2022

  • Eyring-Kramers exit rates for the overdamped Langevin dynamics: the case with saddle points on the boundary. Lelièvre, T. & Le Peutrec, D. & Nectoux, B. hal-03728053 hal-03728053 arxiv: 2207.09284
  • Convergence of the kinetic annealing for general potentials. Journel, L. & Monmarché, P. hal-03762601 arxiv: 2107.11619
  • Almost sure contraction for diffusions on $\mathbb R^d$. Application to generalised Langevin diffusions. Monmarché, P. hal-03762614 arxiv: 2009.10828
  • Uniform convergence of the Fleming-Viot process in a hard killing metastable case. Journel, L. & Monmarché, P. hal-03762609arxiv: 2207.02030
  • Wasserstein contraction and Poincaré inequalities for elliptic diffusions at high temperature. Monmarché, P. hal-03762610 2201.07523
  • From kinetic to fluid models of liquid crystals by the moment method. Degond, P. & Frouvelle, A. & Liu, J.-G. doi: 10.3934/krm.2021047 Kinetic and Related Models , AIMS, 2022, 15 (3), pp.417-465
  • Overdamped limit at stationarity for non-equilibrium Langevin diffusions. Monmarché, P. & Ramil M. Electronic Communications in Probability, Institute of Mathematical Statistics (IMS), 2022, 27 (none), doi: 10.1214/22-ECP447
  • Finite-Volume approximation of the invariant measure of a viscous stochastic scalar conservation law. Boyaval, S. & Martel, S. & Reygner, R. doi: 10.1093/imanum/drab049 IMA Journal of Numerical Analysis, Oxford University Press (OUP), 2022, 42 (3), pp.2710-2770
  • Mathematical foundations for the Parallel Replica algorithm applied to the underdamped Langevin dynamics. Ramil M. & Lelièvre T. & Reygner J. MRS Communications doi: 10.1557/s43579-022-00207-3
  • Logarithmic Sobolev and interpolation inequalities on the sphere: constructive stability results. Brigati, G. & Dolbeault, J. & Simonov, N. arXiv: 2211.13180 hal-03868496
  • Interpolation inequalities on the sphere: rigidity, branches of solutions, and symmetry breaking. Bou Dagher, E. & Dolbeault, J. arXiv: 2210.16878 hal-03834676
  • Symmetry breaking and weighted Euclidean logarithmic Sobolev inequalities. Dolbeault, J. & Zuniga, A. arXiv: 2210.12488 hal-03825574
  • Sharp stability for Sobolev and log-Sobolev inequalities, with optimal dimensional dependence. Dolbeault, J. & Esteban, M.J. & Figalli, A. & Frank, R.L. & Loss, M. arXiv: 22209.08651 hal-03780031
  • Keller estimates of the eigenvalues in the gap of Dirac operators. Dolbeault, J. & Gontier, D. & Pizzichillo & F. Van Den Bosch, H. arXiv: 2210.03091 hal-03803758
  • PDMP characterisation of event-chain Monte Carlo algorithms for particle systems. Monemvassitis, A. & Guillin A. & Michel M. arXiv:2208.11070
  • Law of large numbers and central limit theorem for wide two-layer neural networks: the mini-batch and noisy cases. Descours, A. & Guillin A. & Michel M. & Nectoux B. hal-03737557
  • Estimation of statistics of transitions and Hill relation for Langevin dynamics. Lelièvre T. & Ramil M. & Reygner J. hal-03659510 arXiv: 2206.13264
  • Recent progress on limit theorems for large stochastic particle systems. Fathi M. & Le Bris P. & Menegaki A. & Monmarché P. & Reygner J. & Tomasevic M. hal-03711772
  • Label noise (stochastic) gradient descent implicitly solves the Lasso for quadratic parametrisation. Pillaud-Vivien L. & ReygnerJ. & Flammarion, N. arXiv: 2206.09841 link: https://proceedings.mlr.press/v178/vivien22a.html Proceedings of Thirty Fifth Conference on Learning Theory, PMLR 178: 2127-2159, 2022
  • The normal contraction property for non-bilinear Dirichlet forms. Brigati G. & Hartarsky I. hal-03663291 arXiv: 2205.02928
  • On the eigenvalues of operators with gaps. Application to Dirac operators. Dolbeault J. & Esteban M.J. & Séré E. hal-03702964 arXiv: 2206.11679
  • On systems of particles in singular repulsive interaction in dimension one : log and Riesz gas. Guillin A. & Le Bris P. & Monmarché P. arXiv:2204.10653
