Stochastic Optimal Control under Constraints with Deep Learning

Kim Anh PHAM

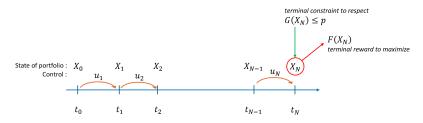
CEREMADE - Paris Dauphine PSL

Young Researcher Days 03-05.06.2025

3 Numerical resolution with Deep Learning

Portfolio Management basis visualized

State process $X = (X_t)_{t_0 \le t \le t_N}$ takes values in \mathbf{R}^d . Control process $u = (u_t)_{t_0 < t \le t_N}$ takes values in $U \subset \mathbf{R}^{d'}$ compact.

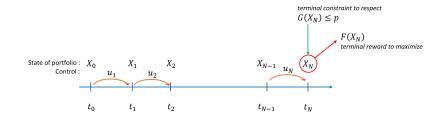


Kim Anh PHAM

CEREMADE - Paris Dauphine PSL

Numerical resolution with Deep Learning

Portfolio Management basis visualized



$$\Delta X_{t_0,x_0}^{u}(t_i) = \mu \left(X_{t_0,x_0}^{u}(t_i), u_t \right) \Delta t + \sigma \left(X_{t_0,x_0}^{u}(t_i), u_t \right) \Delta W_{t_i}$$
$$X_{t_0,x_0}^{u}(t_0) = x_0$$

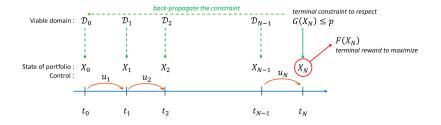
with $\Delta W_{t_i} := W_{t_i} - W_{t_{i-1}}$ multi-dimensional Brownian increment.

Kim Anh PHAM

CEREMADE - Paris Dauphine PSL

Numerical resolution with Deep Learning

Portfolio Management basis visualized

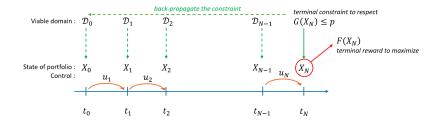


Kim Anh PHAM

CEREMADE - Paris Dauphine PSL

Numerical resolution with Deep Learning

Portfolio Management basis visualized

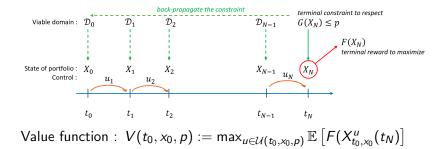


 $\mathcal{D} := \{ (t, x, p) \in [t_0, t_N] \times \mathbf{R}^{d+1} : \exists u \text{ admissible s.t } G(X_{t_0, x_0}^u(t_N) \le p \} \\ \mathcal{U}(t_0, x_0, p) := \{ u = (u_{t_i})_{i=1, \dots, N} \text{ admissible } : G(X_{t_0, x_0}^u(t_N)) \le p \}$

Kim Anh PHAM

Numerical resolution with Deep Learning

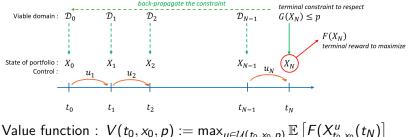
Portfolio Management basis visualized



Kim Anh PHAM

CEREMADE - Paris Dauphine PSL

Portfolio Management basis visualized



Value function : $V(t_0, x_0, p) := \max_{u \in \mathcal{U}(t_0, x_0, p)} \mathbb{E} \left[F(X_{t_0, x_0}^u(t_N)) \right]$ Questions :

- What are the characteristics of V ? (PDE)
- Existence ? Unicity ? Smoothness ?
- Numerically, how to solve this problem ?

Continuous framework

For $t \in [0, T], x \in \mathbf{R}^d, u \in \mathcal{U}$ (the set of admissible control),

$$X_{t,x}^{u}(s) = x + \int_{t}^{s} \mu(X_{t,x}^{u}(r), u_{r}) dr + \int_{t}^{s} \sigma((X_{t,x}^{u}(r), u_{r}) dr) \forall t \leq s \leq T$$
(1)

where μ and σ are bounded, continuous, and Lipschitz in its first variable uniformly in the second one.

