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Motivation Stochastic Optimal Control Numerical resolution with Deep Learning

Portfolio Management basis visualized

State process X = (Xt)t0≤t≤tN takes values in Rd .
Control process u = (ut)t0<t≤tN takes values in U ⊂ Rd ′

compact.
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Portfolio Management basis visualized

∆X u
t0,x0(ti ) = µ

(
X u
t0,x0(ti ), ut

)
∆t + σ

(
X u
t0,x0(ti ), ut

)
∆Wti

X u
t0,x0(t0) = x0

with ∆Wti := Wti −Wti−1 multi-dimensional Brownian increment.
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Portfolio Management basis visualized

D := {(t, x , p) ∈ [t0, tN ]×Rd+1 : ∃u admissible s.t G (X u
t0,x0(tN) ≤ p}

U(t0, x0, p) := {u = (uti )i=1,...N admissible : G (X u
t0,x0(tN)) ≤ p}
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Portfolio Management basis visualized

Value function : V (t0, x0, p) := maxu∈U(t0,x0,p) E
[
F (X u

t0,x0(tN)
]

Questions :

What are the characteristics of V ? (PDE)

Existence ? Unicity ? Smoothness ?

Numerically, how to solve this problem ?
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Continuous framework

For t ∈ [0,T ], x ∈ Rd , u ∈ U (the set of admissible control),

X u
t,x(s) = x+

∫ s

t
µ(X u

t,x(r), ur )dr+

∫ s

t
σ((X u

t,x(r), ur )dr)∀t ≤ s ≤ T

(1)
where µ and σ are bounded, continuous, and Lipschitz in its first
variable uniformly in the second one.
For a given p ∈ R, the value function

V (t, x , p) := sup
u∈U(t,x ,p)

E[F (X u
t,x(T )] (2)

where
U(t, x , p) := {u ∈ U : E

[
G (X u

t,x(T )) +
∫ T
t g(X u

t,x(r), ur )dr
]
≤ p}

and F ,G , and g are continuous with polynomial growth.
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Viable Domain and its characterization

We define the viable domain D

D := {(t, x , p) ∈ [0,T ]× Rd+1 : U(t, x , p) ̸=∅}
= {(t, x , p) ∈ [0,T ]× Rd+1 : ∃u ∈ U s.t

E
[
G (X u

t,x(T )) +

∫ T

t
g(X u

t,x(r), ur )

]
≤p} (3)

Alternatively, we can also look at the boundary value of the viable
domain defined as

w(t, x) := inf{p : U(t, x , p) ̸= ∅}

= inf
u∈U

E
[
G (X u

t,x(T )) +

∫ T

t
g(X u

t,x(r), ur )

]
(4)

Then, we can write D = {(t, x , p) ∈ [0,T ]×Rd+1 : p ≥ w(t, x)}.
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Viable Domain and its characterization

Furthermore, we can partition the viable domain as:

intPD := {(t, x , p) ∈ [0,T )× Rd+1 : p > w(t, x)}
∂PD := {(t, x , p) ∈ [0,T )× Rd+1 : p = w(t, x)}
∂TD := {(t, x , p) ∈ {T} × Rd+1 : p ≥ w(t, x)}

Why this partition ?
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Martingale representation of the constraint

Key idea : represent the constraint value p by a Martingale process.

E
[
G (X u

t,x(T ))
]
≤ p ⇐⇒ ∃a ∈ A s.t Ma

t,p ≥ w(·,X u
t,x) on [t,T ]

with

Ma
t,p := p +

∫ ·

t
ardWr

where A is a set of progressively measurable processes such that
Ma

t,0 is a martingale.

Kim Anh PHAM CEREMADE - Paris Dauphine PSL

Stochastic Optimal Control under Constraints



Motivation Stochastic Optimal Control Numerical resolution with Deep Learning

Martingale representation of the constraint

Ma
t,p := p +

∫ ·

t
ardWr

Then, the boundary (value) of the viable domain becomes

w(t, x) = inf{p ∈ R : ∃(u, a) ∈ U ×A s.t Ma
t,p ≥ w(·,X u

t,x) on [t,T ]}

and the value function V can be rewritten as

V (t, x , p) = sup{E
[
F (X u

t,x(T ))
]
:

(u, a) ∈ U ×A s.t Ma
t,p ≥ w(·,X u

t,x) on [t,T ]}

Further discussion : Bouchard et al. [1], Bouchard et al. [2]
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PDE Characterization - Operator and Envelopes

Consider the operator

H(t, x , q, q′,A) := − sup
(u,a)∈U×Rd

µ̄(x , u)⊤q +
1

2
Tr

[
(σ̄σ̄⊤)(x , u, a)A

]
+ g(x , u)q′

defined for (t, x , q, q′,A) ∈ [0,T ]× Rd × R× R× Sd+1 where

µ̄(·, u) :=
(

µ(·, u)
0

)
and σ̄(·, u, a) :=

[
σ(·, u)

a

]
, (u, a) ∈ U×Rd

Let H∗ and H∗ be upper- and lower-semicontinuous envelopes of
H. Similarly, V ∗ and V∗ are upper- and lower-semicontinuous
envelopes of V .
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PDE Characterization - Hamiltonian-Jacobi-Bellman

Theorem - Bouchard et al, [2]

V∗ is a viscosity super-solution of

−∂tϕ+ H∗(t, x ,D(x ,p)ϕ,−Dpϕ,D
2
(x ,p)ϕ) ≥ 0 on intpD (5)

