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Choose Your Moves Wisely!

You hold a portfolio that should be worth 1000 in 3 months.

• You want to hedge the risk of
market movements.

• You plan to adjust your position at
several dates.

• But each trade comes with
transaction costs.

Key question:
What is the minimal initial price I need today to hedge
my portfolio safely?
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Framework

• Discrete-time financial market:
(Ω, (Ft)Tt=0,P)

• A riskless bond with price: S0
t = 1 (zero interest rate).

• A risky asset with price process:
S = (St)Tt=0.

• Transaction costs represented by proportional rates:
(kt)T−1

t=0 .
• Investment strategy: θ = (θt)T−1

t=0 , representing the portfolio
adjustments at each trading date.

❐ Motivation:
• Transaction costs are considered.
• No specific assumption on how prices evolve (no fixed model).
• The portfolio can be adjusted at an arbitrary number of dates.
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Self-Financing Portfolio with Transaction Costs

We define a self-financing portfolio (Vt)Tt=0 with the following
dynamics:

∆Vt = θt−1∆St − kt−1|∆θt−1|St−1︸ ︷︷ ︸
△! Transaction costs

❐ Vt is interpreted as a super-hedging price at time t for a
given payoff ξT if

VT ≥ ξT almost surely.
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Objective

Solve the superhedging problem:

• Define the set of admissible strategies and values:

V = {(V, θ) : VT ≥ g(ST )}

where g is a convex payoff function.

• Compute the minimal initial capital required to superhedge:

P ∗
0 = ess inf{V0(θ) : (V, θ) ∈ V}

Approach:

• Use conditional supports of the relative prices.
• Rely on conditional essential supremum / infimum.
• Apply Fenchel conjugate and biconjugate tools.

△! No need for martingale measures.
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Conditional Support

Definition: Let X be an Rd-valued random variable on (Ω,F ,P),
and let G ⊆ F be a sub-σ-algebra. The conditional support of X
given G, denoted suppG(X), is the smallest G-measurable closed
set-valued map C : Ω → 2Rd such that

P(X ∈ C | G) = 1 a.s.
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Conditional Essential Supremum

Definition (Cardaliaguet et al., 2003): Let (Ω,F ,P) be a
probability space, and let G ⊆ F be a sub-σ-algebra. For a
non-empty family A of F-measurable random variables, the
conditional essential supremum of A given G, denoted ess supG A,
is the unique (a.s.) G-measurable random variable Z such that:

• Z ≥ X a.s. for all X ∈ A;
• if Y is any other G-measurable random variable with Y ≥ X

a.s. for all X ∈ A, then Y ≥ Z a.s.
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Properties of Conditional Essential Supremum

• Tower Property: If H ⊆ G ⊆ F , then

ess supH ess supG A = ess supHA a.s.

• Monotonicity: If A ⊆ B, then

ess supG A ≤ ess supG B a.s.

• Stability under G-measurable shifts: For any Z ∈ L0(Ω,G),

ess supG{X + Z : X ∈ A} = ess supG A+ Z a.s.

Reference: E. N. Barron, P. Cardaliaguet, and R. Jensen,
Conditional Essential Suprema with Applications, Applied
Mathematics and Optimization, 48(3):229−253, 2003.
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Key tool

Proposition
Let X ∈ L0(R,F) and h : Ω× R → R be G ⊗ B(R)-measurable
and lower semicontinuous in x. Then

ess supG h(X) = sup
x∈suppG(X)

h(x) a.s.
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Fenchel Conjugate and Biconjugate

Definition: Let f : Rd → R ∪ {+∞} be a function. Its Fenchel
(convex) conjugate f∗ is defined by:

f∗(y) := sup
x∈Rd

{⟨x, y⟩ − f(x)} .

The biconjugate f∗∗ is the conjugate of f∗:

f∗∗(x) := sup
y∈Rd

{⟨x, y⟩ − f∗(y)} .

Fenchel Moreau Theorem: If f is proper, lower semicontinuous,
and convex, then:

f = f∗∗.

Reference: Rockafellar, Convex Analysis, 1970.
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Lemma

Let f be a function from R to [−∞,∞] such that f = ∞ on R−.
For every real-valued convex function ϕ, f∗ ◦ ϕ is a convex
function.

