamma(\alpha)}=\pi^{\frac{n}{2}}\frac{\Gamma(\alpha-\frac{n}{2})}{\Gamma(\alpha)}.$$

is a normalizing constant.

4 The case of Cauchy measures

The *n*-dimensional probability Cauchy measure $\mathfrak{m}_{n,\alpha}$ on \mathbb{R}^n of order $\alpha > \frac{n}{2}$ has density

$$w_{n,\alpha}(x)=rac{1}{c_{n,\alpha}}\,(1+|x|^2)^{-lpha},\quad x\in\,\mathbb{R}^n,$$

where

$$c_{n,\alpha} = \frac{\Gamma(\alpha - \frac{n}{2})\Gamma(\frac{n}{2})}{\Gamma(\alpha)} = \pi^{\frac{n}{2}} \frac{\Gamma(\alpha - \frac{n}{2})}{\Gamma(\alpha)}$$

is a normalizing constant. Observe that the image $\widetilde{\mathfrak{m}}_{n,\alpha}$ through the map $x\to\sqrt{\alpha}x$ has density

$$\widetilde{w}_{n,lpha}(x)=(2lpha)^{-n/2}\,w_{n,lpha}\Big(rac{1}{\sqrt{2lpha}}\,x\Big)=rac{1}{c_{n,lpha}'(1+rac{1}{2lpha}\,|x|^2)^{lpha}},\quad x\in\mathbb{R}^n,$$

4 The case of Cauchy measures

The *n*-dimensional probability Cauchy measure $\mathfrak{m}_{n,\alpha}$ on \mathbb{R}^n of order $\alpha > \frac{n}{2}$ has density

$$w_{n,\alpha}(x)=rac{1}{c_{n,\alpha}}\,(1+|x|^2)^{-lpha},\quad x\in\,\mathbb{R}^n,$$

where

$$c_{n,\alpha} = \frac{\Gamma(\alpha - \frac{n}{2})\Gamma(\frac{n}{2})}{\Gamma(\alpha)} = \pi^{\frac{n}{2}} \frac{\Gamma(\alpha - \frac{n}{2})}{\Gamma(\alpha)}$$

is a normalizing constant. Observe that the image $\widetilde{\mathfrak{m}}_{n,\alpha}$ through the map $x\to\sqrt{\alpha}x$ has density

$$\widetilde{w}_{n,lpha}(x)=(2lpha)^{-n/2}\,w_{n,lpha}\Big(rac{1}{\sqrt{2lpha}}\,x\Big)=rac{1}{c_{n,lpha}'(1+rac{1}{2lpha}\,|x|^2)^{lpha}},\quad x\in\mathbb{R}^n,$$

thus

$$\widetilde{w}_{n,lpha}(x) o (2\pi)^{-n/2} e^{-|x|^2/2} \quad ext{as} \quad lpha o \infty, \ \widetilde{\mathfrak{m}}_{n,lpha} o \gamma_n \quad ext{as} \quad lpha o \infty:$$

the class of Cauchy measures might serve as pre-Gaussian model.

The following inequality is well-known

$$\int_{\mathbb{R}^n} \left| f - \int_{\mathbb{R}^n} f \, d\mathfrak{m}_{n,\alpha} \right|^2 d\mathfrak{m}_{n,\alpha} \leq c \int_{\mathbb{R}^n} |\nabla f|^2 \left(1 + |x|^2 \right) d\mathfrak{m}_{n,\alpha},$$

where the value of the best constant $c = c(\alpha, n)$ is known for any $\alpha > n/2$.

The following inequality is well-known

$$\int_{\mathbb{R}^n} \left| f - \int_{\mathbb{R}^n} f \, d\mathfrak{m}_{n,\alpha} \right|^2 d\mathfrak{m}_{n,\alpha} \, \leq \, c \int_{\mathbb{R}^n} |\nabla f|^2 \left(1 + |x|^2 \right) d\mathfrak{m}_{n,\alpha},$$

where the value of the best constant $c = c(\alpha, n)$ is known for any $\alpha > n/2$. Such Poincaré inequality are fundamental in the study of the rates of convergence for the solutions to the *fast diffusion equation*