For a given $p \in \mathbf{R}$, the value function

$$V(t,x,p) := \sup_{u \in \mathcal{U}(t,x,p)} \mathbb{E}[F(X_{t,x}^u(T))]$$
(2)

where

$$\mathcal{U}(t, x, p) := \{ u \in \mathcal{U} : \mathbb{E} \left[G(X_{t,x}^u(T)) + \int_t^T g(X_{t,x}^u(r), u_r) dr \right] \le p \}$$

and F, G , and g are continuous with polynomial growth.

Kim Anh PHAM

Numerical resolution with Deep Learning

Viable Domain and its characterization

We define the viable domain $\ensuremath{\mathcal{D}}$

$$\mathcal{D} := \{ (t, x, p) \in [0, T] \times \mathbf{R}^{d+1} : \mathcal{U}(t, x, p) \neq \emptyset \}$$

= $\{ (t, x, p) \in [0, T] \times \mathbf{R}^{d+1} : \exists u \in \mathcal{U} \text{ s.t}$
$$\mathbb{E} \left[G(X_{t,x}^{u}(T)) + \int_{t}^{T} g(X_{t,x}^{u}(r), u_{r}) \right] \leq p \}$$
(3)

Kim Anh PHAM Stochastic Optimal Control under Constraints

Numerical resolution with Deep Learning

Viable Domain and its characterization

We define the viable domain $\ensuremath{\mathcal{D}}$

$$\mathcal{D} := \{(t, x, p) \in [0, T] \times \mathbf{R}^{d+1} : \mathcal{U}(t, x, p) \neq \emptyset\}$$

= $\{(t, x, p) \in [0, T] \times \mathbf{R}^{d+1} : \exists u \in \mathcal{U} \text{ s.t}$
$$\mathbb{E} \left[G(X_{t,x}^{u}(T)) + \int_{t}^{T} g(X_{t,x}^{u}(r), u_{r}) \right] \leq p\}$$
(3)

Alternatively, we can also look at the boundary value of the viable domain defined as

$$w(t,x) := \inf\{p : \mathcal{U}(t,x,p) \neq \emptyset\}$$

=
$$\inf_{u \in \mathcal{U}} \mathbb{E}\left[G(X_{t,x}^{u}(T)) + \int_{t}^{T} g(X_{t,x}^{u}(r),u_{r})\right]$$
(4)

Then, we can write $\mathcal{D} = \{(t, x, p) \in [0, T] \times \mathbf{R}^{d+1} : p \ge w(t, x)\}.$

Kim Anh PHAM

CEREMADE - Paris Dauphine PSL

Numerical resolution with Deep Learning

Viable Domain and its characterization

Furthermore, we can partition the viable domain as:

$$int_{\mathcal{P}}\mathcal{D} := \{(t, x, p) \in [0, T) \times \mathbf{R}^{d+1} : p > w(t, x)\}$$
$$\partial_{\mathcal{P}}\mathcal{D} := \{(t, x, p) \in [0, T) \times \mathbf{R}^{d+1} : p = w(t, x)\}$$
$$\partial_{\mathcal{T}}\mathcal{D} := \{(t, x, p) \in \{T\} \times \mathbf{R}^{d+1} : p \ge w(t, x)\}$$

Kim Anh PHAM

Numerical resolution with Deep Learning

Viable Domain and its characterization

Furthermore, we can partition the viable domain as:

$$int_{\mathcal{P}}\mathcal{D} := \{(t, x, p) \in [0, T) \times \mathbf{R}^{d+1} : p > w(t, x)\}$$
$$\partial_{\mathcal{P}}\mathcal{D} := \{(t, x, p) \in [0, T) \times \mathbf{R}^{d+1} : p = w(t, x)\}$$
$$\partial_{\mathcal{T}}\mathcal{D} := \{(t, x, p) \in \{T\} \times \mathbf{R}^{d+1} : p \ge w(t, x)\}$$

Why this partition ?

Martingale representation of the constraint

Key idea : represent the constraint value p by a Martingale process. $\mathbb{E}\left[G(X_{t,x}^{u}(T))\right] \leq p \iff \exists a \in \mathcal{A} \text{ s.t } M_{t,p}^{a} \geq w(\cdot, X_{t,x}^{u}) \text{ on } [t, T]$

with

$$M^a_{t,p} := p + \int_t^{\cdot} a_r dW_r$$

where \mathcal{A} is a set of progressively measurable processes such that $M^a_{t,0}$ is a martingale.

