Bayesian statistics: posterior contraction

Young researchers' days - June 2025

Maël Duverger

Statiscal problem

A model is a family of probability distribution :

$$\left\{\mathbb{P}_{f}^{n}, f \in \mathcal{F}\right\}$$

and \mathcal{F} is a subset of a vector space that can be **infinite-dimensional**.

- We assume that there is measure μ^n that dominates \mathbb{P}_f^n for all $f \in \mathcal{F}$, $d\mathbb{P}_f^n/d\mu^n = p_f^n$.
- There is a "true" parameter $f_0 \in \mathcal{F}$ and we observe a <u>realization</u> Y^n of the law $\mathbb{P}^n_{f_0}$. $\hookrightarrow n$ is the amount of information (*examples*)
- The <u>likelihood</u> of a function f given the observation Y^n is $p_f^n(Y^n)$. Roughly, it's the probability, given the observation Y^n , that the data are generated by f.
- **Goal**: estimate f_0 from Y^n and obtain some guarantees when $n \to +\infty$.

Example

Regression model :

$$Y_i = f_0(i/n) + \epsilon_i$$
, $i = 1, ..., n$

with $f_0 \in \mathcal{F} \subset \mathbb{L}_2[0;1]$ and ϵ is the **noise**. Assume that $(\epsilon_i)_i \stackrel{iid}{\sim} \mathcal{N}(0,1)$, so the $(Y_i)_i$ are independent and $Y_i \sim \mathcal{N}(f_0(i/n),1)$. The model is :

$$\bigg\{\bigotimes_{i=1}^n \mathcal{N}\big(f(i/n),1\big)\ ,\ \ f\in\mathcal{F}\bigg\}$$

• Given $Y^n = (Y_1, ..., Y_n)$, the likelihood of a function $f \in \mathcal{F}$ is :

$$p_f^n(Y^n) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}} \exp\left(\frac{-\left(Y_i - f(i/n)\right)^2}{2}\right)$$

Prior distribution

• We put a probability distribution on \mathcal{F} (or on a set that approximates \mathcal{F}) denoted \square and called the prior distribution.

• Examples :

 \diamond Take a family of linearly independent functions $(b_i)_i$ of \mathbb{L}_2 and then :

$$h = \sum_{i} \zeta_{i} b_{i} , \quad (\zeta_{i})_{i} \stackrel{iid}{\sim} \mathcal{N}(0,1)$$

- \diamond Consider a Brownian motion, one **trajectory is a continuous function** (even γ -Hölder for $\gamma < 1/2$). For more regularity, one can consider smoother Gaussian process (or other continuous-time stochastic process).
- \bullet Given the observation of Y^n , the Bayes formula gives the posterior distribution :

$$\Pi(B|Y^n) = \frac{\int_B p_f^n(Y^n) \ d\Pi(f)}{\int_{\mathcal{F}} p_f^n(Y^n) \ d\Pi(f)} = \frac{\int_B p_f^n(Y^n)/p_{f_0}^n(Y^n) \ d\Pi(f)}{\int_{\mathcal{F}} p_f^n(Y^n)/p_{f_0}^n(Y^n) \ d\Pi(f)}$$

Desired behavior of the posterior

Posterior contraction

• We say that we have a posterior contraction at rate $\varepsilon_n \xrightarrow[n \to +\infty]{} 0$ for a metric d when

$$\Pi\left(B_d(f_0,\varepsilon_n)\mid Y^n\right)\xrightarrow[n\to+\infty]{\mathbb{P}_{f_0}} 1$$

- What are right conditions on the prior distribution Π and on the parameter space \mathcal{F} to obtain posterior contraction? Two remarks:
 - \diamond let B be a measurable set, if $\Pi(B) = 0$, then $\Pi(B|Y^n) = 0$ for all n \hookrightarrow the prior have to put some mass around the true parameter f_0
 - The space of parameters has to do not be too large → we have to consider "small" spaces: Hölder or Sobolev spaces for examples.