$$u_t = \Delta u^m, \quad m \in (0,1):$$

one of the main connection is due to the form of the self-similar profile

$$V(x) = (1 + |x|^2)^{-rac{1}{1-m}}, \quad lpha := rac{1}{1-m}.$$

The following inequality is well-known

$$\int_{\mathbb{R}^n} \left| f - \int_{\mathbb{R}^n} f \, d\mathfrak{m}_{n,\alpha} \right|^2 d\mathfrak{m}_{n,\alpha} \, \leq \, c \int_{\mathbb{R}^n} |\nabla f|^2 \left(1 + |x|^2 \right) d\mathfrak{m}_{n,\alpha},$$

where the value of the best constant $c = c(\alpha, n)$ is known for any $\alpha > n/2$. Such Poincaré inequality are fundamental in the study of the rates of convergence for the solutions to the *fast diffusion equation*

$$u_t = \Delta u^m, \quad m \in (0,1):$$

one of the main connection is due to the form of the self-similar profile

$$V(x) = (1 + |x|^2)^{-rac{1}{1-m}}, \quad lpha := rac{1}{1-m}.$$

Some references:

A. Blanchet, M. Bonforte, J. Dolbeault, G. Grillo and J. L. Vázquez, ARMA-PNAS, 2009

S.G. Bobkov and M. Ledoux, Ann. Prob., 2009

We consider the 2*n*-dimensional Cauchy measures $\mathfrak{m}_{2n,\alpha}$ on $\mathbb{R}^n \times \mathbb{R}^n$, having the densities

$$w_{2n,lpha}(x,y) = rac{1}{c_{2n,lpha}} \left(1 + |x|^2 + |y|^2
ight)^{-lpha}, \quad x,y \in \mathbb{R}^n,$$
 (1)

where $\alpha > n$. We wish to apply the inequality

We consider the 2*n*-dimensional Cauchy measures $\mathfrak{m}_{2n,\alpha}$ on $\mathbb{R}^n \times \mathbb{R}^n$, having the densities

$$w_{2n,\alpha}(x,y) = \frac{1}{c_{2n,\alpha}} \left(1 + |x|^2 + |y|^2 \right)^{-\alpha}, \quad x,y \in \mathbb{R}^n,$$
(1)

where $\alpha > n$. We wish to apply the inequality

$$\int_{\mathbb{R}^n\times\mathbb{R}^n}\Psi(f(y)-f(x))\,d\mu(x,y)\leq\int_{\mathbb{R}^n\times\mathbb{R}^n}\Psi\Big(\frac{\pi}{2}\,\langle\nabla f(x),y\rangle\,\Big)\,d\mu(x,y).$$

We consider the 2*n*-dimensional Cauchy measures $\mathfrak{m}_{2n,\alpha}$ on $\mathbb{R}^n \times \mathbb{R}^n$, having the densities

$$w_{2n,\alpha}(x,y) = \frac{1}{c_{2n,\alpha}} \left(1 + |x|^2 + |y|^2 \right)^{-\alpha}, \quad x,y \in \mathbb{R}^n,$$
(1)

where $\alpha > n$. We wish to apply the inequality

$$\int_{\mathbb{R}^n\times\mathbb{R}^n}\Psi(f(y)-f(x))\,d\mu(x,y)\leq \int_{\mathbb{R}^n\times\mathbb{R}^n}\Psi\Big(\frac{\pi}{2}\left\langle \nabla f(x),y\right\rangle\Big)\,d\mu(x,y).$$

with the choice $\psi(t) = |t|^{
ho}$ namely

We consider the 2*n*-dimensional Cauchy measures $\mathfrak{m}_{2n,\alpha}$ on $\mathbb{R}^n \times \mathbb{R}^n$, having the densities

$$w_{2n,\alpha}(x,y) = \frac{1}{c_{2n,\alpha}} \left(1 + |x|^2 + |y|^2 \right)^{-\alpha}, \quad x,y \in \mathbb{R}^n,$$
(1)

where $\alpha > n$. We wish to apply the inequality

$$\int_{\mathbb{R}^n\times\mathbb{R}^n}\Psi(f(y)-f(x))\,d\mu(x,y)\leq\int_{\mathbb{R}^n\times\mathbb{R}^n}\Psi\Big(\frac{\pi}{2}\,\langle\nabla f(x),y\rangle\,\Big)\,d\mu(x,y).$$

with the choice $\psi(t) = |t|^{
ho}$ namely

$$\int_{\mathbb{R}^n\times\mathbb{R}^n}|f(y)-f(x)|^p\,d\mathfrak{m}_{2n,\alpha}(x,y)\leq \left(\frac{\pi}{2}\right)^p\int_{\mathbb{R}^n\times\mathbb{R}^n}|\left\langle \nabla f(x),y\right\rangle|^p\,d\mathfrak{m}_{2n,\alpha}(x,y).$$

