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Motivation
®00

Portfolio Management basis visualized

State process X = (X;)g<t<t, takes values in RE.
Control process u = (ut)s,<t<t, takes values in U C RY compact.

terminal constraint to respect

GCXn) <p

F(Xn)
terminal reward to maximize

State of portfolio: X, X1 X, Xn-

1
Control : Uy Uy Un

to t ta tn-1 ty
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Motivation
®00

Portfolio Management basis visualized

terminal constraint to respect

GXn) <p

F(Xn)
terminal reward to maximize
State of portfolio: X, Xy X, Xn-1
Control : Uy U,
I N I/\I I 1

to 2] ty In-1 ty

A t07XO( ):,U,( toXo( )ut) At+U(Xt0XO( )Ut)Ath
tl(l),xo(to):XO

with AW;, := Wy, — W;,_, multi-dimensional Brownian increment.
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Motivation
oceo

Portfolio Management basis visualized

back-propagate the constraint

O A terminal constraint to respect
Viable domain: D Dy D, Dn-1 GCXy) <p
1 1 1 1
1 1 1 '
1 1 1
i i i . F(Xn)
1 ] I 1 terminal reward to maximize
v \ A A
State of portfolio: X, X X5 Xn-1 u
Control : Uy u, /N\
= | :
to 2] L tn-1 Iy
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Motivation
oceo

Portfolio Management basis visualized

back-propagate the constraint

Pl terminal constraint to respect
Viable domain: Dy Dy D, Dn-1 G(Xy) < r

i i i i
i i i ; F(Xy)
] I 1 1 terminal reward to maximize
v A v A

State of portfolio: X, X X X

. 0 1 2 N-1 o
Control : Uy Uy N

D = {(t,x,p) € [to, ty] xRI*? : Ju admissible s.t G(X! , (ty) < p}

to,Xo0

U(to, x0, p) := {u = (u;)i=1,...n admissible : G(Xy , (tn)) < p}
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Motivation
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Portfolio Management basis visualized

demmm e liaf }(;p_rlip a ga_t € tf E:C_Dfsfr_u if L terminal constraint to respect
Viable domain : Dy D, D, Dn-1 GXy) <p
1 1 1 |
1 I 1 |
: : : : F(Xy)
I | 1 | terminal reward to maximize
v v A v
State of portfolio: X, X4 X, XN-1 u

Control : Uy Uy /_N\

———— : :
to 2] ) tn-1 tn

Value function : V/(to, x0, p) 1= MaXyeu(to.x0,p) B [F (X (tn)]
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Motivation
ocoe

Portfolio Management basis visualized

____________ liaf}(;p_rlip a ga_te_tﬁz E:C_Dfsfr_u n r_ — ——_____ terminal constraint to respect

Viable domain : Dy D, D, Dn-1 GXy) <p
i i i i
: ! ' ! F(Xy)
I | 1 | terminal reward to maximize
v v A v
State of portfolio: X X4 X, Xn_1
Control : Uy Uy /QN\
| N I/\I } }
to ty ty ty-1 ty

Value function : V/(to, x0, p) 1= MaXyeu(to.x0,p) B [F (X (tn)]
Questions :

m What are the characteristics of V' ? (PDE)
m Existence ? Unicity 7 Smoothness ?

m Numerically, how to solve this problem ?
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Stochastic Optimal Control
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Continuous framework

For t € [0, T],x € R, u € U (the set of admissible control),

where 1 and o are bounded, continuous, and Lipschitz in its first
variable uniformly in the second one.
For a given p € R, the value function

V(t,x,p):= sup E[F(X(T)] (2)
uel(t,x,p)

where
Ult,x,p) = {ucld E [G(X;’X(T + [T e(Xu(r), u,)dr} < p}
and F, G, and g are continuous with polynomial growth.
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Stochastic Optimal Control
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Viable Domain and its characterization

We define the viable domain D

D := {(t,x,p) € [0, T] x R : (¢, x, p) #0}
= {(t,x,p) € [0, T] xR :FuecU st

e[om+ [ st] <0 @)
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Stochastic Optimal Control
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Viable Domain and its characterization

We define the viable domain D
D= {(t,x,p) € [0, T] x R - U(t,x, p) #0}
= {(t,x,p) €[0, T] x R : Ju e st
T
E [G(x:,X(T)H / g(xzx(r),ur)] NG