Numerical resolution with Deep Learning 0000000

Martingale representation of the constraint

$$M_{t,p}^{a} := p + \int_{t}^{\cdot} a_{r} dW_{r}$$

Then, the boundary (value) of the viable domain becomes

$$w(t,x) = \inf\{p \in \mathbf{R} : \exists (u,a) \in \mathcal{U} \times \mathcal{A} \text{ s.t } M^a_{t,p} \ge w(\cdot, X^u_{t,x}) \text{ on } [t,T]\}$$

and the value function V can be rewritten as

$$V(t, x, p) = \sup\{\mathbb{E}\left[F(X_{t,x}^{u}(T))\right]:$$
$$(u, a) \in \mathcal{U} \times \mathcal{A} \text{ s.t } M_{t,p}^{a} \ge w(\cdot, X_{t,x}^{u}) \text{ on } [t, T]\}$$

Further discussion : Bouchard et al. [1], Bouchard et al. [2]

Kim Anh PHAM

CEREMADE - Paris Dauphine PSL

Numerical resolution with Deep Learning

PDE Characterization - Operator and Envelopes

Consider the operator

$$egin{aligned} & H(t,x,q,q',A) := -\sup_{(u,a)\in U imes \mathbb{R}^d} ar{\mu}(x,u)^ op q + rac{1}{2} ext{Tr}\left[(ar{\sigma}ar{\sigma}^ op)(x,u,a)A
ight] \ & + g(x,u)q' \end{aligned}$$

defined for $(t, x, q, q', A) \in [0, T] imes \mathbf{R}^d imes \mathbf{R} imes \mathbf{R}^{d+1}$ where

$$ar{\mu}(\cdot, u) := \left(egin{array}{c} \mu(\cdot, u) \\ 0 \end{array}
ight) ext{ and } ar{\sigma}(\cdot, u, a) := \left[egin{array}{c} \sigma(\cdot, u) \\ a \end{array}
ight], (u, a) \in U imes \mathbf{R}^d$$

Let H^* and H_* be upper- and lower-semicontinuous envelopes of H. Similarly, V^* and V_* are upper- and lower-semicontinuous envelopes of V.

Kim Anh PHAM

PDE Characterization - Hamiltonian-Jacobi-Bellman

Theorem - Bouchard et al, [2]

 V_* is a viscosity super-solution of

$$\begin{aligned} -\partial_t \phi + H^*(t, x, D_{(x,p)}\phi, -D_p\phi, D^2_{(x,p)}\phi) &\geq 0 \text{ on } int_p \mathcal{D} \\ \phi(T, \cdot) &\geq F \text{ on} \\ \{(x, p) \in \mathbf{R}^{d+1} : p > G(x)\} \end{aligned}$$
(5)

and V^* is a viscosity sub-solution of

$$\begin{aligned} -\partial_t \phi + H^*(t, x, D_{(x,p)}\phi, -D_p\phi, D_{(x,p)}^2\phi) &\leq 0 \text{ on } int_p \mathcal{D} \\ \phi(T, \cdot) &\leq F \text{ on} \\ \{(x, p) \in \mathbf{R}^{d+1} : p \geq G(x)\} \end{aligned} \tag{7}$$

Kim Anh PHAM

Theorem - Bouchard et al, upcoming

Assume that

- **1** $G \in C_b^2(\mathbb{R}^d)$, g is bounded, and D^2G and $g(\cdot, u)$ are Hölder continous on \mathbb{R}^d , uniformly in $u \in U$. (A)
- 2 There exists $0 \le \lambda_{\sigma} \le \Lambda_{\sigma}$ such that $\lambda_{\sigma} \le z^{\top}(\sigma\sigma^{\top})(x, u, z) \le \Lambda_{\sigma} \forall (x, u, z) \in \mathbf{R}^{d} \times U \times \partial B_{1}$ (B)

Then w is a smooth solution to

$$0 = -\inf_{u \in U} \mathcal{L}_X^u w + g \text{ on } [0, T) \times \mathbf{R}^d$$
(9)

where $\mathcal{L}_X^u \phi := \partial_t \phi + \mu(\cdot, u)^\top D \phi + \frac{1}{2} \operatorname{Tr} \left[(\sigma \sigma^\top)(\cdot, u) D^2 \phi \right]$ is the Dynkin operator for any smooth function ϕ and $u \in U$.