We consider the 2*n*-dimensional Cauchy measures $\mathfrak{m}_{2n,\alpha}$ on $\mathbb{R}^n \times \mathbb{R}^n$, having the densities

$$w_{2n,\alpha}(x,y) = \frac{1}{c_{2n,\alpha}} \left(1 + |x|^2 + |y|^2 \right)^{-\alpha}, \quad x,y \in \mathbb{R}^n,$$
(1)

where $\alpha > n$. We wish to apply the inequality

$$\int_{\mathbb{R}^n\times\mathbb{R}^n}\Psi(f(y)-f(x))\,d\mu(x,y)\leq\int_{\mathbb{R}^n\times\mathbb{R}^n}\Psi\Big(\frac{\pi}{2}\,\langle\nabla f(x),y\rangle\,\Big)\,d\mu(x,y).$$

with the choice $\psi(t) = |t|^{
ho}$ namely

$$\int_{\mathbb{R}^n\times\mathbb{R}^n}|f(y)-f(x)|^p\,d\mathfrak{m}_{2n,\alpha}(x,y)\leq \left(\frac{\pi}{2}\right)^p\int_{\mathbb{R}^n\times\mathbb{R}^n}|\left\langle \nabla f(x),y\right\rangle|^p\,d\mathfrak{m}_{2n,\alpha}(x,y).$$

Let us try to simplify the RHS.

$$\int_{\mathbb{R}^n\times\mathbb{R}^n}|\left\langle \nabla f(x),y\right\rangle|^p\,d\mathfrak{m}_{2n,\alpha}(x,y)=\frac{1}{c_{2n,\alpha}}\int_{\mathbb{R}^n}I_p(x,\nabla f(x))\,dx,$$

$$\int_{\mathbb{R}^n \times \mathbb{R}^n} |\langle \nabla f(x), y \rangle|^p d\mathfrak{m}_{2n,\alpha}(x, y) = \frac{1}{c_{2n,\alpha}} \int_{\mathbb{R}^n} I_p(x, \nabla f(x)) dx,$$

where, for $v \in \mathbb{R}^n$, $v = |v|\theta$,

$$I_p(x,v) = \int_{\mathbb{R}^n} \frac{|\langle v,y\rangle|^p}{(1+|x|^2+|y|^2)^{\alpha}} \, dy = |v|^p \underbrace{\int_{\mathbb{R}^n} \frac{|\langle \theta,y\rangle|^p}{(1+|x|^2+|y|^2)^{\alpha}} \, dy}_{I_p(x,\theta)}.$$

$$\int_{\mathbb{R}^n \times \mathbb{R}^n} |\langle \nabla f(x), y \rangle|^p d\mathfrak{m}_{2n,\alpha}(x, y) = \frac{1}{c_{2n,\alpha}} \int_{\mathbb{R}^n} I_p(x, \nabla f(x)) dx,$$

where, for $v \in \mathbb{R}^n$, $v = |v|\theta$,

$$I_p(x,v) = \int_{\mathbb{R}^n} \frac{|\langle v,y\rangle|^p}{(1+|x|^2+|y|^2)^{\alpha}} \, dy = |v|^p \underbrace{\int_{\mathbb{R}^n} \frac{|\langle \theta,y\rangle|^p}{(1+|x|^2+|y|^2)^{\alpha}} \, dy}_{I_p(x,\theta)}.$$

But $I_p(x, \theta)$ does not depend on θ thus

$$\int_{\mathbb{R}^n \times \mathbb{R}^n} |\langle \nabla f(x), y \rangle|^p d\mathfrak{m}_{2n,\alpha}(x, y) = \frac{1}{c_{2n,\alpha}} \int_{\mathbb{R}^n} \int_{\rho} (x, \nabla f(x)) dx,$$

where, for $v \in \mathbb{R}^n$, $v = |v|\theta$,

$$I_{\rho}(x,v) = \int_{\mathbb{R}^n} \frac{|\langle v,y\rangle|^{\rho}}{(1+|x|^2+|y|^2)^{\alpha}} \, dy = |v|^{\rho} \underbrace{\int_{\mathbb{R}^n} \frac{|\langle \theta,y\rangle|^{\rho}}{(1+|x|^2+|y|^2)^{\alpha}} \, dy}_{I_{\rho}(x,\theta)}.$$