  • Stability estimates for the sharp spectral gap bound under a curvature-dimension condition. Fathi, M. & Gentil, I. & Serres, J. arxiv: 2202.03769 hal-03581542
  • Constructive stability results in interpolation inequalities and explicit improvements of decay rates of fast diffusion equations. Bonforte, M. & Dolbeault, J. & Nazaret, B. & Simonov, N. arxiv: 2202.09693 hal-03581542 Discrete and Continuous Dynamical Systems - Series A, American Institute of Mathematical Sciences, in press
  • Parabolic methods for ultraspherical interpolation inequalities. Dolbeault, J. & Zhang, A. arxiv: 2202.07041 hal-03573888
  • Hardy-Littlewood-Sobolev and related inequalities: stability. Dolbeault, J. & Esteban, M.J. arxiv: 2202.02972 hal-03559431
  • Sticky nonlinear SDEs and convergence of McKean-Vlasov equations without confinement. Durmus, A. & Eberle, A. & Guillin, A. & Schuh, K. arxiv:2201.07652 hal-03536620
  • A journey with the Gamma-2 integrated criterion and its weak form. Cattiaux, P. & Guillin, A. arxiv: 2201.07475 hal-03533183
  • Hypocoercivity with Schur complements. Bernard, E. & Fathi, M. & Levitt, A. & Stoltz, G., Ann. H. Lebesgue 5 (2022), 523–557. hal-03033217 arxiv: 2003.00726 doi: https://doi.org/10.5802/ahl.129

2021

  • The Vlasov-Poisson-Boltzmann/Landau system with polynomial perturbation near Maxwellian, Cao, C. & Deng, D. & Li, X. arXiv: 2111.05569
  • Hypocoercivity for kinetic linear equations in bounded domains with general Maxwell boundary condition, Bernou, A. & Carrapatoso, K. & Mischler, S. & Tristani, I. arXiv: 2102.07709 hal-03142785
  • On a structure-preserving numerical method for fractional Fokker-Planck equations, Ayi, N. & Herda, M. & Hivert, H. & Tristani, I. arXiv: 2107.13416 hal-03305165
  • Universal cutoff for Dyson Ornstein Uhlenbeck process, Boursier, J. & Chafaï, D. & Labbé, C. arXiv:2107.14452 hal-03311688
  • Stability of eigenvalues and observable diameter in RCD(1,∞) spaces , Bertrand, J. & Fathi, M. arXiv: 2107.05324 doi: 10.1007/s12220-022-00999-9 The Journal of Geometric Analysis, Springer, 2022, 32 (11), pp. 270
  • A conformal geometric point of view on the Caffarelli-Kohn-Nirenberg inequality, L. Dupaigne, I. Gentil, S. Zugmeyer hal-03456704
  • Quasi-stationary distribution for the Langevin process in cylindrical domains, part I: existence, uniqueness and long-time convergence, Lelièvre, T. & Ramil, M. & Reygner, J. hal-03123442 arXiv: 2101.11999 doi: 10.1016/j.spa.2021.11.005 Stochastic Processes and their Applications, 144: 173-201 (2022)
  • Path integral derivation and numerical computation of large deviation prefactors for non-equilibrium dynamics through matrix Riccati equations, Bouchet, F. & Reygner, J. hal-03319835 arXiv: 2108.06916 10.1007/s10955-022-02983-7 Journal of Statistical Physics, Springer Verlag, 2022, 189, pp. 21
  • Long-time behaviour of entropic interpolations Clerc, G. Conforti, I. Gentil, hal-02898293
  • On the variational interpretation of local logarithmic Sobolev inequalities Clerc, G. Conforti, I. Gentil, hal-02996841
  • Uniform in time propagation of chaos for the 2D vortex model and other singular stochastic systems, Guillin, A. & Le Bris, P. & Monmarché, P. arXiv: 2108.08675
  • Existence, stability and regularity of periodic solutions for nonlinear Fokker-Planck equations Luçon, E. & Poquet, C. hal-03280094 arXiv: 2107.02468 doi: 10.1007/s10884-022-10148-z Journal of Dynamics and Differential Equations, Springer Verlag, 2022
  • Periodicity and longtime diffusion for mean field systems in Rd Luçon, E. & Poquet, C. hal-03280091 arXiv: 2107.02473
  • Penalised least square in sparse setting with convex penalty and non gaussian errors Abdillahi-Ali, D. & Azzaoui, N. & Guillin, A. & Le Mailloux, G. & Matsui, T.  hal-03240201 To appear in Acta Mathematica Sciencia.