Let A denote the class of all affine functions defined on R.
Lemma

Let γ ∈ A, γ(x) := ax+ b, and ϕ be a bijection. Then, (γ∗ ◦ ϕ)∗
is an affine function given by (γ∗ ◦ ϕ)∗(x) := ϕ−1(a)x+ b and we
have (γ∗ ◦ ϕ)∗∗ = γ∗ ◦ ϕ.
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Lemma (*)
Suppose that f is a function defined on R with values in
]−∞,∞] such that f = ∞ on R−. Then, for every bijection Φ
such that Φ−1 is real-valued and convex, there exists a unique
lower semi-continuous convex function h such that h∗ ◦ Φ is lower
semi-continuous, convex and f∗∗ = (h∗ ◦ Φ)∗. Moreover,

h = [(h∗1 ◦ Φ)∗∗ ◦ Φ−1]∗;
h1(x) := sup{(γ∗ ◦ Φ−1)∗(x), γ ∈ A and γ ≤ f}.
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Firste step

❐ The super-hedging problem is first solved between time T − 1
and T for an European claim ξT = gT (ST ) where gT ≥ 0 is a
convex function.
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Super-Hedging Prices at Time T−1

We denote by:

PT−1(gT ) := PT−1(gT , θT−2)

the set of all super-hedging prices of the contingent claim
ξT = gT (ST ).

We show that

PT−1(gT ) = P̄T−1(gT ) + L0(R+,FT−1),
where:
P̄T−1(gT ) =

{
f∗
T−1(−θT−1) + θT−1ST−1 + kT−1|∆θT−1|ST−1 : θT−1 ∈ L0(R,FT−1)

}
,

fT−1(x) = −gT (x) + δsuppFT−1 (ST )(x).

Where for a (random) set I ⊆ R :
δI (z) := (+∞) · 1Ω\I .

Main idea: Use the self-financing definition.
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Infimum Super-Hedging Price

The infimum price of gT at time T−1 is given by:

pT−1(gT ) = −
(
f∗
T−1 ◦ Φ−1

θT−2

)∗
(ST−1),

where the function ΦθT−2 is defined as:

ΦθT−2(x) := x− kT−1 |x+ θT−2| .
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Key Tool:

Let f be a H-normal integrand on R. Then:

ess infH
{
f(A) : A ∈ L0(R,H)

}
= inf

a∈R
f(a).

Proof Outline

pT−1(gT ) = ess inf PT−1(gT )
= inf

z∈R

[
f∗
T−1(−z) + zST−1 + kT−1|z − θT−2|ST−1

]
= − sup

z∈R

[
−f∗

T−1(−z)− zST−1 − kT−1|z − θT−2|ST−1
]

= − sup
z∈R

[
−f∗

T−1(z) + zST−1 − kT−1|z + θT−2|ST−1
]

= − sup
z∈R

[
ST−1ΦθT−2(z)− f∗

T−1(z)
]

= − sup
z∈R

[
ST−1z − f∗

T−1 ◦ Φ−1
θT−2

(z)
]

= −
(
f∗
T−1 ◦ Φ−1

θT−2

)∗
(ST−1).
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Dual Representation of the Infimum Price

Theorem

Let gT be a continuous convex function. Then there exists a
unique lower semi-continuous convex function hT−1 such that:

pT−1(gT ) = −hT−1(ST−1).

Moreover, hT−1 admits the representation:

hT−1 =
[
(h̄∗T−1 ◦ ΦθT−2)

∗∗ ◦ Φ−1
θT−2

]∗
,

where

h̄T−1(x) := sup
{
(γ∗ ◦ Φ−1

θT−2
)∗(x) : γ ∈ A, γ ≤ fT−1

}
.
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Proof of Theorem

Since fT−1 = ∞ on R− and ΦθT−2 is a bijection such that Φ−1
θT−2

is
convex, Lemma (*) is in force hence there exists a unique lower

semi-continuous convex function denoted hT−1 such that
f∗
T−1 = h∗T−1 ◦ ΦθT−2 . Therefore,

pT−1(gT ) = −(f∗
T−1 ◦ Φ−1

θT−2
)∗(ST−1)

= −(h∗T−1 ◦ ΦθT−2 ◦ Φ
−1
θT−2

)∗(ST−1)
= −hT−1(ST−1).