But $I_p(x, \theta)$ does not depend on θ thus

$$I_p(x, heta) = \mathbb{E}_{ heta} I_p(x, heta) = \int_{\mathbb{R}^n} rac{\mathbb{E}_{ heta} |\langle heta, y
angle|^p}{(1+|x|^2+|y|^2)^lpha} \, dy;$$

now

$$\mathbb{E}_{\theta}|\langle \theta, y \rangle|^{p} = |y|^{p}G(n,p)$$

for some constant G(n, p) :

$$\int_{\mathbb{R}^n \times \mathbb{R}^n} |\langle \nabla f(x), y \rangle|^p d\mathfrak{m}_{2n,\alpha}(x, y) = \frac{1}{c_{2n,\alpha}} \int_{\mathbb{R}^n} \int_{\rho} (x, \nabla f(x)) dx,$$

where, for $v \in \mathbb{R}^n$, $v = |v|\theta$,

$$I_{\rho}(x,v) = \int_{\mathbb{R}^n} \frac{|\langle v,y\rangle|^{\rho}}{(1+|x|^2+|y|^2)^{\alpha}} \, dy = |v|^{\rho} \underbrace{\int_{\mathbb{R}^n} \frac{|\langle \theta,y\rangle|^{\rho}}{(1+|x|^2+|y|^2)^{\alpha}} \, dy}_{I_{\rho}(x,\theta)}.$$

But $I_p(x,\theta)$ does not depend on θ thus

$$I_{\rho}(x, heta) = \mathbb{E}_{ heta} I_{
ho}(x, heta) = \int_{\mathbb{R}^n} rac{\mathbb{E}_{ heta} |\langle heta, y
angle |^{
ho}}{(1+|x|^2+|y|^2)^{lpha}} \, dy;$$

now

$$\mathbb{E}_{ heta} |raket{ heta, y}|^{p} = |y|^{p} G(n,p)$$

for some constant G(n,p) :taking $y = e_1$ we have $G(n,p) = \mathbb{E}_{\theta} |\theta_1|^{P_{\text{POLITECNICC}}}$

One can show that

$$G(n,p)=\frac{\Gamma(\frac{n}{2})\Gamma(\frac{p+1}{2})}{\Gamma(\frac{n+p}{2})}.$$

One can show that

$$G(n,p) = \frac{\Gamma(\frac{n}{2})\Gamma(\frac{p+1}{2})}{\Gamma(\frac{n+p}{2})}.$$

Therefore

$$\begin{split} I_p(x,v) &= \int_{\mathbb{R}^n} \frac{|\langle v,y\rangle|^p}{(1+|x|^2+|y|^2)^{\alpha}} \, dy = G(n,p) |v|^p \int_{\mathbb{R}^n} \frac{|y|^p}{(1+|x|^2+|y|^2)^{\alpha}} \, dy \\ &= \frac{G(n,p)}{(1+|x|^2)^{\alpha-\frac{n+p}{2}}} \, |v|^p \int_{\mathbb{R}^n} \frac{|z|^p}{(1+|z|^2)^{\alpha}} \, dz : \end{split}$$

this last integral is finite if and only if

$$\alpha > \frac{n+p}{2}.$$

One can show that

$$G(n,p) = \frac{\Gamma(\frac{n}{2})\Gamma(\frac{p+1}{2})}{\Gamma(\frac{n+p}{2})}.$$

Therefore

$$\begin{split} I_p(x,v) &= \int_{\mathbb{R}^n} \frac{|\langle v,y\rangle|^p}{(1+|x|^2+|y|^2)^{\alpha}} \, dy = G(n,p) |v|^p \int_{\mathbb{R}^n} \frac{|y|^p}{(1+|x|^2+|y|^2)^{\alpha}} \, dy \\ &= \frac{G(n,p)}{(1+|x|^2)^{\alpha-\frac{n+p}{2}}} \, |v|^p \int_{\mathbb{R}^n} \frac{|z|^p}{(1+|z|^2)^{\alpha}} \, dz : \end{split}$$

this last integral is finite if and only if

$$\alpha > \frac{n+p}{2}.$$

An explicit computation gives

24

An explicit computation gives

$$I_p(x,v) = A \left(1+|x|^2\right)^{-eta} |v|^p, \quad ext{where } eta = lpha - rac{n+p}{2},$$

and

$$A = G(n,p) \frac{n\omega_n}{2} B\left(\alpha - \frac{n+p}{2}, \frac{n+p}{2}\right)$$