  • Time reversal of diffusion processes under a finite entropy condition Cattiaux, P. & Conforti, G. & Gentil, I. & Léonard, C.  hal-03206478 arXiv: 2104.07708 Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, Institut Henri Poincaré (IHP), in press
  • Regularization estimates and hydrodynamical limit for the Landau equation, Carrapatoso, K. & Rachid, M. & Tristani, I. hal-03299125 arXiv: 2107.12044 doi: 10.1016/j.matpur.2022.05.009 Journal de Mathématiques Pures et Appliquées, Elsevier, in press
  • Logarithmic estimates for mean-field models in dimension two and the Schrödinger-Poisson system, Dolbeault, J. & Frank, R.L. & Jeanjean, L. hal-03276199 arXiv: 2107.00610 doi: 10.5802/crmath.272 Comptes Rendus. Mathématique, 359 (10): 1279-1293, jan 2022
  • Functional inequalities: nonlinear flows and entropy methods as a tool for obtaining sharp and constructive results, Dolbeault, J. hal-03289546 arXiv: 2107.08219 Doi: 10.1007/s00032-021-00341-y Milan Journal of Mathematics, 89 (2): 355-386, 2021
  • Quasi-stationary distribution for Hamiltonian dynamics with singular potentials, Guillin, A. & Nectoux, B. & Wu, L. hal-03276880 To appear in Probability Theory and Related Fields
  • Time averages for kinetic Fokker-Planck equations, Brigati, G. hal-03269451 arXiv: 2106.12801 to appear in Kinetic and Related Models
  • Convergence rates for the Vlasov-Fokker-Planck equation and uniform in time propagation of chaos in non convex cases, Guillin, A. & Le Bris, P. & Monmarché, P. arXiv: 2105.09070
  • Special modes and hypocoercivity for linear kinetic equations with several conservation laws and a confining potential.Carrapatoso, K. & Dolbeault, J. & Hérau, F. & Mischler, S. & Mouhot, C. & Schmeiser, C. hal-03222748
  • Discrete sticky couplings of functional autoregressive processes. Durmus, A. & Eberle, A. & Enfroy, A. & Guillin, A. & Monmarché, P. arXiv: 2104.06771
  • The Cauchy problem for the fast p−Laplacian evolution equation. Characterization of the global Harnack principle and fine asymptotic behaviour. Bonforte, M. & Simonov, N. &. & Stan, D. arXiv: 2103.03312 hal-03160022
  • The Adaptive Biasing Force algorithm with non-conservative forces and related topics. Lelièvre, T. & Maurin, L. & Monmarché, P. hal-03148328 arXiv: 2102.09957
  • Large-time behavior of compressible polytropic fluids and nonlinear Schrödinger equation. Carles, R. & Carrapatoso, K. & Hillairet, M. hal-03142668 arXiv: 2102.08640 doi:10.1090/qam/1618 Quarterly of Applied Mathematics, American Mathematical Society, 2022
  • Finite-Volume approximation of the invariant measure of a viscous stochastic scalar conservation law. Boyaval, S. & Martel, S. & Reygner, J. hal-02291253v2 arXiv: 1909.08899
  • Functional inequalities for perturbed measures with applications to log-concave measures and to some Bayesian problems. Cattiaux, P. & Guillin, A. hal-03120626 To appear in Bernoulli.
  • L'entropie, de Clausius aux inégalités fonctionnelles. Gentil, I. hal-02464182 La Gazette des mathématiciens 168 (avril 2021).
  • A short proof of quantitative stability for the Heisenberg-Pauli-Weyl inequality. Fathi, M., Nonlinear Anal. 210 (2021), Paper No. 112403, 3 pp.
  • Higher-order Stein kernels for Gaussian approximation. Fathi, M.arXiv: 1812.02703, Studia Math. 256 (2021), no. 3, 241–258.
  • Bounds on optimal transport maps onto log-concave measures. Colombo, M. & Fathi, M.arXiv: 1910.09035, J. Differential Equations 271 (2021), 1007–1022.