△! The random function hT−1(·) may depend on ST−1 so that the
mapping ST−1 7→ ht−1(ST−1) could be non convex.
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Notations

• Denote CT−1 the conditional support of ST w.r.t. the
σ-algebra FT−1.

• Assume that CT−1 is a random compact interval of the form
[mT−1,MT−1], where mT−1,MT−1 ∈ L0(R+,FT−1) satisfy
mT−1 < MT−1 a.s..

We define: yT−1 := gT (mT−1), YT−1 := gT (MT−1)

m+
T−1 m−

T−1 M+
T−1 M−

T−1
mT−1

1 + kT−1

mT−1
1− kT−1

MT−1
1 + kT−1

MT−1
1− kT−1

• The discrete-time delta-hedging strategy at time T−1 is given
by:

a0T−1 :=
YT−1 − yT−1
MT−1 −mT−1

.
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Explicitly!

The infimum super-replicating price of gT at time T − 1 satisfies:

If a0
T−1 ≤ θT−2,

pT−1(gT ) = −∞, ST−1 < m+
T−1 or ST−1 > M−

T−1,

= yT−1 + θT−2(ST−1 − mT−1), m+
T−1 ≤ ST−1 < m−

T−1,

= yT−1 + a0
T−1(ST−1 − mT−1) + kT−1(θT−2 − a0

T−1)ST−1, m−
T−1 ≤ ST−1 ≤ M−

T−1.

If a0
T−1 ≥ θT−2,

pT−1(gT ) = −∞, ST−1 < m+
T−1 or ST−1 > M−

T−1,

= yT−1 + a0
T−1(ST−1 − mT−1) + kT−1(a

0
T−1 − θT−2)ST−1, m+

T−1 ≤ ST−1 < M+
T−1,

= yT−1 + a0
T−1(ST−1 − mT−1) + (MT−1 − ST−1)(a

0
T−1 − θT−2), M+

T−1 ≤ ST−1 ≤ M−
T−1.
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Absence of Immediate Profit (AIP)

➢ An immediate profit at time t− 1 relatively to the payoff
function gt at time t is an infimum price pt−1(gt) such that we
have P(pt−1(gt) = −∞) > 0.

Definition (AIP)
We say that the relative AIP condition holds for gt at time t− 1 if
there is no immediate profit at time t− 1 relatively to the payoff
function gt.
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Corollary
The following statements are equivalent:

1) AIP holds at time T − 1,

2) m+
T−1 ≤ ST−1 ≤ M−

T−1, a.s.,

3) pT−1(θT−2 = 0, gT ) ≥ 0, a.s..

Corollary

Suppose that mT−1 = αT−1ST−1 and MT−1 = βT−1ST−1 where
0 ≤ αT−1 < βT−1 are deterministic. Then, AIP holds at time
T − 1 if and only if αT−1 ≤ 1 + kT−1 and βT−1 ≥ 1− kT−1.
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Minimum Super-Hedging Price at Time T − 1

Let gT be a continuous convex function and let θT−2 ∈ L0(R,FT−2) be
given. Suppose:

• mT−1 = αT−1ST−1 and MT−1 = βT−1ST−1,

• where 0 ≤ αT−1 < βT−1 are deterministic,

• and that AIP holds at time T − 1.

Then, the infimum super-hedging price pT−1(gT ) ∈ PT−1(gT ) is given
by:

pT−1(gT ) = yT−1 + (1− αT−1)a0T−1ST−1 + δT−1|a0T−1 − θT−2|ST−1

where:

δT−1 =
{
min(kT−1, 1− αT−1) if a0T−1 ≤ θT−2,

min(kT−1, βT−1 − 1) if a0T−1 ≥ θT−2.
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Optimal strategy

Moreover, an optimal strategy is:

θoptT−1 = a0T−11Bl
T−1

+ θT−21Br
T−1

with:

Bl
T−1 =

(
{kT−1 ≤ 1− αT−1} ∩ {a0T−1 ≤ θT−2}

)
∪
(
{kT−1 ≤ βT−1 − 1} ∩ {a0T−1 ≥ θT−2}

)
,

Br
T−1 =

(
{kT−1 ≥ 1− αT−1} ∩ {a0T−1 ≤ θT−2}

)
∪
(
{kT−1 ≥ βT−1 − 1} ∩ {a0T−1 ≥ θT−2}

)
.
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To summarize:

• The super-hedging problem is first solved between time T − 1
and T for an European claim ξT = gT (ST ) where gT ≥ 0 is a
convex function.