An explicit computation gives

$$I_p(x,v) = A \left(1+|x|^2\right)^{-eta} |v|^p, \quad ext{where } eta = lpha - rac{n+p}{2},$$

and

$$A = G(n, p) \frac{n\omega_n}{2} B\left(\alpha - \frac{n+p}{2}, \frac{n+p}{2}\right).$$

Therefore:

$$\int_{\mathbb{R}^n \times \mathbb{R}^n} |\langle \nabla f(x), y \rangle|^p d\mathfrak{m}_{2n,\alpha}(x, y) = \frac{1}{c_{2n,\alpha}} \int_{\mathbb{R}^n} I_p(x, \nabla f(x)) dx$$
$$= \frac{1}{\sqrt{\pi}} \frac{\Gamma(\frac{p+1}{2})\Gamma(\alpha - \frac{2n+p}{2})}{\Gamma(\alpha - n)} \int_{\mathbb{R}^n} |\nabla f(x)\rangle|^p d\mathfrak{m}_{n,\beta} :$$

in order to have $\mathfrak{m}_{n,\beta}$ well defined we must impose

$$\beta = \alpha - \frac{n+p}{2} > \frac{n}{2}$$

Theorem (S.G. Bobkov, B.V, 2024)
Let
$$\alpha > n + \frac{1}{2}$$
 and $1 \le p < 2(\alpha - n)$. For any smooth function f on \mathbb{R}^n ,

$$\int_{\mathbb{R}^n \times \mathbb{R}^n} |f(x) - f(y)|^p d\mathfrak{m}_{2n,\alpha}(x, y) \le C\left(\frac{\pi}{2}\right)^p \int_{\mathbb{R}^n} |\nabla f(x)|^p d\mathfrak{m}_{n,\beta}(x),$$
where $\beta = \alpha - \frac{n+p}{2}$, where

$$C = \frac{1}{\sqrt{\pi}} \frac{\Gamma(\frac{p+1}{2})\Gamma(\alpha - n - \frac{p}{2})}{\Gamma(\alpha - n)}.$$

Theorem (S.G. Bobkov, B.V, 2024)
Let
$$\alpha > n + \frac{1}{2}$$
 and $1 \le p < 2(\alpha - n)$. For any smooth function f on \mathbb{R}^n ,

$$\int_{\mathbb{R}^n \times \mathbb{R}^n} |f(x) - f(y)|^p d\mathfrak{m}_{2n,\alpha}(x, y) \le C\left(\frac{\pi}{2}\right)^p \int_{\mathbb{R}^n} |\nabla f(x)|^p d\mathfrak{m}_{n,\beta}(x),$$
where $\beta = \alpha - \frac{n+p}{2}$, where
$$C = \frac{1}{2} \frac{\Gamma(\frac{p+1}{2})\Gamma(\alpha - n - \frac{p}{2})}{\Gamma(\alpha - n - \frac{p}{2})}$$

 $C = \sqrt{\pi} \qquad \Gamma(\alpha - n)$

If we use the scaling $\tilde{f}(x) := f(\sqrt{\alpha} x)$ $\int_{\mathbb{R}^n \times \mathbb{R}^n} |f(x) - f(y)|^p d\tilde{\mathfrak{m}}_{2n,\alpha}(x,y) \leq C (2\alpha)^{\frac{p}{2}} \left(\frac{\pi}{2}\right)^p \int_{\mathbb{R}^n} |\nabla f|^p d\tilde{\mathfrak{m}}_{n,\beta}:$ letting $\alpha \to \infty$ we find

POLITECNICO MILANO 1863

Theorem (S.G. Bobkov, B.V, 2024)
Let
$$\alpha > n + \frac{1}{2}$$
 and $1 \le p < 2(\alpha - n)$. For any smooth function f on \mathbb{R}^n ,

$$\int_{\mathbb{R}^n \times \mathbb{R}^n} |f(x) - f(y)|^p d\mathfrak{m}_{2n,\alpha}(x, y) \le C\left(\frac{\pi}{2}\right)^p \int_{\mathbb{R}^n} |\nabla f(x)|^p d\mathfrak{m}_{n,\beta}(x),$$
where $\beta = \alpha - \frac{n+p}{2}$, where

$$C = \frac{1}{\sqrt{\pi}} \frac{\Gamma(\frac{p+1}{2})\Gamma(\alpha - n - \frac{p}{2})}{\Gamma(\alpha - n)}.$$

$$\int_{\mathbb{R}^n}\int_{\mathbb{R}^n}|f(x)-f(y)|^p\,d\gamma_n(x)\,d\gamma_n(x)\,\leq\,\left(\frac{\pi}{2}\right)^p\,\frac{2^{\frac{p}{2}}}{\sqrt{\pi}}\,\Gamma\left(\frac{p+1}{2}\right)\int_{\mathbb{R}^n}|\nabla f|^p\,d\gamma_n.$$

