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Introduction



Choose Your Moves Wisely!

You hold a portfolio that should be worth 1000 in 3 months.

= You want to hedge the risk of
market movements.

= You plan to adjust your position at
several dates.

= But each trade comes with
transaction costs.

Key question:
What is the minimal initial price | need today to hedge
my portfolio safely?



= Discrete-time financial market:
(Q (Fe)io, P)
= A riskless bond with price: S =1 (zero interest rate).
= A risky asset with price process:
8 = (St)i=o-
= Transaction costs represented by proportional rates:
T—-1
= Investment strategy: 0 = (0t)f=_01, representing the portfolio
adjustments at each trading date.

(0 Motivation:
= Transaction costs are considered.
= No specific assumption on how prices evolve (no fixed model).
= The portfolio can be adjusted at an arbitrary number of dates.



Self-Financing Portfolio with Transaction Costs

We define a self-financing portfolio (V;)Z_, with the following
dynamics:

AV = 0;_1AS; — lct-1|A9t—1|St—l

-~
ATransaction costs

(3 V; is interpreted as a super-hedging price at time ¢ for a
given payoff &7 if

Vo 2 &r  almost surely.



Solve the superhedging problem:
= Define the set of admissible strategies and values:
V={(V,0): Vr = g(51)}
where g is a convex payoff function.

= Compute the minimal initial capital required to superhedge:

Py =essinf{V(0) : (V,0) € V}

Approach:

= Use conditional supports of the relative prices.
= Rely on conditional essential supremum / infimum.
= Apply Fenchel conjugate and biconjugate tools. 6



Mathematical Tools



Conditional Support

Definition: Let X be an R%valued random variable on (2, F, P),
and let G C F be a sub-g-algebra. The conditional support of X
given G, denoted suppg(X), is the smallest G-measurable closed
set-valued map C : ) — 2R? guch that

PXeC|G)=1 as.



Conditional Essential Supremum

Definition (Cardaliaguet et al., 2003): Let (2, F,P) be a
probability space, and let G C F be a sub-c-algebra. For a
non-empty family A of F-measurable random variables, the
conditional essential supremum of A given G, denoted ess supg A,
is the unique (a.s.) G-measurable random variable Z such that:

s Z>X as. forall X € A;

= if Y is any other G-measurable random variable with Y > X
as. forall X € A, then Y > Z ass.



Properties of Conditional Essential Supremum

= Tower Property: If H C G C F, then
ess supy ess supg A = ess supy A  a.s.
= Monotonicity: If A C B, then
ess supg A < esssupg B a.s.
= Stability under G-measurable shifts: For any Z € L°(Q,G),
esssupg{X +Z:X € A} =esssupg A+ Z as.
Reference: E. N. Barron, P. Cardaliaguet, and R. Jensen,

Conditional Essential Suprema with Applications, Applied
Mathematics and Optimization, 48(3):229—253, 2003.
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Let X € LO(R,F) and h: 2 x R = R be G ® B(R)-measurable
and lower semicontinuous in z. Then

esssupg h(X) = sup h(z) as.
z€suppg (X)



Fenchel Conjugate and Biconjugate

Definition: Let f : R? — R U {400} be a function. Its Fenchel
(convex) conjugate f* is defined by:

f*(y) := sup {(z,y) — f(2)}.
zER4
The biconjugate f** is the conjugate of f*:
() = sup {{z,y) — *(v)}
y€R4

Fenchel Moreau Theorem: If f is proper, lower semicontinuous,
and convex, then:

=1

Reference: Rockafellar, Convex Analysis, 1970.
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Let f be a function from R to [—00, 00] such that f = oo on R_.
For every real-valued convex function ¢, f* o ¢ is a convex
function.

Let A denote the class of all affine functions defined on R.

Let v € A, v(x) := ax + b, and ¢ be a bijection. Then, (7* o ¢)*
is an affine function given by (v* o ¢)*(z) := ¢~ 1(a)z + b and we
have (7* o p)** =~* 0 .
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Lemma (*)

Suppose that f is a function defined on R with values in

] — 00, 0] such that f = 0o on R_. Then, for every bijection ®
such that 1 is real-valued and convex, there exists a unique
lower semi-continuous convex function A such that h* o ® is lower
semi-continuous, convex and f** = (h* o ®)*. Moreover,

ho= [(Bo®)"oe
hi(@) = sup{(yo®7)(z),7 € Aand 7 < f).
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Main steps
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(7 The super-hedging problem is first solved between time T' — 1
and T for an European claim &7 = gr(St) where g >0 is a
convex function.
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Super-Hedging Prices at Time T—1

We denote by:
Pr_1(gr) := Pr-1(97,07r—2)

the set of all super-hedging prices of the contingent claim
ér = gr(St).

