Curriculum vitae

Huveneers François

Associate Professor
CEREMADE

huveneersping@ceremade.dauphinepong.fr
Personal URL

Biography

François Huveneers is assistant professor ("maître de conférences") at Université Paris-Dauphine. He works in probability theory and statistical physics. He got his PhD in theoretical and mathematical physics at the University of Louvain (Belgium). His recent works deal with several aspects of out-of-equilibrium statistical mechanics.

Latest publications

Articles

Huveneers F., Simenhaus F. (2023), Evolution of a passive particle in a one-dimensional diffusive environment, Electronic Journal of Probability, vol. 28, p. 1 - 31

Huveneers F., Hannani A. (2022), Derivation of Euler equations from quantum and classical microscopic dynamics, Journal of Physics. A, Mathematical and Theoretical, vol. 55, n°42

De Roeck W., Huveneers F., Olla S. (2020), Subdiffusion in one-dimensional Hamiltonian chains with sparse interactions, Journal of Statistical Physics, n°180, p. 678–698

Huveneers F., Lukkarinen J. (2020), Prethermalization in a classical phonon field: Slow relaxation of the number of phonons, Physical Review Research, vol. 2, n°2

De Roeck W., Huveneers F. (2019), Glassy dynamics in strongly anharmonic chains of oscillators, Comptes Rendus. Physique, vol. 20, n°5, p. 419-428

Huveneers F., Theil E. (2019), Equivalence of ensembles, condensation and glassy dynamics in the Bose-Hubbard Hamiltonian, Journal of Statistical Physics, vol. 177, n°5, p. 917–935

Bernardin C., Huveneers F., Olla S. (2019), Hydrodynamic Limit for a Disordered Harmonic Chain, Communications in Mathematical Physics, vol. 365, n°1, p. 215-237

Huveneers F. (2018), Response to a small external force and fluctuations of a passive particle in a one-dimensional diffusive environment, Physical Review. E, Statistical, Nonlinear, Biological and Soft Matter Physics, vol. 97, n°4

Thiery T., Huveneers F., Müller M., De Roeck W. (2018), Many-Body Delocalization as a Quantum Avalanche, Physical Review Letters, vol. 121, n°14

Huveneers F., Ducatez R. (2017), Anderson Localization for Periodically Driven Systems, Annales Henri Poincaré, vol. 18, n°7, p. 2415–2446

Huveneers F., De Roeck W. (2017), Stability and instability towards delocalization in many-body localization systems, Physical Review. B, Condensed matter and materials physics, vol. 95

Abanin D., De Roeck W., Ho W., Huveneers F. (2017), A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems, Communications in Mathematical Physics, vol. 354, n°3, p. 809 - 827

Luitz D., Huveneers F., De Roeck W. (2017), How a Small Quantum Bath Can Thermalize Long Localized Chains, Physical Review Letters, vol. 119, n°15, p. 7

Huveneers F., Abanin D., De Roeck W., Wen-Wei H. (2017), Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems, Physical Review. B, Condensed matter and materials physics, vol. 95, n°1, p. 10

Huveneers F., De Roeck W., Dhar A., Schütz M. (2017), Step Density Profiles in Localized Chains, Journal of Statistical Physics, vol. 167, n°5, p. 1143–1163

Huveneers F. (2017), Classical and quantum systems: transport due to rare events, Annalen der Physik, vol. 529, n°3

De Roeck W., Huveneers F., Müller M., Schiulaz M. (2016), Absence of many-body mobility edges, Physical Review. B, Condensed matter and materials physics, vol. 93

Abanin D., De Roeck W., Huveneers F. (2016), Theory of Many-body localization in periodically driven systems, Annals of Physics, vol. 372, p. 1-11

Abanin D., De Roeck W., Huveneers F. (2015), Exponentially Slow Heating in Periodically Driven Many-Body Systems, Physical Review Letters, vol. 115, n°25, p. n°256803

Huveneers F., Simenhaus F. (2015), Random walk driven by simple exclusion process, Electronic Journal of Probability, vol. 20, p. 42

De Roeck W., Huveneers F. (2015), Asymptotic localization of energy in non-disordered oscillator chains, Communications on Pure and Applied Mathematics, vol. 68, n°9, p. 1532–1568

Bernardin C., Huveneers F., Lebowitz J., Liverani C., Olla S. (2015), Green-Kubo formula for weakly coupled systems with noise, Communications in Mathematical Physics, vol. 334, n°3, p. 1377-1412

Ponte P., Papić Z., Huveneers F., Dmitry A. (2015), Many-Body Localization in Periodically Driven Systems, Physical Review Letters, vol. 114

Huveneers F., De Roeck W. (2014), Asymptotic quantum many-body localization from thermal disorder, Communications in Mathematical Physics, vol. 332, n°3, p. 1017-1082

Huveneers F., De Roeck W. (2014), Scenario for delocalization in translation-invariant systems, Physical Review. B, Condensed matter and materials physics, vol. 90, n°16, p. 165137

Huveneers F., Bernardin C. (2013), Small perturbation of a disordered harmonic chain by a noise and an anharmonic potential, Probability Theory and Related Fields, vol. 157, n°1-2, p. 301-331

Huveneers F. (2013), Drastic fall-off of the thermal conductivity for disordered lattices in the limit of weak anharmonic interactions, Nonlinearity, vol. 26, n°3

Huveneers F. (2013), Energy fluctuations in simple conduction models, Stochastic Processes and their Applications, vol. 123, n°10, p. 3753-3769

Huveneers F. (2012), Energy Transport Through Rare Collisions, Journal of Statistical Physics, vol. 146, n°1, p. 73-97

Huveneers F., Oskari A. (2011), Rigorous Scaling Law for the Heat Current in Disordered Harmonic Chain, Communications in Mathematical Physics, vol. 301, n°3, p. 841-883

Huveneers F. (2009), Subdiffusive behavior generated by irrational rotations, Ergodic Theory and Dynamical Systems, vol. 29, n°4, p. 1217-1233

Communications avec actes

De Roeck W., Huveneers F. (2015), Can translation invariant systems exhibit a Many-Body Localized phase?, in Patrícia Gonçalves, Ana Jacinta Soares, From Particle Systems to Partial Differential Equations II Particle Systems and PDEs II, Braga, Portugal, December 2013, Paris, Springer, 173-192 p.

Prépublications / Cahiers de recherche

De Roeck W., Huveneers F. (2014), Search for Many-Body Localization in translation invariant systems, Paris, Université Paris-Dauphine, 28 p.

Back to the list