POLITECNICO MILANO 1863

Writing the inequality for p = 1 we have for $\alpha > n + \frac{1}{2}$ and $\beta = \alpha - \frac{n+1}{2}$, for any smooth function f on \mathbb{R}^n ,

$$\int_{\mathbb{R}^n \times \mathbb{R}^n} |f(x) - f(y)| \, d\mathfrak{m}_{2n,\alpha}(x,y) \leq \frac{\sqrt{\pi}}{2} \, \frac{\Gamma(\alpha - n - \frac{1}{2})}{\Gamma(\alpha - n)} \int_{\mathbb{R}^n} |\nabla f| \, d\mathfrak{m}_{n,\beta}.$$
(2)

26

Writing the inequality for p = 1 we have for $\alpha > n + \frac{1}{2}$ and $\beta = \alpha - \frac{n+1}{2}$, for any smooth function f on \mathbb{R}^n ,

$$\int_{\mathbb{R}^n \times \mathbb{R}^n} |f(x) - f(y)| \, d\mathfrak{m}_{2n,\alpha}(x,y) \leq \frac{\sqrt{\pi}}{2} \, \frac{\Gamma(\alpha - n - \frac{1}{2})}{\Gamma(\alpha - n)} \int_{\mathbb{R}^n} |\nabla f| \, d\mathfrak{m}_{n,\beta}.$$
(2)

Scaling and passing to the limit in (2) gives the L^1 -Poncaré

$$\int_{\mathbb{R}^n}\int_{\mathbb{R}^n}|f(x)-f(y)|\,d\gamma_n(x)\,d\gamma_n(y)\,\leq\,\underbrace{\sqrt{\frac{\pi}{2}}}_{c_1}\int_{\mathbb{R}^n}|\nabla f|\,d\gamma_n.$$

$$\gamma_n^+(\partial A) \geq 2c_1^{-1}\gamma_n(A)(1-\gamma_n(A))$$

26

Let $\alpha \geq n+1$, we have the following

$$\int_{\mathbb{R}^n\times\mathbb{R}^n} |f(x)-f(y)| \, d\mathfrak{m}_{2n,\alpha}(x,y) \leq \sqrt{\pi} \, \frac{1}{\sqrt{\alpha-n}} \int_{\mathbb{R}^n} |\nabla f| \, d\mathfrak{m}_{n,\beta}.$$

Let $\alpha \ge n+1$, we have the following $\int_{\mathbb{R}^n \times \mathbb{R}^n} |f(x) - f(y)| \, d\mathfrak{m}_{2n,\alpha}(x,y) \le \sqrt{\pi} \, \frac{1}{\sqrt{\alpha - n}} \int_{\mathbb{R}^n} |\nabla f| \, d\mathfrak{m}_{n,\beta}.$

It is possible to see that this implies (in fact it is equivalent) to the isoperimetric inequality

Let $\alpha \ge n+1$, we have the following $\int_{\mathbb{R}^n \times \mathbb{R}^n} |f(x) - f(y)| d\mathfrak{m}_{2n,\alpha}(x,y) \le \sqrt{\pi} \frac{1}{\sqrt{\alpha - n}} \int_{\mathbb{R}^n} |\nabla f| d\mathfrak{m}_{n,\beta}.$

It is possible to see that this implies (in fact it is equivalent) to the isoperimetric inequality

$$\mathfrak{m}^+_{n,eta}(\partial A) \geq rac{2\sqrt{lpha-n}}{\sqrt{\pi}}\,\mathfrak{m}_{2n,lpha}(A imes A^c).$$

valid for any closed set A in \mathbb{R}^n .