  • Bounds in L1 Wasserstein distance on the normal approximation of general M-estimators . Bachoc, F. & Fathi, M.arXiv: 2111.09721,

2020

  • Quasi-stationary distribution for strongly Feller Markov processes by Lyapunov functions and applications to hypoelliptic Hamiltonian systems, Guillin, A. & Nectoux, B. & Wu, L. hal-03068461
  • Stability estimates for invariant measures of diffusion processes, with applications to stability of moment measures and Stein kernels. Fathi, M. & Mikulincer, D. arXiv: 2010.14178, Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, Scuola Normale Superiore 2022, pp.1417-1445. doi: 10.2422/2036-2145.202011_016
  • Relaxing the Gaussian assumption in Shrinkage and SURE in high dimension . Fathi, M. & Goldstein, L. & Reinert, G. & Saumard, A. arxiv: 2004.01378 doi: 10.1214/22-AOS2208 The Annals of Statistics, 2022, 50 (5)
  • Sobolev's inequality under a curvature-dimension condition. Dupaigne, L. & Gentil, I. & Zugmeyer, S. hal-03006155 arxiv: 2011.07840
  • L'entropie, de Clausius aux inégalités fonctionnelles. Gentil, I. hal-02464182
  • A probabilistic study of the kinetic Fokker-Planck equation in cylindrical domains. Lelièvre, T. & Ramil, M. & Reygner, J. hal-02974421 arxiv: 2010.10157 doi: 10.1007/s00028-022-00796-5 Journal of Evolution Equations, 22: 38, 2022
  • Fluid dynamic limit of Boltzmann equation for granular hard-spheres in a nearly elastic regime. Alonso, R. Lods, B. & Tristani, I. hal-02922416 arxiv: 2008.05173
  • Exact targeting of Gibbs distributions using velocity-jump processes. Monmarché, P. & Rousset, M. & Zitt, P.-A. hal-02916073 arxiv: 2008.09360 doi: 10.1007/s40072-022-00247-9 Stochastics and Partial Differential Equations: Analysis and Computations, Springer US, 2022
  • Adaptive force biasing algorithms: new convergence results and tensor approximations of the bias. Ehrlacher, V. & Lelièvre, T. &Monmarché, P. hal-02314426 arxiv: 2007.09941
  • Body-attitude alignment: first order phase transition, link with rodlike polymers through quaternions, and stability. Frouvelle, A. hal-03027574 arxiv: 2011.14891
  • Sharpening of decay rates in Fourier based hypocoercivity methods.Arnold, A. & Dolbeault, J. & Schmeiser, C. & Wöhrer, T. hal-03078698 arxiv: 2012.09103 [https://doi.org/10.1007/978-3-030-82946-9_1|Doi: 10.1007/978-3-030-82946-9_1]] In F. Salvarani, editor, Recent Advances in Kinetic Equations and Applications, pages 1-50. Springer International Publishing, INdAM Series 48, 2021.
  • Weighted Korn and Poincaré-Korn inequalities in the Euclidean space and associated operators.Carrapatoso, K. & Dolbeault, J. & Hérau, F. & Mischler, S. & Mouhot, C. hal-03059166 arxiv: 2012.06347 Doi: 10.1007/s00205-021-01741-5 Archive for Rational Mechanics and Analysis, jan 2022.
  • Critical magnetic field for 2d magnetic Dirac-Coulomb operators and Hardy inequalities. Dolbeault, J. & Esteban, M.J. & Loss, M. hal-02984354 arxiv: 2011.00039 Doi: 10.4171/ECR/18-1/4 Volume 18: Partial Differential Equations, Spectral Theory, and Mathematical Physics, The Ari Laptev Anniversary Volume, EMS Series of Congress Reports, 2021.
  • Stability in Gagliardo-Nirenberg-Sobolev inequalities: flows, regularity and the entropy method. Bonforte, M. & Dolbeault, J. & Nazaret, B. & Simonov, N. hal-02887010 arxiv: 2007.03674
  • Explicit constants in Harnack inequalities and regularity estimates, with an application to the fast diffusion equation (supplementary material for: Stability in Gagliardo-Nirenberg inequalities) Bonforte, M. & Dolbeault, J. & Nazaret, B. & Simonov, N. hal-02887013 arxiv: 2007.03419
  • Fine properties of solutions to the Cauchy problem for a Fast Diffusion Equation with Caffarelli-Kohn-Nirenberg weights. Bonforte, M. & Simonov, N. arXiv: 2002.09967
  • Adaptive force biasing algorithms: new convergence results and tensor approximations of the bias. Ehrlacher, V. & Lelièvre, T. & Monmarché, P. hal-02314426
  • Heterogeneous social interactions and the COVID-19 lockdown outcome in a multi-group SEIR model. Dolbeault, J. & Turinici, G. hal-02559938 arxiv: 2005.00049 doi: 10.1051/mmnp/2020025 Mathematical Modelling of Natural Phenomena, EDP Sciences, 2020, Coronavirus: Scientific insights and societal aspects, 15 (36), pp.1-18.
  • Social heterogeneity and the COVID-19 lockdown in a multi-group SEIR model. Dolbeault, J. & Turinici, G. medrxiv doi: 10.1101/2020.05.15.20103010 Doi: 10.1515/cmb-2020-0115 Computational and Mathematical Biophysics, 9:1 4-21, 2021.
  • Metastability for systems of interacting neurons. Löcherbach, E. & Monmarché, P. arXiv: 2004.13353
  • Uniform long-time and propagation of chaos estimates for mean field kinetic particles in non-convex landscapes. Guillin, A. & Monmarché, P. hal-02504451
  • Self-improvement of the Bakry-Emery criterion for Poincaré inequalites and Wasserstein contraction using variable curvature bounds. Cattiaux, P. & Fathi, M. & Guillin, A. hal-02486264 doi: 10.1016/j.matpur.2022.07.003 Journal de Mathématiques Pures et Appliquées, Elsevier, 2022, 166, pp.1-29
  • Low lying eigenvalues and convergence to the equilibrium of some Piecewise Deterministic Markov Processes generators in the small temperature regime. Guillin, A. & Nectoux, B. hal-02436593
  • Existence and stability of infinite time blow-up in the Keller-Segel system. del Pino, M. & Davila, J. & Dolbeault, J & Musso, M. & Wei, J. hal-02394787 arXiv: 1911.12417
  • Entropic curvature and convergence to equilibrium for mean-field dynamics on discrete spaces. Erbar, M. & Fathi, M. & Schlichting, A. arXiv: 1908.03397, ALEA Lat. Am. J. Probab. Math. Stat. 17 (2020), no. 1, 445–471.