△! Absence of Immediate Profit assumption.

☞ Under the assumption that the conditional supports of the
relative prices St+1

St
are deterministic intervals, we show that at

time T − 1,
• There exists minimal super-hedging prices

P ∗
T−1 = P ∗

T−1(θT−2)

△! Depends on the strategy θT−2 chosen at time T − 2.

We get a specified form gT−1(θT−2, ST−1) = P ∗
T−1(θT−2).

✰ Note that gT−1 is still a convex function in ST−1.
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Second Step:

The dependence of gt, t ≤ T − 1, w.r.t. θt−1 is iteratively identified
so that the second step consists in solving the unusual
super-hedging price problem of the form

Vt−1 + θt−1∆St − kt−1|∆θt−1|St−1 ≥ gt(θt−1, St). (3.1)

Our assumption is the following:

• The payoff function gt at time t is of the form:

gt(θt−1, x) = max
i=1,...,N

git(θt−1, x) (⋆)

• The mapping x 7→ git(θt−1, x) is convex.

• git(θt−1, x) = ĝit(x)− µ̂i
tθt−1x

(µ̂i
t)Ni=1 are deterministic such that 1 + µ̂i

t > 0.
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Third Step:

• Check the propagation property to ensure the infimum
super-hedging price remains a payoff function of the underlying
asset in the conjectured form.

• The AIP condition is required at each step to avoid negative
infinite prices.
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Main idea!

Vt−1 ≥ gt(θt−1, St)− θt−1∆St + kt−1|θt−1 − θt−2|St−1,

≥ ess supFt−1

(
gt(θt−1, St)− θt−1St

)︸ ︷︷ ︸+θt−1St−1 + kt−1|∆θt−1|St−1.

ess supFt−1

(
gt(θt−1, St)− θt−1St

)
= max

i=1,...,N
ess supFt−1

(
git(θt−1, St)− θt−1St

)︸ ︷︷ ︸

ess supFt−1

(
git(θt−1, x)− θt−1St

)
= sup

z∈suppFt−1 (St)
(ĝit(z)− µ̂i

tθt−1z − θt−1z)

= sup
x∈Ki

t−1

(ḡit(x)− θt−1x)

= sup
x∈R

(−θt−1x− f̄ i
t (x))

= (f̄ i
t )∗(−θt−1).
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• Vt−1 is a super-hedging price if and only if

Vt−1 ≥ f∗
t (−θt−1)− θt−1St + θt−1St−1 + kt−1|∆θt−1|St−1︸ ︷︷ ︸

Vt−1(θt−1)

• The set of all super-hedging prices at time t− 1 is given by

Vt−1(gt) = {Vt−1(θt−1) : θt−1 ∈ L0(R,Ft−1)}+ L0(R+,Ft−1)

• The infimum super-hedging price is defined as:

pt−1(gt) = ess inf Vt−1(gt)
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Theorem
The infimum super-hedging price at time t− 1 satisfies the
following:

pt−1(gt) = −(f∗
t−1 ◦ Φ−1

θt−2
)∗(St−1)

△! Distorted Legendre-Fenchel biconjugate makes computations
more complicated.
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Proposition

The AIP condition holds at time t− 1 relatively to the payoff
function gt if and only if

kt−1 ≥ max(α1
t−1 − 1, 1− βN

t−1).