Let $\alpha \ge n+1$, we have the following $\int_{\mathbb{R}^n \times \mathbb{R}^n} |f(x) - f(y)| \, d\mathfrak{m}_{2n,\alpha}(x,y) \le \sqrt{\pi} \, \frac{1}{\sqrt{\alpha - n}} \int_{\mathbb{R}^n} |\nabla f| \, d\mathfrak{m}_{n,\beta}.$

It is possible to see that this implies (in fact it is equivalent) to the isoperimetric inequality

$$\mathfrak{m}^+_{n,eta}(\partial A) \geq rac{2\sqrt{lpha-n}}{\sqrt{\pi}}\,\mathfrak{m}_{2n,lpha}(A imes A^c).$$

valid for any closed set A in \mathbb{R}^n . It is possible to bound $\mathfrak{m}_{2n,\alpha}$ by the tensor product $\mathfrak{m}_{n,\alpha} \otimes \mathfrak{m}_{n,\alpha}$ through

$$\mathfrak{m}_{2n,\alpha} \geq d\mathfrak{m}_{n,\alpha} \otimes \mathfrak{m}_{n,\alpha}, \quad d = d_{n,\alpha} = \frac{\Gamma(\alpha - \frac{n}{2})^2}{\Gamma(\alpha - n)\Gamma(\alpha)}.$$

Let $\alpha \ge n+1$, we have the following $\int_{\mathbb{R}^n \times \mathbb{R}^n} |f(x) - f(y)| \, d\mathfrak{m}_{2n,\alpha}(x,y) \le \sqrt{\pi} \, \frac{1}{\sqrt{\alpha - n}} \int_{\mathbb{R}^n} |\nabla f| \, d\mathfrak{m}_{n,\beta}.$

It is possible to see that this implies (in fact it is equivalent) to the isoperimetric inequality

$$\mathfrak{m}^+_{n,eta}(\partial A) \geq rac{2\sqrt{lpha-n}}{\sqrt{\pi}}\,\mathfrak{m}_{2n,lpha}(A imes A^c).$$

valid for any closed set A in \mathbb{R}^n . It is possible to bound $\mathfrak{m}_{2n,\alpha}$ by the tensor product $\mathfrak{m}_{n,\alpha} \otimes \mathfrak{m}_{n,\alpha}$ through

$$\mathfrak{m}_{2n,\alpha} \geq d \mathfrak{m}_{n,\alpha} \otimes \mathfrak{m}_{n,\alpha}, \quad d = d_{n,\alpha} = \frac{\Gamma(\alpha - \frac{n}{2})^2}{\Gamma(\alpha - n)\Gamma(\alpha)}.$$

thus finally we find the isoperimetric inequality for the Cauchy measures

$$\mathfrak{m}_{n,eta}^+(\partial A)\geq rac{2}{\sqrt{\pi}}d\sqrt{lpha-n}\ \mathfrak{m}_{n,lpha}(A)\left(1-\mathfrak{m}_{n,lpha}(A)
ight)$$

Recall the Poincaré inequality

Theorem (S.G. Bobkov, B.V, 2024)

Let $\alpha > n + \frac{1}{2}$ and $1 \le p < 2(\alpha - n)$. For any smooth function f on \mathbb{R}^n ,

$$\int_{\mathbb{R}^n\times\mathbb{R}^n}|f(x)-f(y)|^p\,d\mathfrak{m}_{2n,\alpha}(x,y) \leq C\Big(\frac{\pi}{2}\Big)^p\int_{\mathbb{R}^n}|\nabla f(x)|^p\,d\mathfrak{m}_{n,\beta}(x),$$

where $\beta = \alpha - \frac{n+p}{2}$, and where the constant depends on (n, p, α) and is given by

$$C = \frac{1}{\sqrt{\pi}} \frac{\Gamma(\frac{p+1}{2})\Gamma(\alpha - n - \frac{p}{2})}{\Gamma(\alpha - n)}.$$

It follows that, for any function f on \mathbb{R}^n with Lipschitz semi-norm $\|f\|_{\mathrm{Lip}} \leq 1,$

$$\int_{\mathbb{R}^n}\int_{\mathbb{R}^n}|f(x)-f(y)|^p\,d\mathfrak{m}_{2n,\alpha}(x,y)\leq \frac{1}{\sqrt{\pi}}\left(\frac{\pi}{2}\right)^p\frac{\Gamma(\frac{p+1}{2})\,\Gamma(\alpha-n-\frac{p}{2})}{\Gamma(\alpha-n)}.$$

It follows that, for any function f on \mathbb{R}^n with Lipschitz semi-norm $\|f\|_{\mathrm{Lip}} \leq 1,$

$$\int_{\mathbb{R}^n}\int_{\mathbb{R}^n}|f(x)-f(y)|^p\,d\mathfrak{m}_{2n,\alpha}(x,y)\leq \frac{1}{\sqrt{\pi}}\left(\frac{\pi}{2}\right)^p\frac{\Gamma(\frac{p+1}{2})\,\Gamma(\alpha-n-\frac{p}{2})}{\Gamma(\alpha-n)}.$$

We wish to explore probabilities of moderate and large deviations of f(x) - f(y) under the Cauchy measure $\mathfrak{m}_{2n,\alpha}$.