  • A proof of the Caffarelli contraction theorem via entropic regularization. Fathi, M. & Gozlan, N. & Prodhomme, M. Hal: 02096009 arXiv: 1904.06053, Calc. Var. Partial Differential Equations 59 (2020), no. 3, Paper No. 96, 18 pp.
  • A note on existence of free Stein kernels. Cébron, G., Fathi, M. & Mai, T. arXiv: 1811.02926, Proc. Amer. Math. Soc. 148 (2020), no. 4, 1583–1594.
  • Stability of the Bakry-Emery theorem. Courtade, T.A. & Fathi, M. arXiv: 1807.09845, J. Funct. Anal. 279 (2020), no. 2, 108523, 28 pp.

2019

  • Poincaré and Logarithmic Sobolev inequalities for nearly radial measures. P. Cattiaux, A. Guillin, L. Wu. hal-02418658
  • Persistence of the Moran model with random switching. A. Guillin, A. Personne, E. Strickler. hal-02344516
  • Kinetic Fokker-Planck equation with mean field interactions. A. Guillin, B. Liu, L. Wu, C. Zhang. hal-02387517v1, to appear in Journal de Mathématiques Pures et Appliquées
  • Uniform Poincaré, and logarithmic Sobolev inequalities for mean field models. A. Guillin, B. Liu, L. Wu, C. Zhang. hal-02287711
  • A note on hypocoercivity for kinetic equations with heavy-tailed equilibrium. Ayi, N. & Herda, M. & Hivert, N. & Tristani, I. arXiv: 1911.11535 10.5802/crmath.46 Comptes Rendus Mathématique, Elsevier Masson, 2020, 358 (3), pp. 333-340.
  • Fractional Hypocoercivity. Bouin, E. & Dolbeault, J. & Lafleche, L. hal-02377205 arXiv: 1911.11020 10.1007/s00220-021-04296-4 Communications in Mathematical Physics
  • Hypocoercivity and sub-exponential local equilibria. Bouin, E. & Dolbeault, J. & Lafleche, L. & Schmeiser, C. hal-02377195 arXiv: 1911.10961 doi: 10.1007/s00605-020-01483-8 Monatshefte für Mathematik 194, 41–65 (2021).
  • Asymptotic behavior of Nernst-Planck equation. Li, X. hal-02310654 arXiv: 1910.04477
  • L2-Hypocoercivity and large time asymptotics of the linearized Vlasov-Poisson-Fokker-Planck system. Addala, L. & Dolbeault & J. Li, X. & Tayeb, M.L. hal-02299535 arXiv: 1909.12762 Doi: 10.1007/s10955-021-02784-4 Journal of Statistical Physics, 184 (1), jun 2021.
  • Hypocoercivity in Phi-entropy for the linear relaxation Boltzmann equation on the torus. Evans, J. hal-02285252
  • Hypocoercivity of linear kinetic equations via Harris's Theorem. Cañizo, J. & Chuqi, C. & Evans, J. & Yoldas, H. arXiv: 1902.10588 to appear in Kinetic and Related Models
  • Quantitative rates of convergence to equilibrium for the degenerate linear Boltzmann equation on the torus. Evans, J. & Moyano, I. arXiv: 1907.12836
  • Kinetic walk for sampling. Monmarché P. arXiv:1903.00550
  • Generalized logarithmic Hardy-Littlewood-Sobolev inequality. Dolbeault, J. & Li, X. hal-02281279 doi: 10.1093/imrn/rnz324, International Mathematics Research Notices, rnz324, 2020
  • Elementary coupling approach for non-linear perturbation of Markov processes with mean-field jump mechanims and related problems. Monmarché P. arXiv: 1809.10953
  • Coulomb gases under constraint: some theoretical and numerical results. Chafaï, D. & Ferré, G. & Stoltz, G. hal-02184896 arXiv 1907.05803, doi: 10.1137/19M1296859, SIAM Journal on Mathematical Analysis, Society for Industrial and Applied Mathematics, 2021, 53 (1), pp.181-220.