Kim Anh PHAM

Assumption

Let $U(t,x) := \arg \min_{u \in U} \{ \mathcal{L}_X^u w + g \}$ be the set of optimal control at a given coordinate $(t,x) \in [0,T) \times \mathbf{R}^d$. We assume that U(t,x)is non-empty and 'continuous' for every $(t,x) \in [0,T) \times \mathbf{R}^d$. (C)

Assumption

Let $U(t,x) := \arg \min_{u \in U} \{ \mathcal{L}_X^u w + g \}$ be the set of optimal control at a given coordinate $(t,x) \in [0,T) \times \mathbf{R}^d$. We assume that U(t,x)is non-empty and 'continuous' for every $(t,x) \in [0,T) \times \mathbf{R}^d$. (C)

Consider
$$\mathcal{V} := V(\cdot, w(\cdot))$$
 and its envelopes
 $\mathcal{V}_*(t, x) := \liminf \{ V(t', x', w(t', x')) : [0, T] \times \mathbf{R}^d \ni (t', x') \to (t, x) \}$
 $\mathcal{V}^*(t, x) := \limsup \{ V(t', x', w(t', x') + \varepsilon) :$
 $[0, T] \times \mathbf{R}^d \times (0, \infty) \ni (t', x', \varepsilon) \to (t, x, 0) \}$

Assumption

Let $U(t,x) := \arg \min_{u \in U} \{ \mathcal{L}_X^u w + g \}$ be the set of optimal control at a given coordinate $(t,x) \in [0, T) \times \mathbf{R}^d$. We assume that U(t,x)is non-empty and 'continuous' for every $(t,x) \in [0, T) \times \mathbf{R}^d$. (C)

Theorem - Bouchard et al, upcoming

Given assumptions (A) and (B), \mathcal{V}^{\ast} is a viscosity sub-solution of

$$-\max_{u\in U(t,x)}\mathcal{L}_X^u\phi(t,x)=0, \forall (t,x)\in [0,T)\times \mathbf{R}^d$$
(10)

$$\phi(T, x) = F(x), \forall x \in \mathbf{R}^d$$
(11)

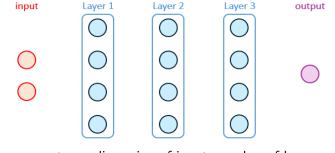
Moreover, if assumption (C) also holds, then \mathcal{V}_{\ast} is a viscosity super-solution of (10)-(11)

Kim Anh PHAM

Numerical resolution with Deep Learning

Introduction to Neural Network

Basic layout of a neural network

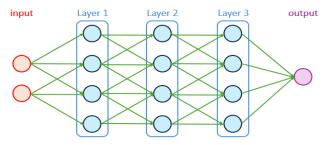


Hyper-parameters : dimension of input, number of layers, number of neuron per layer (assuming fully connected), dimension of output

Numerical resolution with Deep Learning •000000

Introduction to Neural Network

Mathematical basis of a neural network



Given the *i*-th layer of the network with an activation function \mathcal{F} and the input \mathcal{I}_i , the output of this layer is

$$\mathcal{O}_i^{\theta} = \mathcal{F}(W_i \mathcal{I}_i + b_i)$$

where W_i is the weight and b_i is the bias.

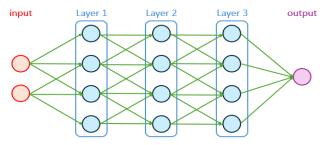
Kim Anh PHAM

CEREMADE - Paris Dauphine PSL

Numerical resolution with Deep Learning $_{\odot OOOOOO}$

Introduction to Neural Network

Mathematical basis of a neural network



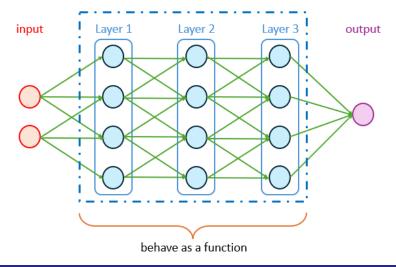
Final output :

$$egin{aligned} \mathcal{O}^{ heta} &= \mathcal{F}(W_3 \cdot \mathcal{O}_2^{ heta} + b_3) \ &= \mathcal{F}(W_3 \cdot \mathcal{F}(W_2 \cdot \mathcal{O}_1^{ heta} + b_2) + b_3) \ &= \mathcal{F}(W_3 \cdot \mathcal{F}(W_2 \cdot \mathcal{F}(W_1 \cdot \mathcal{I} + b_1) + b_2) + b_3) \end{aligned}$$

