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Statiscal problem

e A is a family of probability distribution :

{P}, feF}
and F is a subset of a vector space that can be infinite-dimensional.
o We assume that there is measure 1" that dominates P for all f € F,

e Thereis a and we observe a realization Y of the law IP%.
< nis the amount of information (examples)

e The likelihood of a function f given the observation Y is . Roughly, it's

e Goal : and obtain some guarantees when
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Example

Yi:fo(i/n)+ﬁj, i=1,..,n

with f € F C Lo[0; 1] and ¢ is the noise. Assume that (e;); <

independent and Y; ~ N (fy(i/n), 1). The model is :

~ N(0,1), so the (Y;); are

{(%)N(f(i/nm) . teF)

e Given Y" = (Y, ..., Ya), the of a function f € Fis :
noo —(Yi = f(i/n))?
Y™ = exp(————~L "7

Pi( E Vo P ( 2 )
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Prior distribution

e We put a probability distribution on F (or on a set that approximates F) denoted

e Examples :
o Take a family of linearly independent functions (b;); of I, and then :

h=3"Gbi, ()i N1

o Consider a , one trajectory is a continuous function (even
~-Hélder for v < 1/2). For more regularity, one can consider smoother
(or other continuous-time stochastic process).

e Given the observation of Y", the Bayes formula gives
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Desired behavior of the posterior
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Posterior contraction

o We say that
when

e What are right conditions on the and on the to
obtain posterior contraction ? Two remarks :

o let B be a measurable set, if M(B) = 0, then MN(B|Y") = 0 for all n
— the prior have to put some mass around the true parameter f,

o The space of parameters has to do not be too large
— we have to consider "small” spaces :
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Kullback-Leibler divergence

Recall that :
JEASTAGELT
nBy") =
J_erere v anen)
The ) is closely related to the
We define

2
BK (fy, <) = {f € F, KL(Py, Pr) < ne?, /(Iog (‘;’f) KL(Py,; P,)) Py, < nez}
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Prior mass

Lemma 1 (not proved)

For any probability distribution I on F, for any C, e > 0, with Py, —probability at least
1-1/ C2ne?,
p(Y"™)
P (Y")

Let (¢n)n a sequence cuh that ne2 — +oo. Let (An)n be a sequence of measurable
sets such that :

an(f) > I'I(BK(fo,s)) x exp (— (1+ C)ne?)

(Ar) .
exp(—2ne2)M(BK(fo,en)) n—r+oo

Then, P,
M(AY") —2—0
n—+oo

— proof on board
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(Very) Roughly speaking :

e Let’'s say we want to determine whether the data have been generated by 7, or by
f € By(fi,ae) with a < 1 and d(fy, f1) > e.

e Roughly, a test ¢n(Y") € {0,1} says 0 if given the data he thinks ,
otherwise he says 1.

o From a statistical point of view, the space F and the model are not too complicated
if we can construct a test such that

o Ep, [6n(Y")] ~ 0
o Forfe Bd(f1,a€), E]pf[¢n(yn)] ~1 <— E]pf['l — d)n(yn)] ~0
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Covering number

e So we have a test of with d(fy, fy) > e.
o If the of the space is not too large, we can construct a global test
of that is :

o Ep, [n(YM] =0
o For f € By(fy, €)°, Ep,[1 — ¢n(Y")] ~ 0

e Covering number :
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Theorem

Theorem (Ghosal, Ghosh and van der Vaart - 2000)

Let e such that ne2 — 4-oc. Suppose that :

() N(BK(fo,en)) > exp(~Cne?)

(i) There exists a measurable set 7, such that I (}'ﬁ) < exp(—(C + 4)ne?)

(iii) There exists a > 0 such that for any ¢ > 0 and for any f € Fp with d(f, f) > ¢, we
can construct a test ¢n of "fy against B(f;, ac)” that verifies :

Ep, [¢n(Y")] < exp(—Kne2) and sup Ep,[1 — ¢n(Y")] < exp(—Kne?)
g feq(f,ae)

(iv) /\/(an,]-',,, d) < exp (Dne%)

Then we have posterior concentration around fy at rate ep in terms of metric d
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lllustration with the example

e Recall : Y; = f,(i/n) + ¢; and the model is { LAN(f(i/n), 1), fe }‘}.

o We take F = H(8), B8 €]0; 1] ,the space of functions f such that there exist L > 0
vx,y € [0:1], [f(x) = f(y)] < LIx — y)”

e Prior :

o let Kn(B) = nZ3+T

o f(x) = SR f1

jid
i W)](x) and (fi)x ~ Laplace(1)

K(ﬁ)
Wi ={f=>"""f1 f] < nt.
* We set 7o = { T T 1<Kkl )| K <}

-5
— nkm Fn=Upz1 Fnis dense in F (and even distoo (Fn, FL) = Ln2A)

e The prior puts on Fp and Fp is simple and small enough (we can
construct and control its ).
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Proof, first step : "global” test

On board if time
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Proof, second step : isolating the main term

N clvn
e By (i), (ii) and lemma 2, M(F§|Y"™) P 0.
o Let Cp = {f € Fn, d(f,fy) > Mep}, we have to show that M(Cp|Y™) % 0.
fo
n Yﬂ .
o Letalso B, = {f %dl‘l(f) > I'I(BK(fo,a) x exp (= (14 C)nEZ)}, by the first
lemma, Py, (Bf) = o(1). In addition, Ep, [@n(YM)] = 0o(1) .

e So,as MN(Cp|Y") < 1, we have :

N(Cal Y") = N(Cal Y")15,(1 — ¢n(Y™) + 0p, (1)
pr(Y™)

~Je, PLYT)

a PF(Y™)

F PE(Y")
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(1= én(Y™) dn(f)

ILBn + O]Pfo (1)

an(f)



Proof, second step

Taking expectation we have :

PO = o
vy ) e

1p

p7(Y") "
an(f
;p%(Y") ()

PFCY™) oy 2 yn
o, pp(rn) |~ D O

_I'I(BK(fo, ) x exp (— (14 C)ne?)
Lol
I'I(BK(fo7 ) x exp (— (1 + C)ne?)
[ e (1= Bty o
C

= z +o(1) details
I'I(Et’K(fo7 s) x exp (— (1 + C)ne?)
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E]PfO [I'I(Cn\Y”)] = E]Pfo + 0(1)

< ETPfO 1p,| + o(1) by def. of By

+ o(1) by Fubini




Proof, conclusion

Using the property of the test ¢p,, and the “prior mass condition” we finally have :

]E]pf0 [M(CnlY")] <exp ((C+ 2)ne%) xexp(—(C+ 4)n€%) +o(1)=o0(1) (1)

Reference : Convergence rates of posterior distributions - Subhashis Ghosal, Jayanta
K. Ghosh, Aad W. van der Vaart - Annals of Statistics - 2000
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