2020

  • Self improvement of the Bakry-Emery criterion for Poincaré inequalites and wasserstein contraction using variable curvature bounds. P. Cattiaux, M. Fathi, A. Guillin. hal-02486264
  • Low lying eigenvalues and convergence to the equilibrium of some Piecewise Deterministic Markov Processes generators in the small temperature regime. A. Guillin, B. Nectoux. hal-02436593
  • Infinite time blow-up in the Keller-Segel system: existence and stability. del Pino, M. & Davila, J. & Dolbeault, J & Musso, M. & Wei, J. hal-02394787 arXiv: 1911.12417

2019

  • Poincaré and Logarithmic Sobolev inequalities for nearly radial measures. P. Cattiaux, A. Guillin, L. Wu. hal-02418658
  • Persistence of the Moran model with random switching. A. Guillin, A. Personne, E. Strickler. hal-02344516
  • Kinetic Fokker-Planck equation with mean field interactions. A. Guillin, B. Liu, L. Wu, C. Zhang. hal-02387517v1
  • Uniform Poincaré, and logarithmic Sobolev inequalities for mean field models. A. Guillin, B. Liu, L. Wu, C. Zhang. https://hal.archives-ouvertes.fr/
  • A note on hypocoercivity for kinetic equations with heavy-tailed equilibrium. Ayi, N. & Herda, M. & Hivert, N. & Tristani, I. arXiv: 1911.11535
  • Fractional Hypocoercivity. Bouin, E. & Dolbeault, J. & Lafleche, L. & Schmeiser, C. hal-02377205 arXiv: 1911.11020
  • Hypocoercivity and sub-exponential local equilibria. Bouin, E. & Dolbeault, J. & Lafleche, L. & Schmeiser, C. hal-02377195 arXiv: 1911.10961
  • Asymptotic behavior of Nernst-Planck equation. Li, X. hal-02310654 arXiv: 1910.04477
  • L2-Hypocoercivity and large time asymptotics of the linearized Vlasov-Poisson-Fokker-Planck system. Addala, L. & Dolbeault & J. Li, X. & Tayeb, M.L. hal-02299535 arXiv: 1909.12762
  • Hypocoercivity in Phi-entropy for the linear relaxation Boltzmann equation on the torus. Evans, J. hal-02285252
  • Hypocoercivity of linear kinetic equations via Harris's Theorem. Cañizo, J. & Chuqi, C. & Evans, J. & Yoldas, H. arXiv: 1902.10588 to appear in Kinetic and Related Models
  • Quantitative rates of convergence to equilibrium for the degenerate linear Boltzmann equation on the torus. Evans, J. & Moyano, I. arXiv: 1907.12836
  • Kinetic walk for sampling. Monmarché P. arXiv:1903.00550
  • Generalized logarithmic Hardy-Littlewood-Sobolev inequality. Dolbeault, J. & Li, X. hal-02281279 doi: 10.1093/imrn/rnz324, International Mathematics Research Notices, rnz324, 2020
  • Elementary coupling approach for non-linear perturbation of Markov processes with mean-field jump mechanims and related problems. Monmarché P. arXiv: 1809.10953
  • Entropic curvature and convergence to equilibrium for mean-field dynamics on discrete spaces. Erbar, M. & Fathi, M. & Schlichting, A. arXiv: 1908.03397
  • Coulomb gases under constraint: some theoretical and numerical results. Chafaï, D. & Ferré, G. & Stoltz, G. hal-02184896 arXiv 1907.05803
  • Improved interpolation inequalities and stability. Dolbeault, J. & Esteban, M.J. Hal: 02266625 arXiv 1908.08235 doi: 10.1515/ans-2020-2080 Advanced Nonlinear Studies, to appear
  • Viscous scalar conservation law with stochastic forcing: strong solution and invariant measure. Martel, S. & Reygner, J.  Hal: 02133338 arXiv: 1905.07908
  • A proof of the Caffarelli contraction theorem via entropic regularization. Fathi, M. & Gozlan, N. & Prodhomme, M. Hal: 02096009 arXiv: 1904.06053
  • Phase transitions and macroscopic limits in a BGK model of body-attitude coordination. Degond, P. & Diez, A. & Frouvelle, A. & Merino Aceituno, S.  Hal:02126060 arXiv: 1905.04885 doi: 10.1007/978-3-030-15096-9_2 In: Giacomin G., Olla S., Saada E., Spohn H., Stoltz G. (eds) Stochastic Dynamics Out of Equilibrium. IHPStochDyn 2017. Springer Proceedings in Mathematics & Statistics, vol 282. Springer, Cham
  • Flocking : Phase transition and asymptotic behavior. Li, X. Hal: 02140779 arXiv: 1906.07517
  • When the Moran process can be replaced by Wright-Fisher diffusion. Gackou, G. & Guillin, A. & Personne, A. Hal: 02116608
  • On the convergence of smooth solutions from Boltzmann to Navier-Stokes. Gallagher, I. & Tristani, I. Hal: 02057498 Annales Henri Lebesgue, UFR de Mathématiques - IRMAR, In press
  • Diffusion limit for kinetic Fokker-Planck equation with heavy tails equilibria: the critical case. Cattiaux, P. & Nasreddine, E. & Puel, M. Hal: 02009792 Preprint doi: 10.3934/krm.2019028 Kinetic & Related Models 12 (4), 2019, 727-748
  • Inequalities involving Aharonov-Bohm magnetic potentials in dimensions 2 and 3. Bonheure, D. & Dolbeault, J. & Esteban, M.J. Laptev, A. & Loss, M. Hal: 02021174 arXiv: 1902.06454
  • Symmetry results in two-dimensional inequalities for Aharonov-Bohm magnetic fields. Bonheure, D. & Dolbeault, J. & Esteban, M.J. Laptev, A. & Loss, M. Hal: 02003872 arXiv: 1902.01065 doi: 10.1007/s00220-019-03560-y Communications in Mathematical Physics
  • Interpolation inequalities in W1,p(S1) and carré du champ methods. Dolbeault, J. & García-Huidobro, M. & Manásevich, R. Hal: 02003141 arXiv: 1902.01063 doi: 10.3934/dcds.2020014 Discrete & Continuous Dynamical Systems Ser. A, 40 (1): 375-394, 2020
  • Diffusion with very weak confinement. Bouin, E. & Dolbeault, J. & Schmeiser, C. Hal: 01991665 arXiv: 1901.08323 doi: 10.3934/krm.2020012 Kinetic and Related Models, AIMS, In press
  • Prescribed energy connecting orbits for gradient systems. Alessio, F. & Montecchiari, P. & Zuniga, A. Hal: 01990860 arXiv: 1901.06951 Doi: 10.3934/dcds.2019200 Discrete & Continuous Dynamical Systems Ser. A 39, 8, 4895-4928, 2019
  • A family of Beckner inequalities under various curvature-dimension conditions. Gentil, I. & Zugmeyer, S. Hal: 02052691