We show that

Pr-1(9r) = Pr_1(gr) + L°(R4, Fr_1),
where:

Pr_i(ar) = {f;'_;[(_oT—l) +0r_187_1 +kr_1|A07_1|S7_1: 07_1 € LO(R, -7"'1"—1)} )

fr-1(z) = —gr (=) + ssupp;T_l (87) ().

Where for a (random) set I C R :
67(2) := (+00) - lo\r-
Main idea: Use the self-financing definition.
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Infimum Super-Hedging Price

The infimum price of gr at time T—1 is given by:

pr-1(gr) = — (fi_10 95} ,) (S7-1),
where the function ®,._, is defined as:

®o,_, (z) ;=2 — kp—_1 |z + O1—2| .
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Key Tool:
Let f be a H-normal integrand on R. Then:
. . 0 .
ess infy {f(A) : A e L°(R, ’H)} = ;g'Rf(a).
Proof Outline
pr—1(97) = ess inf Pr_;(g7)
= ;2{1 [f7_1(—2) + 287_1 + kr—_1|z — O7_2|ST_1]
= —sup [~ f7-1(~2) — 287-1 — kr—1|2 — Or—2|ST—1]
z
= — SIGIE [—f}_l(z) + 287—1 — kr—1|2 + 0T_2|ST_1]

= —sup [ST—1Po,_,(2) — f7_1(2)]
z€R

_ _ px -1
= zgﬁ ST—_1%2 fT_lo<I>0T_2(z)]

= _ (f;“—l o <I>0_Tl_2)* (ST_1).
19



Dual Representation of the Infimum Price

Let g be a continuous convex function. Then there exists a
unique lower semi-continuous convex function A7_; such that:

pr—1(97) = —hr-1(ST-1)-
Moreover, hy_; admits the representation:
T % sk -1 *
haﬂ_l = [(hT—l (o] QoT_z) (o] éoT—ZjI )
where

hra(z) =sup{(1" 0B )"(@) : Y€ A 7S fra}.
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Proof of Theorem

Since fr_1 = co on R_ and ®g,_, is a bijection such that @;;_2 is
convex, Lemma (*) is in force hence there exists a unique lower
semi-continuous convex function denoted h7_1 such that
Jr_1=hp_q 0o ®as_,. Therefore,

pr-1(gr) = —(f7_10985" )" (Sr-1)

= _(h’;‘—l o ®g,_,0 ‘I’(;q}_z)*(ST—l)
= —hq‘—l(ST—l)-
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Proof of Theorem

Since fr_1 = co on R_ and ®g,_, is a bijection such that @;;_2 is
convex, Lemma (*) is in force hence there exists a unique lower
semi-continuous convex function denoted h7_1 such that
Jr_1=hp_q 0o ®as_,. Therefore,

pr-1(gr) = —(f7_10985" )" (Sr-1)

= _(h’;‘—l o ®g,_,0 ‘I’(;q}_z)*(ST—l)
= —hq‘—l(ST—l)-

AThe random function hr_;(-) may depend on St_; so that the
mapping St—1 — hs—1(ST-1) could be non convex.
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= Denote Cr_; the conditional support of St w.r.t. the

o-algebra Fp_1.
= Assume that Cr_; is a random compact interval of the form

[mg_1, Mr_1], where mp_q, Mr_1 € LO(R4, Fr_1) satisfy
mp_1 < Mrp_q a.s..
Yr_1 :=gr(Mr_1)

We define:  yr—1 := gr(mr-1),
m}_—l Mp_y Mfl-i"_—l Mr_,
mr—1 mr—1 Mr_4 Mr_,
1+krq | 1—kr_a | 14+kra | 1—kr

= The discrete-time delta-hedging strategy at time T'—1 is given

by:

Y —yr
aQp_q = M—.
T-1—mr_1
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The infimum super-replicating price of gr at time T' — 1 satisfies:

Fad | <or_a

pr—1(9T) = —00, Sr_1< 'm;_l or Sp_1 > Mg,

=yr_1+6p_a(S7_1 —mr_1), mi_, <Sp_i<mg_,,

=yr-1+ 03-_1(5'1'—1 —mr_1) + kr_1(67-2 — a?p_l)ST_l, my_  <Sp_1 <M, ..
If ag,_l > 0732,
pr_i1(9r) = o0, Sp_1<m}_ orSpr_y1>M5 ,
=yr_1+ay_y(ST_1 —mr_1) +kr_1(ay_y —67_3)ST_1, mI_, < Sr_1< M},

=yr_1+4a%_y(S7—1 —mp_1) + (Mp_1 — Sr_1)(ad_, — O7_2), M;:_l <Sr_1<M
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Absence of Immediate Profit (AIP)

> An immediate profit at time ¢ — 1 relatively to the payoff
function g; at time ¢ is an infimum price p;—1(g:) such that we

have P(p;—1(g:) = —o0) > 0.