It follows that, for any function f on \mathbb{R}^n with Lipschitz semi-norm $\|f\|_{\mathrm{Lip}} \leq 1,$

$$\int_{\mathbb{R}^n}\int_{\mathbb{R}^n}|f(x)-f(y)|^p\,d\mathfrak{m}_{2n,\alpha}(x,y)\leq \frac{1}{\sqrt{\pi}}\left(\frac{\pi}{2}\right)^p\frac{\Gamma(\frac{p+1}{2})\,\Gamma(\alpha-n-\frac{p}{2})}{\Gamma(\alpha-n)}.$$

We wish to explore probabilities of moderate and large deviations of f(x) - f(y) under the Cauchy measure $\mathfrak{m}_{2n,\alpha}$. Using suitable estimates from above and below for the Gamma functions, for $\alpha \ge n + 1$ and $1 \le p \le 2(\alpha - n) - 1$ we have

Corollary

For any function f on \mathbb{R}^n with $||f||_{\text{Lip}} \leq 1$,

$$\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} |f(x) - f(y)|^p d\mathfrak{m}_{2n,\alpha}(x,y) \leq 2 \left(\frac{cp}{\alpha - n}\right)^{p/2}$$

with $c = \pi^2/4$.

Now consider

$$p_{n,lpha}(t) = \mathfrak{m}_{2n,lpha} \{ (x,y) \in \mathbb{R}^n imes \mathbb{R}^n : \sqrt{lpha - n} |f(x) - f(y)| \ge t \}.$$

We have the following result

Now consider

$$p_{n,\alpha}(t) = \mathfrak{m}_{2n,\alpha}\{(x,y) \in \mathbb{R}^n \times \mathbb{R}^n : \sqrt{\alpha - n} |f(x) - f(y)| \ge t\}.$$

We have the following result

Corollary

If $\alpha \ge n+1$, for any function f on \mathbb{R}^n with $\|f\|_{Lip} \le 1$,

$$p_{n,\alpha}(t) \leq \begin{cases} 2 \exp\{-t^2/14\}, & 0 \leq t \leq t_0, \\ 2 \exp\{-(t\log t)/5\}, & t_0 \leq t \leq t_1, \\ 2\left(\frac{2t_0}{t}\right)^{t_1}, & t \geq t_1, \end{cases}$$
(3)

where $t_0 = \sqrt{\alpha - n}$ and $t_1 = \alpha - n$.

Now consider

$$p_{n,\alpha}(t) = \mathfrak{m}_{2n,\alpha}\{(x,y) \in \mathbb{R}^n \times \mathbb{R}^n : \sqrt{\alpha - n} |f(x) - f(y)| \ge t\}.$$

We have the following result

Corollary

If $\alpha \ge n+1$, for any function f on \mathbb{R}^n with $\|f\|_{Lip} \le 1$,

$$p_{n,\alpha}(t) \leq \begin{cases} 2 \exp\{-t^2/14\}, & 0 \leq t \leq t_0, \\ 2 \exp\{-(t\log t)/5\}, & t_0 \leq t \leq t_1, \\ 2\left(\frac{2t_0}{t}\right)^{t_1}, & t \geq t_1, \end{cases}$$
(3)

where $t_0 = \sqrt{\alpha - n}$ and $t_1 = \alpha - n$.

Analogous relations for similar regions for the product measures $\mathfrak{m}_{n,\alpha} \otimes \mathfrak{m}_{n,\alpha}$ have been explored in

S.G. Bobkov and M. Ledoux Weighted Poincaré-type inequalities for Cauchy and other convex measures, Ann. Prob., 2009 POLITECNIC MILLION CONTRACTOR OF CON

4 Some open problems

Study more properties about the spherical cap measure $\widehat{\mu}$ and relevant implications.

4 Some open problems

- Study more properties about the spherical cap measure $\widehat{\mu}$ and relevant implications.
- More explicit examples.

4 Some open problems

- Study more properties about the spherical cap measure $\hat{\mu}$ and relevant implications.
- More explicit examples.
- Generalize Pisier's approach in the discrete setting.

Thank you for your attention!