2018

  • Hypocoercivity in Wasserstein-1 for the kinetic Fokker-Planck equation via Malliavin Calculus. Evans, J. arXiv: 1810.01324
  • One dimensional critical kinetic Fokker-Planck equations, Bessel and stable processes. Fournier, N. & Tardif, C. hal-01799460 arXiv 1805.09728
  • Anomalous diffusion for multi-dimensional critical Kinetic Fokker-Planck equations. Fournier, N. & Tardif, C. arXiv 1812.06806
  • Higher-order Stein kernels for Gaussian approximation. Fathi, M.arXiv: 1812.02703
  • Hypocoercive estimates on foliations and velocity spherical Brownian motion. Baudoin, F. & Tardif, C. hal-01793658 arXiv 1604.06813 doi: 10.3934/krm.2018001 Kinetic & Related Models, 2018 11(1): 1-23.
  • Periodicity induced by noise and interaction in the kinetic mean-field FitzHugh-Nagumo model. Luçon, E. & Poquet, C. Hal: 01911080 arXiv: 1811.00305
  • Convexity and regularity properties for entropic interpolations. Ripani, L. Hal: 01644542 doi: 10.1016/j.jfa.2019.04.004 Journal of Functional Analysis 277 (2), 2019, 368-391
  • * An entropic interpolation proof of the HWI inequality. Gentil, I. & Léonard, C. & Ripani, L. & Tamanini, L. Hal: 01840629 arXiv: 1807.06893
  • Dynamical aspects of generalized Schrödinger problem via Otto calculus - A heuristic point of view. Gentil, I. & Léonard, C. & Ripani, L. Hal: 01806572 arXiv: 1806.01553
  • On the derivation of a Stokes-Brinkman problem from Stokes equations around a random array of moving spheres. Carrapatoso, K. & Hillairet, M. Hal: 01779091 arXiv: 1804.10498
  • Alignment of self-propelled rigid bodies: from particle systems to macroscopic equations. Degond, P. & Frouvelle, A. & Merino-Aceituno, S. & Trescases, A. Hal: 01894363 arXiv: 1810.06903 doi: 10.1007/978-3-030-15096-9_2 In: Giacomin G., Olla S., Saada E., Spohn H., Stoltz G. (eds) Stochastic Dynamics Out of Equilibrium. IHPStochDyn 2017. Springer Proceedings in Mathematics & Statistics, vol 282. Springer, Cham
  • A variational proof of Nash's inequality. Bouin, E. & Dolbeault, J. & Schmeiser, C. Hal: 01940110 arXiv: 1811.12770 doi: 10.4171/RLM/886 Rend. Lincei Mat. Appl. 31 (2020), 211–223
  • On the Simpson index for the Moran process with random selection and immigration. Guillin, A. & Jabot, F & Personne, A. Hal: 01877501 arXiv: 1809.08890
  • Periodicity induced by noise and interaction in the kinetic mean-field FitzHugh-Nagumo model. Luçon, E. and Poquet, C. arXiv: 1811.00305
  • A note on existence of free Stein kernels. Cébron, G., Fathi, M. & Mai, T. arXiv: 1811.02926 to appear in Proc. AMS.
  • Stability of the Bakry-Emery theorem. Courtade, T.A. & Fathi, M. arXiv: 1807.09845
  • On the Poincare constant of logconcave measures. Cattiaux, P. & Guillin, A. arXiv: 1810.08369