  • Improved interpolation inequalities and stability. Dolbeault, J. & Esteban, M.J. Hal: 02266625 arXiv 1908.08235 doi: 10.1515/ans-2020-2080 Advanced Nonlinear Studies; 20 (2), 277–291 (2020)
  • Viscous scalar conservation law with stochastic forcing: strong solution and invariant measure. Martel, S. & Reygner, J.  Hal: 02133338 arXiv: 1905.07908 doi: 10.1007/s00030-020-00637-9 Nonlinear Differential Equations and Applications, Springer Verlag, 2020, 27, p. 34.
  • Phase transitions and macroscopic limits in a BGK model of body-attitude coordination. Degond, P. & Diez, A. & Frouvelle, A. & Merino Aceituno, S.  Hal:02126060 arXiv: 1905.04885 doi: 10.1007/s00332-020-09632-x, Journal of Nonlinear Science, Springer Verlag, 2020, 30, pp.2671-2736.
  • Flocking : Phase transition and asymptotic behavior. Li, X. Hal: 02140779 arXiv: 1906.07517
  • When the Moran process can be replaced by Wright-Fisher diffusion. Gackou, G. & Guillin, A. & Personne, A. Hal: 02116608 To appear in Journal of Mathematical Biology.
  • On the convergence of smooth solutions from Boltzmann to Navier-Stokes. Gallagher, I. & Tristani, I. Hal: 02057498 Annales Henri Lebesgue, UFR de Mathématiques - IRMAR, In press
  • Diffusion limit for kinetic Fokker-Planck equation with heavy tails equilibria: the critical case. Cattiaux, P. & Nasreddine, E. & Puel, M. Hal: 02009792 Preprint doi: 10.3934/krm.2019028 Kinetic & Related Models 12 (4), 2019, 727-748
  • Inequalities involving Aharonov-Bohm magnetic potentials in dimensions 2 and 3. Bonheure, D. & Dolbeault, J. & Esteban, M.J. Laptev, A. & Loss, M. Hal: 02021174 arXiv: 1902.06454 doi: 10.1142/S0129055X21500069 Reviews in Mathematical Physics, 33
  • Symmetry results in two-dimensional inequalities for Aharonov-Bohm magnetic fields. Bonheure, D. & Dolbeault, J. & Esteban, M.J. Laptev, A. & Loss, M. Hal: 02003872 arXiv: 1902.01065 doi: 10.1007/s00220-019-03560-y Communications in Mathematical Physics
  • Interpolation inequalities in W1,p(S1) and carré du champ methods. Dolbeault, J. & García-Huidobro, M. & Manásevich, R. Hal: 02003141 arXiv: 1902.01063 doi: 10.3934/dcds.2020014 Discrete & Continuous Dynamical Systems Ser. A, 40 (1): 375-394, 2020
  • Diffusion with very weak confinement. Bouin, E. & Dolbeault, J. & Schmeiser, C. Hal: 01991665 arXiv: 1901.08323 doi: 10.3934/krm.2020012 Kinetic and Related Models, AIMS, 13 (2), pp. 345-371.
  • Prescribed energy connecting orbits for gradient systems. Alessio, F. & Montecchiari, P. & Zuniga, A. Hal: 01990860 arXiv: 1901.06951 Doi: 10.3934/dcds.2019200 Discrete & Continuous Dynamical Systems Ser. A 39, 8, 4895-4928, 2019
  • A family of Beckner inequalities under various curvature-dimension conditions. Gentil, I. & Zugmeyer, S. Hal: 02052691

2018

  • Hypocoercivity in Wasserstein-1 for the kinetic Fokker-Planck equation via Malliavin Calculus. Evans, J. arXiv: 1810.01324
  • One dimensional critical kinetic Fokker-Planck equations, Bessel and stable processes. Fournier, N. & Tardif, C. hal-01799460 arXiv 1805.09728 Communications in Mathematical Physics 381, 1 (jan 2021), 143-173.
  • Anomalous diffusion for multi-dimensional critical Kinetic Fokker-Planck equations. Fournier, N. & Tardif, C. arXiv 1812.06806 Ann. Probab., 48 5): 2359-2403, 2020.
  • Hypocoercive estimates on foliations and velocity spherical Brownian motion. Baudoin, F. & Tardif, C. hal-01793658 arXiv 1604.06813 doi: 10.3934/krm.2018001 Kinetic & Related Models, 2018 11(1): 1-23.
  • Periodicity induced by noise and interaction in the kinetic mean-field FitzHugh-Nagumo model. Luçon, E. & Poquet, C. Hal: 01911080 arXiv: 1811.00305
  • Convexity and regularity properties for entropic interpolations. Ripani, L. Hal: 01644542 doi: 10.1016/j.jfa.2019.04.004 Journal of Functional Analysis 277 (2), 2019, 368-391
  • * An entropic interpolation proof of the HWI inequality. Gentil, I. & Léonard, C. & Ripani, L. & Tamanini, L. Hal: 01840629 arXiv: 1807.06893 doi: 10.1016/j.spa.2019.04.002, Stochastic Processes and their Applications, Elsevier, 2020, 130 (2), pp.907-923.