Alternatively, we can also look at the boundary value of the viable
domain defined as

w(t,x) :=inf{p: U(t, x, p) # 0}
.
— it GO+ [ st @

Then, we can write D = {(t, x, p) € [0, T] x R¥*1: p > w(t, x)}.
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Stochastic Optimal Control
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Viable Domain and its characterization

Furthermore, we can partition the viable domain as:

intpD = {(t,x,p) € [0, T) x R : p > w(t,x)}
dpD = {(t,x,p) € [0, T) x R : p = w(t,x)}
oD = {(t,x,p) € {T} x R : p > w(t,x)}

Kim Anh PHAM CEREMADE - Paris Dauphine PSL

Stochastic Optimal Control under Constraints



Stochastic Optimal Control
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Viable Domain and its characterization

Furthermore, we can partition the viable domain as:

intpD = {(t,x,p) € [0, T) x R : p > w(t,x)}
dpD = {(t,x,p) € [0, T) x R : p = w(t,x)}
oD = {(t,x,p) € {T} x R : p > w(t,x)}

Why this partition 7
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Stochastic Optimal Control
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Martingale representation of the constraint

Key idea : represent the constraint value p by a Martingale process.
E [G(Xt‘jx(T))} <p < JacAst M{, > w(-, X¢,) on [t, T]

with .
Mf”p ::p+/ a,dW,
t

where A is a set of progressively measurable processes such that
Mg is a martingale.

Kim Anh PHAM CEREMADE - Paris Dauphine PSL

Stochastic Optimal Control under Constraints



Stochastic Optimal Control
00080000

Martingale representation of the constraint

Mtip = p—|—/. ardW,
t
Then, the boundary (value) of the viable domain becomes
w(t,x) =inf{p € R:3(u,a) €U x Ast M7, > w(, X;,)on [t, T]}
and the value function V can be rewritten as

V(t,x,p) = sup{E [F(Xt‘fX(T))] :
(u,a) eU x Ast M, > w(-, X;ly) on [t, T]}

Further discussion : Bouchard et al. [1], Bouchard et al. [2]
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Stochastic Optimal Control
00008000

PDE Characterization - Operator and Envelopes

Consider the operator

1
H(t,x,q,q,A) == — sup Ji(x,u) g+ =Tr [(5’5’T)(X, u, a)A}
(u,a)eUxRY 2

+g(x,u)q

defined for (t,x,q,q’,A) € [0, T] x R? x R x R x §9+1 where

i ) = < Hl ) > and 5(-, u, 3) = [ 7t ] (u,2) € UxR?

Let H* and H, be upper- and lower-semicontinuous envelopes of
H. Similarly, V* and Vi, are upper- and lower-semicontinuous
envelopes of V.
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Stochastic Optimal Control L esolution with Deep Learning
00000800 00 o

PDE Characterization - Hamiltonian-Jacobi-Bellman

Theorem - Bouchard et al, [2]
V/ is a viscosity super-solution of
—0:d + H*(t, X, D(x p)®, —=Dp, D(;, y¢) = 0 on int,D (5)
¢(T, ) > F on
{(x,p) €R1:p> G(x)} (6)

and V* is a viscosity sub-solution of

—0t¢ + H*(t, x, Dy py s —Dpp, D ¢) <0 on int,D (7)
gb( T, )< Fon
{(p) €R™ :p> G} (8)
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Stochastic Optimal Control ica lution with Deep Learning
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PDE Characterization - Boundary of the domain

Theorem - Bouchard et al, upcoming

Assume that

G € C3(RY), g is bounded, and D?G and g(-, u) are Holder
continous on RY, uniformly in u € U. (A)

There exists 0 < A\, < A, such that
Ao <z (00 ") (x,u,2) < NV(x,u,z) € R? x U x 9B, (B)

Then w is a smooth solution to

0= — inf Lyw +g on [0, T) x RY (9)
uec

where L4 ¢ := 9;¢ + (-, u) Do+ 3Tr [(00 ")(-, u) D?¢] is the
Dynkin operator for any smooth function ¢ and u € U.
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Stochastic Optimal Control
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PDE Characterization - Boundary of the domain

Assumption

Let U(t,x) := argminycy{L%w + g} be the set of optimal control
at a given coordinate (t,x) € [0, T) x RY. We assume that U(t, x)
is non-empty and 'continuous’ for every (t,x) € [0, T) x R?. (C)
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Stochastic Optimal Control
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PDE Characterization - Boundary of the domain