Kim Anh PHAM

Numerical resolution with Deep Learning $\textcircled{}_{000000}$

Introduction to Neural Network



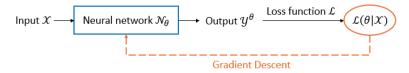
Kim Anh PHAM

CEREMADE - Paris Dauphine PSL

Numerical resolution with Deep Learning $0 \bullet 00000$

Training a neural network

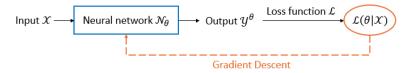
Pass forward process :



Numerical resolution with Deep Learning $0 \bullet 00000$

Training a neural network

Pass forward process :



Key idea for training :

- pass forward multiple times
- update parameters after each pass (to lower loss)
- stop the loop when the loss is as low as possible/desirable

Numerical resolution with Deep Learning 0000000

Why Neural Networks ?

ex : Finite Difference Method

Prone to discretization error

+

Curse of Dimensionality

Deep Learning

ex : Physic-Informed Neural Networks

Can handle high dimension

+

Fast computation / High precision

Kim Anh PHAM Stochastic Optimal Control under Constraints CEREMADE - Paris Dauphine PSL

Numerical resolution with Deep Learning ${\rm oo}{\bullet}{\rm oo}{\rm oo}{\rm o}$

Why Neural Networks ?

ex : Finite Difference Method

Prone to discretization error

+

Curse of Dimensionality

Deep Learning

ex : Physic-Informed Neural Networks

Can handle high dimension

+ Fast computation / High precision

Kim Anh PHAM Stochastic Optimal Control under Constraints

Numerical resolution with Deep Learning 0000000

Proposed Algorithm

Numerical resolution steps

- **1** Estimate the optimal control process $u^{\theta} = (u_{t_i}^{\theta})_{i=1,...N}$
- **2** Estimate the boundary value of the viable domain w_{θ}
- 3 Estimate the value function at the boundary \mathcal{V}_{θ}
- Estimate the optimal control process with the martingal increment (ũ, ã)_θ
- 5 Estimate the value function on the entire viable domain V_{θ}

Step 1 : Estimate the optimal process $u^{ heta}$

Recall the definition of the optimal control process u^* (discretized)

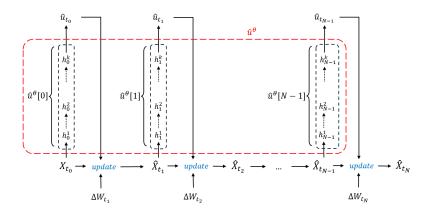
$$u^* = (u^*_{t_i})_{i=1,...N} = \arg \min \mathbb{E} \left[G(X_{t_N}) + \frac{1}{N} \sum_{i=1}^N g(X_{t_i}) \right]$$

Given a sample of initial states $\mathcal{X}_0 = (X_{t_0}^j)^{j=1,\dots,J}$ and a sample of brownian increments $\Delta \mathcal{W} = ((\Delta W_{t_i})_{i=1,\dots,N})^{j=1,\dots,J}$, practically we seek to minizie the empirical mean

$$\hat{u}^{\theta} = (\hat{u}^{\theta}_{t_i})_{i=1,\dots N} = \arg\min\sum\nolimits_{j=1}^J \left[G(\hat{X}^j_{t_N}) + \frac{1}{N}\sum\limits_{i=1}^N g(\hat{X}^j_{t_i})\right]$$

Numerical resolution with Deep Learning 0000000

Step 1 : Estimate the optimal process u^{θ}

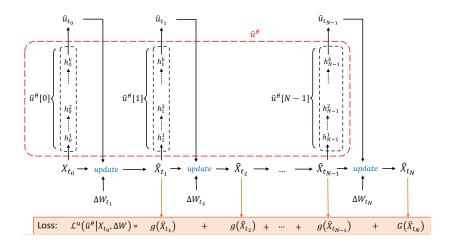


Kim Anh PHAM

CEREMADE - Paris Dauphine PSL

Numerical resolution with Deep Learning 0000000

Step 1 : Estimate the optimal process u^{θ}



Kim Anh PHAM

CEREMADE - Paris Dauphine PSL

Step 1 : Estimate the optimal process $u^{ heta}$

Pseu-do code :