  • Dynamical aspects of generalized Schrödinger problem via Otto calculus - A heuristic point of view. Gentil, I. & Léonard, C. & Ripani, L. Hal: 01806572 arXiv: 1806.01553 doi: 10.4171/rmi/1159, Revista Matemática Iberoamericana, European Mathematical Society, 2020, 36 (4), pp.1071-1112.
  • On the derivation of a Stokes-Brinkman problem from Stokes equations around a random array of moving spheres. Carrapatoso, K. & Hillairet, M. Hal: 01779091 arXiv: 1804.10498
  • Alignment of self-propelled rigid bodies: from particle systems to macroscopic equations. Degond, P. & Frouvelle, A. & Merino-Aceituno, S. & Trescases, A. Hal: 01894363 arXiv: 1810.06903 doi: 10.1007/978-3-030-15096-9_2 In: Giacomin G., Olla S., Saada E., Spohn H., Stoltz G. (eds) Stochastic Dynamics Out of Equilibrium. IHPStochDyn 2017. Springer Proceedings in Mathematics & Statistics, vol 282. Springer, Cham
  • A variational proof of Nash's inequality. Bouin, E. & Dolbeault, J. & Schmeiser, C. Hal: 01940110 arXiv: 1811.12770 doi: 10.4171/RLM/886 Rend. Lincei Mat. Appl. 31 (2020), 211–223
  • On the Simpson index for the Wright–Fisher process with random selection and immigration. Guillin, A. & Jabot, F & Personne, A. Hal: 01877501 arXiv: 1809.08890 doi: https://doi.org/10.1142/S1793524520500461 International Journal of Biomathematics, World Scientific, 2020, 13 (6)
  • Periodicity induced by noise and interaction in the kinetic mean-field FitzHugh-Nagumo model. Luçon, E. and Poquet, C. arXiv: 1811.00305
  • On the Poincare constant of logconcave measures. Cattiaux, P. & Guillin, A. arXiv: 1810.08369
  • Central Limit Theorem for stationary Fleming–Viot particle systems in finite spaces. Lelièvre, T.& Pillaud-Vivien, L. & Reygner, J. Doi: 10.30757/ALEA.v15-43 arXiv: 1806.04490, ALEA Latin American Journal of Probability and Mathematical Statistics, 15: 1163-1182, 2018.
  • Geometric ergodicity of the bouncy particle sampler. Durmus, A. & Guillin, A. & Monmarché, P. arXiv: 1807.05401 doi: 10.1214/19-AAP1552 The Annals of Applied Probability 2020, Vol. 30, No. 5, 2069–2098
  • Piecewise Deterministic Markov Processes and their invariant measure. Durmus, A. & Guillin, A. & Monmarché, P. arXiv: 1807.05421
  • Simulating Coulomb gases and log-gases with hybrid Monte Carlo algorithms. Chafaï, D. & Ferré, G. Hal: 01818268 doi: 10.1007/s10955-018-2195-6 Journal of Statistical Physics 174 (3), 2019, 692-714
  • On Poincaré and logarithmic Sobolev inequalities for a class of singular Gibbs measures. Chafaï, D. & Lehec, J. Hal: 01781502
  • Stochatic Cucker-Smale models: old and new. Cattiaux, P. & Delebecque, F. & Pédèches, LR. Hal: 01826717 Doi: 10.1214/18-AAP1400 Ann. Appl. Probab. 28 (5): 3239–3286, 2018
  • An elementary approach to uniform in time propagation of chaos. Durmus, A. & Eberle, A. & Guillin, A. & Zimmer, R. Hal: 01801275 doi: 10.1090/proc/14612 Proc. Amer. Math. Soc. 148 (2020), 5387-5398.
  • Sharp Beckner-type inequalities for Cauchy and spherical distributions. Bakry, D. & Gentil, I. & Scheffer, G. Hal: 01761215
  • New sharp Gagliardo-Nirenberg-Sobolev inequalities and an improved Borell-Brascamp-Lieb inequality. D. Cordero, F. Bolley, Y. Fujita, I. Gentil, A. Guillin Hal: 01464530 doi: 10.1093/imrn/rny111 International Mathematical Research Notices, Oxford University Press, 10, 2020, pp. 3042-3083.