ϕ(T , ·) ≥ F on

{(x , p) ∈ Rd+1 :p > G (x)} (6)

and V ∗ is a viscosity sub-solution of

−∂tϕ+ H∗(t, x ,D(x ,p)ϕ,−Dpϕ,D
2
(x ,p)ϕ) ≤ 0 on intpD (7)

ϕ(T , ·) ≤ F on

{(x , p) ∈ Rd+1 :p ≥ G (x)} (8)
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PDE Characterization - Boundary of the domain

Theorem - Bouchard et al, upcoming

Assume that

1 G ∈ C 2
b (R

d), g is bounded, and D2G and g(·, u) are Hölder
continous on Rd , uniformly in u ∈ U. (A)

2 There exists 0 ≤ λσ ≤ Λσ such that
λσ ≤ z⊤(σσ⊤)(x , u, z) ≤ Λσ∀(x , u, z) ∈ Rd × U × ∂B1 (B)

Then w is a smooth solution to

0 = − inf
u∈U

Lu
Xw + g on [0,T )× Rd (9)

where Lu
Xϕ := ∂tϕ+ µ(·, u)⊤Dϕ+ 1

2Tr
[
(σσ⊤)(·, u)D2ϕ

]
is the

Dynkin operator for any smooth function ϕ and u ∈ U.
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PDE Characterization - Boundary of the domain

Assumption

Let U(t, x) := argminu∈U{Lu
Xw + g} be the set of optimal control

at a given coordinate (t, x) ∈ [0,T )×Rd . We assume that U(t, x)
is non-empty and ’continuous’ for every (t, x) ∈ [0,T )× Rd . (C)

Theorem - Bouchard et al, upcoming

Given assumptions (A) and (B), V∗ is a viscosity sub-solution of

− max
u∈U(t,x)

Lu
Xϕ(t, x) = 0, ∀(t, x) ∈ [0,T )× Rd (10)

ϕ(T , x) = F (x), ∀x ∈ Rd (11)

Moreover, if assumption (C) also holds, then V∗ is a viscosity
super-solution of (10)-(11)
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Introduction to Neural Network

Basic layout of a neural network

Hyper-parameters : dimension of input, number of layers, number
of neuron per layer (assuming fully connected), dimension of

output
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Introduction to Neural Network

Mathematical basis of a neural network

Given the i-th layer of the network with an activation function F
and the input Ii , the output of this layer is

Oθ
i = F(WiIi + bi )

where Wi is the weight and bi is the bias.
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Introduction to Neural Network

Mathematical basis of a neural network

Final output :

Oθ = F(W3 · Oθ
2 + b3)

= F(W3 · F(W2 · Oθ
1 + b2) + b3)

= F(W3 · F(W2 · F(W1 · I + b1) + b2) + b3)
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Introduction to Neural Network
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Training a neural network

Pass forward process :

Key idea for training :

pass forward multiple times

update parameters after each pass (to lower loss)

stop the loop when the loss is as low as possible/desirable
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Why Neural Networks ?
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Why Neural Networks ?
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Proposed Algorithm

Numerical resolution steps

1 Estimate the optimal control process uθ = (uθti )i=1,...N

2 Estimate the boundary value of the viable domain wθ

3 Estimate the value function at the boundary Vθ

4 Estimate the optimal control process with the martingal
increment (ũ, ã)θ

5 Estimate the value function on the entire viable domain Vθ
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Step 1 : Estimate the optimal process uθ

Recall the definition of the optimal control process u∗ (discretized)

u∗ = (u∗ti )i=1,...N = argminE

[
G (XtN ) +

1

N

N∑
i=1

g(Xti )

]

Given a sample of initial states X0 = (X j
t0)

j=1,...J and a sample of

brownian increments ∆W = ((∆Wti )i=1,...N)
j=1,...J , practically we

seek to minizie the empirical mean

ûθ = (ûθti )i=1,...N = argmin
∑J

j=1

[
G (X̂ j

tN ) +
1

N

N∑
i=1

g(X̂ j
ti )

]
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Step 1 : Estimate the optimal process uθ

Pseu-do code :

1 Randomly generate a sample of initial states X0 = (X j
t0)

j=1,...J

and a sample of brownian increments
∆W = ((∆Wti )i=1,...N)

j=1,...J

2 For e = 1 to Nu
e (= number of epoch):

Pass forward (X0,∆W) through the network ûθ to get the full

trajectories X̂ =
(
(X̂ j

ti )i=1,..N

)j=1,...J

Compute the cumulative loss Lu(ûθ)
Take a gradient descent step
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Step 2: Estimate the boundary value wθ

In theory, w should satisfy

0 = − inf
u∈U

Lu
Xw + g on [0,T )× Rd

w(T , ·) = G on Rd

Assuming that the optimal control network ûθ is well trained, then
within our discretized framework, we would train ŵθ to satisfy

0 = Lûti
X ŵθ + g∀ti ∈ {t0, ...tN−1}

ŵθ(tN , X̂tN ) = G (X̂tN )

where (X̂ti )i=1,...N is any trajectory generated by passing a
randomly selected initial state x0, a random Brownian movement
W through the trained network ûθ.

Physics-Informed Neural Network : a method used to train
neural network which emphasizes on the (PDE) characteristics of
the function that the network aims to approximate.
Data for training :

Loss function :

Lw (wθ|X0,∆W) :=
1

J

J∑
j=1

1

N

N−1∑
i=0

∣∣∣Lu
Xwθ(ti , X̂

j
ti ) + g(X̂ j

ti , û
θ,j
ti )

∣∣∣2
+

1

J

J∑
j=1

∣∣∣wθ(tN , X̂
j
tN )− G (X̂ j

tN )
∣∣∣2
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Thank you for your attention !
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