- Randomly generate a sample of initial states X₀ = (X^J_{t0})^{j=1,...J} and a sample of brownian increments ΔW = ((ΔW_{ti})_{i=1,...N})^{j=1,...J}
- **2** For e = 1 to N_e^u (= number of epoch):
 - Pass forward $(\mathcal{X}_0, \Delta \mathcal{W})$ through the network \hat{u}^{θ} to get the full trajectories $\hat{\mathcal{X}} = \left((\hat{\mathcal{X}}^j_{t_i})_{i=1,..N} \right)^{j=1,...J}$
 - Compute the cumulative loss $\mathcal{L}^{u}(\hat{u}^{\theta})$
 - Take a gradient descent step

Step 2: Estimate the boundary value w_{θ}

In theory, w should satisfy

$$0 = - \inf_{u \in U} \mathcal{L}_X^u w + g ext{ on } [0, T) imes \mathbf{R}^d$$

 $w(T, \cdot) = G ext{ on } \mathbf{R}^d$

Assuming that the optimal control network \hat{u}^{θ} is well trained, then within our discretized framework, we would train \hat{w}_{θ} to satisfy

$$egin{aligned} 0 &= \mathcal{L}_X^{\hat{u}_{t_i}} \hat{w}_ heta + g orall t_i \in \{t_0, ...t_{N-1}\} \ \hat{w}_ heta(t_N, \hat{X}_{t_N}) &= G(\hat{X}_{t_N}) \end{aligned}$$

where $(\hat{X}_{t_i})_{i=1,...N}$ is any trajectory generated by passing a randomly selected initial state x_0 , a random Brownian movement W through the trained network \hat{u}^{θ} .

Step 2: Estimate the boundary value w_{θ}

Physics-Informed Neural Network : a method used to train neural network which emphasizes on the (PDE) characteristics of the function that the network aims to approximate.

Step 2: Estimate the boundary value w_{θ}

Physics-Informed Neural Network : a method used to train neural network which emphasizes on the (PDE) characteristics of the function that the network aims to approximate. **Data for training :**

$$(\mathcal{X}_0, \Delta \mathcal{W}) = \left(x_0^j, \left(\Delta \mathcal{W}_{t_i}\right)_{i=1,\dots N}\right)^{j=1,\dots J} \xrightarrow{\hat{\mathcal{U}}^{\theta}} \left(\left(\hat{X}_{t_i}^j\right)_{i=1,\dots N}\right)^{j=1,\dots J} = \left(\left(X_{t_i}^{\hat{\mathcal{U}}^{\theta}, t_0, x_0^j}\right)_{i=1,\dots N}\right)^{j=1,\dots J}$$

Step 2: Estimate the boundary value w_{θ}

Physics-Informed Neural Network : a method used to train neural network which emphasizes on the (PDE) characteristics of the function that the network aims to approximate. **Data for training :**

$$(\mathcal{X}_{0}, \Delta \mathcal{W}) = \left(x_{0}^{j}, \left(\Delta \mathcal{W}_{t_{i}}\right)_{i=1,\dots,N}\right)^{j=1,\dots,J} \xrightarrow{\hat{\mathcal{U}}^{\theta}} \left(\left(\hat{X}_{t_{i}}^{j}\right)_{i=1,\dots,N}\right)^{j=1,\dots,J} = \left(\left(X_{t_{i}}^{\hat{\mathcal{U}}^{\theta}, t_{0}, x_{0}^{j}}\right)_{i=1,\dots,N}\right)^{j=1,\dots,J}$$

Loss function :

$$egin{split} \mathcal{L}^{w}(w_{ heta}|\mathcal{X}_{0},\Delta\mathcal{W}) &:= rac{1}{J}\sum_{j=1}^{J}rac{1}{N}\sum_{i=0}^{N-1}\Bigl|\mathcal{L}^{u}_{X}w_{ heta}(t_{i},\hat{X}^{j}_{t_{i}})+g(\hat{X}^{j}_{t_{i}},\hat{u}^{ heta,j}_{t_{i}})\Bigr|^{2} \ &+rac{1}{J}\sum_{j=1}^{J}\Bigl|w_{ heta}(t_{N},\hat{X}^{j}_{t_{N}})-G(\hat{X}^{j}_{t_{N}})\Bigr|^{2} \end{split}$$

Kim Anh PHAM

Thank you for your attention !

Bibliography

- Bruno Bouchard, Romuald Elie, and Nizar Touzi.
 Stochastic target problems with controlled loss.
 SIAM Journal on Control and Optimization, 48(5):3123–3150, 2010.
- Bruno Bouchard and Marcel Nutz.
 Weak dynamic programming for generalized state constraints. SIAM Journal on Control and Optimization, 50(6):3344–3373, January 2012.