Curriculum vitae

Frouvelle Amic

Associate Professor
CEREMADE

frouvelleping@ceremade.dauphinepong.fr
Phone : 4677
Office : C610
Personal URL

Biography

Amic Frouvelle is Maître de Conférences in Mathematics at University Paris-Dauphine

He is mainly working in kinetic theory of complex systems, and in particular in large systems of interacting self-propelled particles, such as fish schools or flocks of bird.

 

Latest publications

Articles

Degond P., Frouvelle A., Merino Aceituno S., Trescases A. (2024), Hyperbolicity and non-conservativity of a hydrodynamic model of swarming rigid bodies, Quarterly of Applied Mathematics, vol. 82, n°1, p. 35-64

Frouvelle A., KANZLER L., Schmeiser C. (2023), Reversal collision dynamics, Discrete and Continuous Dynamical Systems. Series A, vol. 43, n°10, p. 3582-3603

Degond P., Frouvelle A., Liu J-G. (2022), From kinetic to fluid models of liquid crystals by the moment method, Kinetic & Related Models, vol. 15, n°3, p. 417-465

Degond P., Diez A., Frouvelle A., Merino Aceituno S. (2020), Phase transitions and macroscopic limits in a BGK model of body-attitude coordination, Journal of Nonlinear Science, vol. 30, p. 2671–2736

Degond P., Frouvelle A., Merino-Aceituno S., Trescases A. (2018), Quaternions in Collective Dynamics, Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal, vol. 16, n°1, p. 28-77

Frouvelle A., Degond P., Merino-Aceituno S. (2017), A new flocking model through body attitude coordination, Mathematical Models and Methods in Applied Sciences (M3AS), vol. 27, n°6, p. 1005–1049

Degond P., Frouvelle A., Liu J-G. (2015), Phase transitions, hysteresis, and hyperbolicity for self-organized alignment dynamics, Archive for Rational Mechanics and Analysis, vol. 216, n°1, p. 63-115

Raoul G., Degond P., Frouvelle A. (2014), Local stability of perfect alignment for a spatially homogeneous kinetic model, Journal of Statistical Physics, vol. 157, n°1, p. 84-112

Degond P., Frouvelle A., Liu J-G., Motsch S., Navoret L. (2013), Macroscopic models of collective motion and self-organization, Séminaire Laurent Schwartz -EDP et applications, vol. 2012-2013, p. 1-27

Chapitres d'ouvrage

Frouvelle A. (2021), Body-attitude alignment : first order phase transition, link with rodlike polymers through quaternions, and stability, in Salvarani, F. (eds), Recent Advances in Kinetic Equations and Applications, Berlin Heidelberg: Springer, p. 147-181

Frouvelle A., Liu J-G. (2019), Long-time dynamics for a simple aggregation equation on the sphere, in Giacomin, G., Olla, S., Saada, E., Spohn, H., Stoltz, G. (eds), Stochastic Dynamics Out of Equilibrium. IHPStochDyn 2017. Springer Proceedings in Mathematics & Statistics, vol 282, Berlin Heidelberg: Springer, p. 457-479

Communications avec actes

Degond P., Frouvelle A., Merino-Aceituno S., Trescases A. (2019), Alignment of self-propelled rigid bodies: from particle systems to macroscopic equations, in , Stochastic Dynamics Out of Equilibrium, Institut Henri Poincaré, Paris, France, 2017, Berlin Heidelberg, Springer, 28-66 p.

Communications sans actes

Liu J-G., Frouvelle A., Degond P. (2012), A note on phase transitions for the Smoluchowski equation with dipolar potential, Hyperbolic Problems: Theory, Numerics, Applications, Padova, Italie

Prépublications / Cahiers de recherche

Degond P., Frouvelle A. (2023), Macroscopic limit of a Fokker-Planck model of swarming rigid bodies, Paris, Cahier de recherche CEREMADE, Université Paris Dauphine-PSL, 59 p.

Frouvelle A., Taing C. (2023), On the Fisher infinitesimal model without variability, Paris, Cahier de recherche CEREMADE, Université Paris Dauphine-PSL, 34 p.

Frouvelle A., Kanzler L., Schmeiser C. (2022), Reversal Collision Dynamics, Paris, Cahier de recherche CEREMADE, Université Paris Dauphine-PSL, 22 p.

Degond P., Diez A., Frouvelle A. (2021), Body-attitude coordination in arbitrary dimension, Paris, Cahier de recherche CEREMADE, Université Paris Dauphine-PSL, 46 p.

Rapports

Degond P., Navoret L., Frouvelle A., Motsch S., Liu J-G. (2013), Macroscopic models of collective motion and self-organization, 27 p.

Back to the list