Definition (AIP)
We say that the relative AIP condition holds for g; at time ¢t — 1 if
there is no immediate profit at time ¢ — 1 relatively to the payoff

function g;.
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Corollary
The following statements are equivalent:

1) AIP holds at time T' — 1,
2) mi_; < Sr—1 < Mg, as,

3) pT—l(oT—2 = 07 gT) 2> Oa a.8..
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Corollary

The following statements are equivalent:
1) AIP holds at time T' — 1,
2) mi_; < Sr—1 < Mg, as,

3) pT—l(oT—2 = 07 gT) 2> Oa a.8..

Corollary

Suppose that mp_1 = @r—1S7—1 and Mp_1 = Br—1S7—1 where
0 < ar_1 < Br_1 are deterministic. Then, AIP holds at time
T—-1ifandonlyifar_3 <1+ kpr_yand Bpr_1 >1—kpr_;.
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Minimum Super-Hedging Price at Time 7' — 1

Let g be a continuous convex function and let 7_» € L°(R,, Fr_3) be
given. Suppose:

» mr_1 =ar-1S7-1 and Mr_1 = Br_1S7-1,

= where 0 < ar_; < Br_1 are deterministic,

= and that AIP holds at time 7" — 1.

Then, the infimum super-hedging price pr_1(g91) € Pr—1(gr) is given
by:

pr-1(97) = yr—1 + (1 — @r—1)a%_;Sr—1 + 6r_1]a%_; — Or_2|Sr_1

where:
min(kr—1,1 —ar—1) ifad_; < 0r_o,
Oor_1 =

min(kr—1,fr-1—1) ifa%_; > 0r_o.
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Optimal strategy

Moreover, an optimal strategy is:

opt 0
0TP_1 = avT_llelI'_l + 0T_21B;1

-1

with:
Bp_; = ({kT—l <l-ori}n{ad ; < 9T—2})
U ({kT—1 <Br-1—-1}n{ad_; > 9T—2}) )
T—1= ({kT_1 >1-or_1}N{ad_; < 9T—2})
u ({kT—l > Br_1 —1}n{ad_; > 9T—2}) .
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To summarize:

= The super-hedging problem is first solved between time T" — 1

and T for an European claim &7 = gr(St) where g7 >0 is a
convex function.

A\ Absence of Immediate Profit assumption.

1= Under the assumption that the conditional supports of the

relative prices &'sti are deterministic intervals, we show that at
time T —1,

= There exists minimal super-hedging prices

Pr_y = Pr_,(0r—2)
A Depends on the strategy 07_o chosen at time T — 2.

We get a specified form gr_1(67—2, S7—1) = Pj_;(07-2).

Yt Note that gr_; is still a convex function in S7_;.
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Second Step:

The dependence of g;, t < T — 1, w.r.t. ;1 is iteratively identified

so that the second step consists in solving the unusual
super-hedging price problem of the form

Vi1 + 0;—1A8; — kt—1|A0;1]St-1 > g4(6¢-1, St)-
Our assumption is the following:

= The payoff function g; at time ¢ is of the form:

gt(at_l, :v) = 1,=IlnaXN gfg (et—h w) (*)

» The mapping = — gi(0;—1,7) is

= gi(0s—1,7) = §i(x) — pib;—_1x

(fiE)N., are deterministic such that 1+ it > 0.

(3.1)
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Third Step:

= Check the propagation property to ensure the infimum
super-hedging price remains a payoff function of the underlying
asset in the conjectured form.

= The AIP condition is required at each step to avoid negative

infinite prices.
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Vi1

[\

9t(0s-1, St) — 0e—1AS; + ky—1|0e—1 — 02| S;—1,
esssupgz, ; (9:(6:—1,8:) — 0:-15:) +0:_18¢—1 + kt—1|A0;_1]S; 1.