  • Central Limit Theorem for stationary Fleming–Viot particle systems in finite spaces. Lelièvre, T.& Pillaud-Vivien, L. & Reygner, J. Doi: 10.30757/ALEA.v15-43 arXiv: 1806.04490, ALEA Latin American Journal of Probability and Mathematical Statistics, 15: 1163-1182, 2018.
  • Geometric ergodicity of the bouncy particle sampler. Durmus, A. & Guillin, A. & Monmarché, P. arXiv: 1807.05401
  • Piecewise Deterministic Markov Processes and their invariant measure. Durmus, A. & Guillin, A. & Monmarché, P. arXiv: 1807.05421
  • Simulating Coulomb gases and log-gases with hybrid Monte Carlo algorithms. Chafaï, D. & Ferré, G. Hal: 01818268 doi: 10.1007/s10955-018-2195-6 Journal of Statistical Physics 174 (3), 2019, 692-714
  • On Poincaré and logarithmic Sobolev inequalities for a class of singular Gibbs measures. Chafaï, D. & Lehec, J. Hal: 01781502
  • Stochatic Cucker-Smale models: old and new. Cattiaux, P. & Delebecque, F. & Pédèches, LR. Hal: 01826717 Doi: 10.1214/18-AAP1400 Ann. Appl. Probab. 28 (5): 3239–3286, 2018
  • An elementary approach to uniform in time propagation of chaos. Durmus, A. & Eberle, A. & Guillin, A. & Zimmer, R. Hal: 01801275
  • Sharp Beckner-type inequalities for Cauchy and spherical distributions. Bakry, D. & Gentil, I. & Scheffer, G. Hal: 01761215
  • New sharp Gagliardo-Nirenberg-Sobolev inequalities and an improved Borell-Brascamp-Lieb inequality. D. Cordero, F. Bolley, Y. Fujita, I. Gentil, A. Guillin Hal: 01464530
  • Rigidity results in generalized isothermal fluids. Carles, R. & Carrapatoso, K. & Hillairet, M. Annales Henri Lebesgue, 2018, 1, pp.47-85. Hal: 01738494 arXiv: 1803.07837 Doi: 10.5802/ahl.2
  • Reverse Hardy-Littlewood-Sobolev inequalities. Carrillo, J.A. & Delgadino, M.G. & Dolbeault, J. & Frank, R.L. & Hoffmann, F. Hal: 01837888 arXiv: 1807.09189 doi: 10.1016/j.matpur.2019.09.001 Journal de Mathématiques Pures et Appliquées, Elsevier, 2019, 132, pp.133-165
  • Stein kernels and moment maps. Fathi, M. arXiv: 1804.04699 doi: 10.1214/18-AOP1305 Annals of Probability 47 (4), 2019, 2172-2185
  • A sharp symmetrized form of Talagrand's transport-entropy inequality for the Gaussian measure. Fathi, M. arXiv: 1806.06389 doi: 10.1214/18-ECP179 Electron. Commun. Probab. Volume 23 (2018), paper no. 81, 9 pp.
  • Emergence of oscillatory behaviors for excitable systems with noise and mean-field interaction, a slow-fast dynamics approach. Luçon, E. and Poquet, C. arXiv: 1802.06410
  • Magnetic rings. Dolbeault, J. & Esteban, M.J. & Laptev, A. & Loss, M. Doi: 10.1063/1.5022121 Hal: 01680917 arXiv: 1801.03810 Journal of Mathematical Physics, 59 (5): 051504, 2018.
  • Interpolation inequalities and spectral estimates for magnetic operators. Dolbeault, J. & Esteban, M.J. & Laptev, A. & Loss, M. Doi: 10.1007/s00023-018-0663-9 Hal: 01534961 arXiv: 1706.02950 Annales de l'Institut Henri Poincaré (C) Non Linear Analysis, 19 (5), pp.1439-1463, 2018.