Assumption

Let U(t,x) := argminycy{L%w + g} be the set of optimal control
at a given coordinate (t,x) € [0, T) x RY. We assume that U(t, x)
is non-empty and 'continuous’ for every (t,x) € [0, T) x R?. (C)
Consider V := V/(-, w(+)) and its envelopes
Vi(t, x) = liminf{V(t',x", w(t',x")) : [0, T] x R? 3 (t',x) = (t,x)}
V*(t, x) := limsup{V(t', x", w(t',x") +¢) :

[0, T] x RY x (0,00) 3 (', x,€) — (¢, x,0)}
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Stochastic Optimal Control n resolution with Deep Learning
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PDE Characterization - Boundary of the domain

Assumption
Let U(t, x) := argmin,ey{L%w + g} be the set of optimal control
at a given coordinate (t,x) € [0, T) x R?. We assume that U(t, x)
is non-empty and 'continuous’ for every (t,x) € [0, T) x R9. (C)
Theorem - Bouchard et al, upcoming
Given assumptions (A) and (B), V* is a viscosity sub-solution of

— max LY¢(t,x) =0,Y(t,x) € [0, T) x R? (10)

ueU(t,x)
¢(T,x) = F(x),¥x € R (11)

Moreover, if assumption (C) also holds, then V, is a viscosity
super-solution of (10)-(11)
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Numerical resolution with Deep Learning
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Introduction to Neural Network

Basic layout of a neural network
input

-
Q

<
m
=

,_
=]
-
]
[\
—
=)
-
m
w

output

O

O O

O OO0

O O00O0
OO0 0O

Hyper-parameters : dimension of input, number of layers, number
of neuron per layer (assuming fully connected), dimension of
output
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Numerical resolution with Deep Learning
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Introduction to Neural Network

Mathematical basis of a neural network

output

’_
Q

<
o
w

input Layer 1 Layer 2

XXX
(oY e Yo X
XXX
QQ OO

Given the i-th layer of the network with an activation function F
and the input Z;, the output of this layer is

0Y = F(W/Z; + b))

where W, is the weight and b; is the bias.
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Numerical resolution with Deep Learning
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Introduction to Neural Network

Mathematical basis of a neural network

’_
Q

<
o
w

input Layer 1 Layer 2 output

XXX
(oY e Yo X
X

XXX
0000

Final output :
0% = F(Ws - OF + bs)
= F(Ws - F(Wa - Of + by) + bs)
=F(Ws-F(Wo- F(Wi -Z + b1) + ba) + bs3)
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Numerical resolution with Deep Learning
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Introduction to Neural Network

behave as a function
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Numerical resolution with Deep Learning
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Training a neural network

Pass forward process :

Loss function £

Input X —{ Neural network Ny |— Output Y?

Gradient Descent
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Numerical resolution with Deep Learning
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Training a neural network

Pass forward process :

Loss function £

Input X —{ Neural network Ny |— Output Y?

Gradient Descent
Key idea for training :
m pass forward multiple times
m update parameters after each pass (to lower loss)

m stop the loop when the loss is as low as possible/desirable

Kim Anh PHAM

CEREMADE - Paris Dauphine PSL

Stochastic Optimal Control under Constraints



Why Neural Networks ?

Numerical resolution with Deep Learning
0080000

Classical Method

ex : Finite Difference Method

Prone to discretization error
+

Curse of Dimensionality

Kim Anh PHAM

Deep Learning

ex : Physic-Informed Neural Networks
Can handle high dimension

+

Fast computation / High precision
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Numerical resolution with Deep Learning

[e]e] lelelele}

Why Neural Networks ?