/

ess supr, , (9:(0:—1,5:) — 0:-15%)

ess sup,_, (9§(0e—1,2) — 0:-15¢)

= ,max esssupgr, (9%(8:-1, St) — 6:—1.5¢)

=1,..,0V

-~

sup  (3:(2) — A1z — 6-12)
2€suppr, , (Se

sup (g(z) — O—12)

z€K;_,

sup(—0;-12 — f(z))
z€R

(fi)*(—e-).
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= V;—1 is a super-hedging price if and only if

Vi1 2 ff(=0t-1) — 0015 + 0151 + ke—1|A0;—1|S;—1
Vt—;(gt—1)

= The set of all super-hedging prices at time ¢ — 1 is given by

Vie1(9t) = {Vie1(6:-1) : 6:—1 € L°(R, Ft—1)} + L°(Ry, Fi—1)

= The infimum super-hedging price is defined as:

Pt—1(g¢) = ess inf V;_1(gt)
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The infimum super-hedging price at time ¢ — 1 satisfies the
following:

pe1(91) = —(fi=1 095", ) (Se-1)

A Distorted Legendre-Fenchel biconjugate makes computations
more complicated.
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The AIP condition holds at time ¢ — 1 relatively to the payoff
function g; if and only if

ke—1 > max(aj_y — 1,1 - BY,).

= suppr, ,St/St—1 = [o—1,Bi—1]
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Theorem

Suppose that AIP condition holds. The infimum super-hedging
price at time t — 1 satisfies pt—1(gt) = gt—1(0¢—2, St—1) where
9i—1 is a payoff function of the form (x) with ¢ replaced by ¢t — 1.
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Suppose that k;—1 > |of_; — 1|. Suppose that g; is a convex
payoff function satisfying the form (x). Then, the infimum
superhedging price p;—1(g;) at time ¢ — 1 satisfies *

L
9t—1(0¢—2,S¢t-1) = (if?)aé)f\l 9.1 (0:—2,S:-1) V max 9,1 (0s—2, St—1),

where

gZ’_j]_(ot—%m) = g:fl(w) - ﬂi’zlot—2ma (7".7) € Ala
971(@) = N1GH@) + Q- N1)FEH @), (6,5) € Ay,

gtl,—il(ot—%x) = §t1f1 (:73) - ﬂ:flat—2x’ i€ AZ’

Al

5.0 (x) = €45 1(x)+ (1 —€_1)Fi_1(z), i€

We adopt the convention max(@) = —oo.
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Parameter Expression

el 1

€_, 1-—P=L <1, i=2,...,N
at_l(ﬂ% )

€_, 1—”(,”—1131, i=N+1,...,2N
-1 — Qi

P—1 (1+k—1) — (1 + 4)oe—1 >0

Sets:
Ay ={G,5) € {L,...,2NY 1 e <0, > 0},
A2={je{1,...,2N}:e{_1>0}.

Associated Quantities:

N I (>
\id | — M €0,1], (4,4) € A4,

-1 ; -
ety _62 1l
€ Pt—1 ..
,u,t”1=kt 1+% 1i-13 > -1, (3,5) € Aq,
t—1

1-1 = (pt—1 — kt—1)1{1:=1} + kt—11{,-¢1} >—1, i€ As.
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Associated Optimal Strategy

Proposition

Let g; be a convex payoff function of the form (x). Suppose that
ki1 > |a%_1 — 1|, then an optimal strategy associated to the
minimal super-hedging price p;_1(g:) is

077 = a1-1(_1) 140, _3<ar1(0)} T Ot-21{8,_ 521 (O}
where a;_; is solution to the following minimization problem:

. 1
of_y € arg puin |A4)(B) ~pi-1(ar),

Ly ={L;: i#3,8i_1<0and 5’3—1 > 0}.
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Parameters:

pi =1—,0(i) =7 = 1
N N P I

o, =b9 |4, =8, (gg(at—lst—l)_gi}(at—lst—l))
1

j=2,...,N

L o= . j=N+1,...,2N
’ (IBg—lN_a%—l)St—l

o, =#_, (gg_N(:Bt—lst—l) - g}(at_lst_l))

ai—1 = m=2i"'72N (b:—l _p;.—la)
Auxiliary Quantities:

di_y = 0i-2(1—03_1)St-1, s;_1 =1,
di1=(1—04_1)S1bi_y, si1=1—(1—0f1)Se1pi 1, i=2,..

@) =di_; +8_,a, i=1,...,2N.

*

I; j solves Ai_(Ii;) = Al_, (L),

AY = max Ai .
t=1 7 an Tl 39
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Thank you For your attention !

= Lepinette, E., Omrani, A. (2025). Beyond the Leland
strategies. arXiv preprint arXiv:2503.02419.
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