2017

  • Sharp trace Gagliardo-Nirenberg-Sobolev inequalities for convex cones, and convex domains. Zugmeyer, S. Hal: 01619847 Doi: 10.1016/j.anihpc.2018.11.001 Annales de l’Institut Henri Poincaré C, Analyse non linéaire, 36(3): 861 - 885, 2019.
  • Entropic multipliers method for Langevin diffusion and weighted log Sobolev inequalities. Cattiaux, P. & Guillin, A. & Monmarché, P. & Zhang, C. Hal: 01571610 arXiv: 1708.01058 doi: 10.1016/j.jfa.2019.108288 to appear in Journal of Functional Analysis.
  • Optimal linear drift for the speed of convergence of an hypoelliptic diffusion. Guillin, A. & Monmarché, P. Hal: 01306884
  • Phi-entropies for Fokker-Planck and kinetic Fokker-Planck equations. Dolbeault, J. & Li, X. Doi: 10.1142/S0218202518500574 Hal: 01672455 arXiv: 1712.09897, Mathematical Models and Methods in Applied Sciences (M3AS), 28 (13): 2637-2666, 2018
  • Symmetry and symmetry breaking: rigidity and flows in elliptic PDEs. Dolbeault, J. & Esteban, M.J. & Loss, M. Hal: 01651793 arXiv: 1711.11291, Proc. Int. Cong. of Math., Rio de Janeiro, 3: 2279-2304, 2018.
  • Regularization estimates and Cauchy theory for inhomogeneous Boltzmann equation for hard potentials without cut-off. Hérau, F. & Tonon, D. & Tristani, I. Hal: hal-01599973
  • Short time diffusion properties of inhomogeneous kinetic equations with fractional collision kernel. Hérau, F. & Tonon, D. & Tristani, I. Hal: hal-01596009
  • Hypocoercivity without confinement. Bouin, E. & Dolbeault, J. & Mischler, S. & Mouhot, C. & Schmeiser, C. Hal: 01575501 arXiv: 1708.06180 to appear in Pure and Applied Analysis
  • Dynamics of a planar Coulomb gas. Bolley, F. & Chafaï, D. & Fontbona, J. Doi: 10.1214/18-AAP1386 arXiv:1706.08776 Annals of Applied Probability, 28 (5), pp.3152-3183, 2018.
  • Equilibrium large deviations for mean-field systems with translation invariance. Reygner, J. Doi: 10.1214/17-AAP1379 arXiv:1706.08780 Annals of Applied Probability, 28 (5): 2922-2965, 2018.
  • Long time behaviour and mean-field limit of Atlas models. Reygner, J. Doi: 10.1051/proc/201760132 arXiv:1705.08140, ESAIM: Proceedings and Surveys (Journées MAS 2016 de la SMAI - Phénomènes complexes et hétérogènes), 60: 132-143, 2017.

Hal webpage of the project

  • anr-efi/publications.txt
  • Dernière modification: 2020/03/21 18:36
  • par Jean DOLBEAULT Temporaire