Promising, yet more research is needed !

hd

Deep Learning ‘

Classical Method

ex : Finite Difference Method ex : Physic-Informed Neural Networks
Prone to discretization error Can handle high dimension
+ +
Curse of Dimensionality Fast computation / High precision
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Numerical resolution with Deep Learning
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Proposed Algorithm

Numerical resolution steps

Estimate the optimal control process u? = (U?,-)i:l,..,N
Estimate the boundary value of the viable domain wy
Estimate the value function at the boundary Vy

Estimate the optimal control process with the martingal
increment (&, 3)g

Estimate the value function on the entire viable domain Vjy
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Numerical resolution with Deep Learning
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0

Step 1 : Estimate the optimal process u

Recall the definition of the optimal control process u* (discretized)

*

u* = (u})i=1,.n = argminE

Given a sample of initial states Xp = (XJ y=Led and a sample of

brownian increments AW = ((AW,); N)’ L4 practically we
seek to minizie the empirical mean

N

7 sl

i=1

= (Ut,): 1,..N = argmin Z

Kim Anh PHAM CEREMADE - Paris Dauphine PSL

Stochastic Optimal Control under Constraints



Numerical resolution with Deep Learning
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0

Step 1 : Estimate the optimal process u

a, — &, — Ay, —
-0
———t e —— e ——— — — ——— -~
{ (™ (™ (T
| Ve e e
I tho ) R L
| . I P4 |
| A R i b
| o [ ~ [ R H
|20 1 @R v -1 |
RN ag ry
| DA LA P
| P D Lo
1
I URY Lhit i vl
k\___\__L___ ______ g :I__’ L/
Xto_’ update — )?tl—b update —»> sz —_— .. _>XA'3N—1_. update —» )?tN
aw,, aw,, AW,
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Numerical resolution with Deep Learning
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0

Step 1 : Estimate the optimal process u

afo ] Uy — Utyy — ]
0

———t———————— ———tm e — -~
{ (1 (1 (T
| | 1 | | \ ! |
| | RE 1Rk IR

I DA DA Pl
| N N P

I

| . 1 1 N 1 1 N | !

RAUIE. 2[Rk N -1
! 1 P ety
I LA P4 P
I P Vi A
| Dhy ! LA ety

1
L 4 ~'\__I_. 4y
Xto — update — X’\t1 — update —» th _ .. — )?tN_1—> update —» XtN
AW, AW, AW,

[loss:  L4@|XaW)= g(R,) + g(&) + - + (%) + (%)
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Numerical resolution with Deep Learning
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0

Step 1 : Estimate the optimal process u

Pseu-do code :
Randomly generate a sample of initial states Ay = (X{.O)j:l’"'J
and a sample of brownian increments
AW = (AWy)iz1,..n) 7
For e =1 to N} (= number of epoch):
m Pass forward (Xp, AW) through the network 9 to get the full
trajectories X = (()?{;);:17,,N>J:1’..‘J

m Compute the cumulative loss £4(&)
m Take a gradient descent step
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Numerical resolution with Deep Learning
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Step 2: Estimate the boundary value wy

In theory, w should satisfy
0=— inijg(W—i—g on [0, T) x R
ue
w(T,-) = G on RY

Assuming that the optimal control network 0¥ is well trained, then
within our discretized framework, we would train Wy to satisfy

0= ﬁfgi Wy + gVt € {to,...tn—_1}
Wy (tn, Xey) = G(Xy)

where ()A(t,.),-zly_,,,\, is any trajectory generated by passing a
randomly selected initial state xp, a random Brownian movement
W through the trained network .
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Numerical resolution with Deep Learning
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Step 2: Estimate the boundary value wy

Physics-Informed Neural Network : a method used to train
neural network which emphasizes on the (PDE) characteristics of
the function that the network aims to approximate.
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Numerical resolution with Deep Learning
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Step 2: Estimate the boundary value wy

Physics-Informed Neural Network : a method used to train
neural network which emphasizes on the (PDE) characteristics of
the function that the network aims to approximate.

Data for training :

~0

. j=1.]
. J=1.J i iy =1 a0e )
(X, AW) = (xé, (AWti)i=1,.A.N) > ((thi )i:1 N) = (XZ L qu)
i=1,.N
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Numerical resolution with Deep Learning
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Step 2: Estimate the boundary value wy

Physics-Informed Neural Network : a method used to train
neural network which emphasizes on the (PDE) characteristics of
the function that the network aims to approximate.

Data for training :

~0

. j=1,. ; J=1d
(xO,Aw)=(xé.(AW;i)iﬂ,mN)]:u e ((’?rji)i:l,___,vy ]=<(XZGIUV%)__ )
Loss function :
L (wy| Xo, AW) : JZ Z\wae t, X)) +e(X, ﬁfﬁ’)]
J

Z( (tn, K,) — 65|

=1
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Numerical resolution with Deep Learning
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Thank you for your attention !
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