  • Rigidity results in generalized isothermal fluids. Carles, R. & Carrapatoso, K. & Hillairet, M. Annales Henri Lebesgue, 2018, 1, pp.47-85. Hal: 01738494 arXiv: 1803.07837 Doi: 10.5802/ahl.2
  • Reverse Hardy-Littlewood-Sobolev inequalities. Carrillo, J.A. & Delgadino, M.G. & Dolbeault, J. & Frank, R.L. & Hoffmann, F. Hal: 01837888 arXiv: 1807.09189 doi: 10.1016/j.matpur.2019.09.001 Journal de Mathématiques Pures et Appliquées, Elsevier, 2019, 132, pp.133-165
  • Stein kernels and moment maps. Fathi, M. arXiv: 1804.04699 doi: 10.1214/18-AOP1305 Annals of Probability 47 (4), 2019, 2172-2185
  • A sharp symmetrized form of Talagrand's transport-entropy inequality for the Gaussian measure. Fathi, M. arXiv: 1806.06389 doi: 10.1214/18-ECP179 Electron. Commun. Probab. Volume 23 (2018), paper no. 81, 9 pp.
  • Emergence of oscillatory behaviors for excitable systems with noise and mean-field interaction, a slow-fast dynamics approach. Luçon, E. and Poquet, C. arXiv: 1802.06410
  • Magnetic rings. Dolbeault, J. & Esteban, M.J. & Laptev, A. & Loss, M. Doi: 10.1063/1.5022121 Hal: 01680917 arXiv: 1801.03810 Journal of Mathematical Physics, 59 (5): 051504, 2018.
  • Interpolation inequalities and spectral estimates for magnetic operators. Dolbeault, J. & Esteban, M.J. & Laptev, A. & Loss, M. Doi: 10.1007/s00023-018-0663-9 Hal: 01534961 arXiv: 1706.02950 Annales de l'Institut Henri Poincaré (C) Non Linear Analysis, 19 (5), pp.1439-1463, 2018.

2017

  • Sharp trace Gagliardo-Nirenberg-Sobolev inequalities for convex cones, and convex domains. Zugmeyer, S. Hal: 01619847 Doi: 10.1016/j.anihpc.2018.11.001 Annales de l’Institut Henri Poincaré C, Analyse non linéaire, 36(3): 861 - 885, 2019.
  • Entropic multipliers method for Langevin diffusion and weighted log Sobolev inequalities. Cattiaux, P. & Guillin, A. & Monmarché, P. & Zhang, C. Hal: 01571610 arXiv: 1708.01058 doi: 10.1016/j.jfa.2019.108288 Journal of Functional Analysis, Elsevier, 2019, 277 (11).
  • Optimal linear drift for the speed of convergence of an hypoelliptic diffusion. Guillin, A. & Monmarché, P. Hal: 01306884
  • Phi-entropies for Fokker-Planck and kinetic Fokker-Planck equations. Dolbeault, J. & Li, X. Doi: 10.1142/S0218202518500574 Hal: 01672455 arXiv: 1712.09897, Mathematical Models and Methods in Applied Sciences (M3AS), 28 (13): 2637-2666, 2018
  • Symmetry and symmetry breaking: rigidity and flows in elliptic PDEs. Dolbeault, J. & Esteban, M.J. & Loss, M. Hal: 01651793 arXiv: 1711.11291, Proc. Int. Cong. of Math., Rio de Janeiro, 3: 2279-2304, 2018.
  • Regularization estimates and Cauchy theory for inhomogeneous Boltzmann equation for hard potentials without cut-off. Hérau, F. & Tonon, D. & Tristani, I. Hal: hal-01599973 10.1007/s00220-020-03682-8 Communications in Mathematical Physics, Springer Verlag, 2020, 377 (1), pp.697-771.
  • Short time diffusion properties of inhomogeneous kinetic equations with fractional collision kernel. Hérau, F. & Tonon, D. & Tristani, I. Hal: hal-01596009
  • Hypocoercivity without confinement. Bouin, E. & Dolbeault, J. & Mischler, S. & Mouhot, C. & Schmeiser, C. Hal: 01575501 arXiv: 1708.06180 doi: 10.2140/paa.2020.2.203 Pure and Applied Analysis 2 (2), 203-232 (2020)
  • Dynamics of a planar Coulomb gas. Bolley, F. & Chafaï, D. & Fontbona, J. Doi: 10.1214/18-AAP1386 arXiv:1706.08776 Annals of Applied Probability, 28 (5), pp.3152-3183, 2018.
  • Equilibrium large deviations for mean-field systems with translation invariance. Reygner, J. Doi: 10.1214/17-AAP1379 arXiv:1706.08780 Annals of Applied Probability, 28 (5): 2922-2965, 2018.
  • Long time behaviour and mean-field limit of Atlas models. Reygner, J. Doi: 10.1051/proc/201760132 arXiv:1705.08140, ESAIM: Proceedings and Surveys (Journées MAS 2016 de la SMAI - Phénomènes complexes et hétérogènes), 60: 132-143, 2017.

Hal webpage of the project

  • anr-efi/publications.txt
  • Dernière modification : 2023/05/04 12:55
  • de Jean Dolbeault