☞ suppFt−1St/St−1 = [αt−1, βt−1]

34



Theorem

Suppose that AIP condition holds. The infimum super-hedging
price at time t− 1 satisfies pt−1(gt) = gt−1(θt−2, St−1) where
gt−1 is a payoff function of the form (⋆) with t replaced by t− 1.
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Proposition

Suppose that kt−1 ≥ |α1
t−1 − 1|. Suppose that gt is a convex

payoff function satisfying the form (⋆). Then, the infimum
superhedging price pt−1(gt) at time t− 1 satisfies 1

gt−1(θt−2, St−1) = max
(i,j)∈Λ1

gi,jt−1(θt−2, St−1) ∨max
i∈Λ2

g1,it−1(θt−2, St−1),

where

gi,jt−1(θt−2, x) = ĝi,jt−1(x)− µ̂i,j
t−1θt−2x, (i, j) ∈ Λ1,

ĝi,jt−1(x) = λi,j
t−1g̃

i
t(x) + (1− λi,j

t−1)g̃
j
t (x), (i, j) ∈ Λ1,

g1,it−1(θt−2, x) = ĝ1,it−1(x)− µ̂1,i
t−1θt−2x, i ∈ Λ2,

ĝ1,it−1(x) = ϵit−1g̃
1
t−1(x) + (1− ϵit−1)g̃it−1(x), i ∈ Λ2.

1We adopt the convention max(∅) = −∞.
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Parameter Expression

ϵ1 1

ϵit−1 1− ρt−1

αt−1(µ̂i
t − µ̂1

t )
≤ 1, i = 2, . . . , N

ϵit−1 1− ρt−1

βi−N
t−1 − α1

t−1
≤ 1, i = N + 1, . . . , 2N

ρt−1 (1 + kt−1)− (1 + µ̂1
t )αt−1 ≥ 0

Sets:

Λ1 =
{
(i, j) ∈ {1, . . . , 2N}2 : ϵit−1 ≤ 0, ϵjt−1 > 0

}
,

Λ2 =
{
j ∈ {1, . . . , 2N} : ϵjt−1 > 0

}
.

Associated Quantities:

λi,j
t−1 =

|ϵjt−1|(1− ϵit−1)
|ϵjt−1 − ϵit−1|

∈ [0, 1], (i, j) ∈ Λ1,

µ̂i,j
t−1 = kt−1 +

ϵit−1ρt−1

1− ϵit−1
· 1{j=1} > −1, (i, j) ∈ Λ1,

µ̂1,i
t−1 = (ρt−1 − kt−1)1{i=1} + kt−11{i ̸=1} > −1, i ∈ Λ2. 37



Associated Optimal Strategy

Proposition

Let gt be a convex payoff function of the form (⋆). Suppose that
kt−1 ≥ |α1

t−1 − 1|, then an optimal strategy associated to the
minimal super-hedging price pt−1(gt) is

θoptt−1 = at−1(α∗
t−1)1{θt−2<at−1(0)} + θt−21{θt−2≥at−1(0)},

where α∗
t−1 is solution to the following minimization problem:

α∗
t−1 ∈ arg min

E∈It−1
|A(1)

t−1(E)− pt−1(gt)|,

It−1 = {Ii,j : i ̸= j, sit−1 ≤ 0 and sjt−1 ≥ 0}.
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Parameters:

pit−1 = p̄
σ(i)
t−1 p̄jt−1 = 1

(αj
t−1 − α1

t−1)St−1
, j = 2, . . . , N

bit−1 = b̄
σ(i)
t−1 b̄jt−1 = p̄jt−1

(
ĝjt (αt−1St−1)− ĝ1t (αt−1St−1)

)
p̄jt−1 = 1

(βj−N
t−1 − α1

t−1)St−1
, j = N + 1, . . . , 2N

b̄jt−1 = p̄jt−1

(
ĝj−N
t (βt−1St−1)− ĝ1t (αt−1St−1)

)
at−1 := maxi=2,...,2N

(
bit−1 − pit−1α

)
Auxiliary Quantities:

d1t−1 = θt−2(1− α1
t−1)St−1, s1t−1 = 1,

dit−1 = (1− α1
t−1)St−1b

i
t−1, sit−1 = 1− (1− α1

t−1)St−1p
i
t−1, i = 2, . . . , 2N,

Ai
t−1(α) = dit−1 + sit−1α, i = 1, . . . , 2N.

Ii,j solves Ai
t−1(Ii,j) = Aj

t−1(Ii,j),

A
(1)
t−1 = max

i=1,...,2N
Ai

t−1. 39



To sum up..!
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Thank you For your attention !

• Lepinette, E., Omrani, A. (2025). Beyond the Leland
strategies. arXiv preprint arXiv:2503.02419.
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