Kullback-Leibler divergence

Recall that:

$$\Pi(B|Y^n) = \frac{\int_B p_f^n(Y^n)/p_{f_0}^n(Y^n) \ d\Pi(f)}{\int_{\mathcal{F}} p_f^n(Y^n)/p_{f_0}^n(Y^n) \ d\Pi(f)}$$

The likelihood ratio $p_f^n(Y^n)/p_{f_0}^n(Y^n)$ (under the law P_{f_0}) is closely related to the **Kullback-Leibler divergence** $KL(\mathbb{P}_{f_0}, \mathbb{P}_{f})$:

$$\mathit{KL}(\mathbb{P}_{f_0},\mathbb{P}_f) = \int \log\Big(rac{
ho_{f_0}}{
ho_f}\Big)
ho_{f_0} d\mu$$

We define "KL-neighborhood":

$$BK(f_0,\varepsilon) = \left\{ f \in \mathcal{F}, \ KL(\mathbb{P}_{f_0},\mathbb{P}_f) \leq n\varepsilon^2, \ \int \left(\log \left(\frac{\rho_{f_0}}{\rho_f} \right) - KL(\mathbb{P}_{f_0};\mathbb{P}_f) \right)^2 d\mathbb{P}_{f_0} \leq n\varepsilon^2 \right\}$$

Prior mass

Lemma 1 (not proved)

For any probability distribution Π on \mathcal{F} , for any $C, \varepsilon > 0$, with P_{f_0} -probability at least $1 - 1/C^2 n \varepsilon^2$,

$$\int \frac{p_f^n(Y^n)}{p_{f_0}^n(Y^n)} d\Pi(f) \geq \Pi\Big(BK(f_0,\varepsilon)\Big) \times \exp\big(-(1+C)n\varepsilon^2\big)$$

Lemma 2

Let $(\varepsilon_n)_n$ a sequence cuh that $n\varepsilon_n^2 \to +\infty$. Let $(A_n)_n$ be a sequence of measurable sets such that :

$$\frac{\Pi(A_n)}{\exp(-2n\varepsilon_n^2)\Pi(BK(f_0,\varepsilon_n))}\xrightarrow[n\to+\infty]{}0$$

Then,

$$\Pi(A_n|Y^n)\xrightarrow[n\to+\infty]{\mathbb{P}_{f_0}}0$$

 $[\]hookrightarrow$ proof on board

(Very) Roughly speaking:

- Let's say we want to determine whether the data have been generated by f_0 or by $f \in B_d(f_1, \alpha \varepsilon)$ with $\alpha < 1$ and $d(f_0, f_1) > \varepsilon$.
- Roughly, a $\underline{\text{test}} \phi_n(Y^n) \in \{0,1\}$ says 0 if given the data he thinks f_0 is more likely, otherwise he says 1.
- ullet From a **statistical point of view**, the space ${\mathcal F}$ and the model are **not too complicated** if we can construct a <u>test</u> such that
 - $\diamond \ \mathbb{E}_{\mathbb{P}_{f_0}}[\phi_n(Y^n)] \approx 0$
 - $\diamond \ \, \mathsf{For} \, \, f \in B_d(f_1,\alpha\varepsilon), \, \mathbb{E}_{\mathbb{P}_f}[\phi_n(\mathsf{Y}^n)] \approx 1 \, \iff \, \mathbb{E}_{\mathbb{P}_f}[1-\phi_n(\mathsf{Y}^n)] \approx 0$

Covering number

- So we have a <u>test</u> of " f_0 against the ball $B_d(f_1, \alpha \varepsilon)$ " with $d(f_1, f_0) > \varepsilon$.
- If the covering number of the space is not too large, we can construct a global test $\bar{\phi}_n$ of f_0 against $B_d(f_0,\varepsilon)^c$ that is :
 - $\diamond \ \mathbb{E}_{\mathbb{P}_{f_n}}[\bar{\phi}_n(Y^n)] \approx 0$
 - \diamond For $f \in B_d(f_0, \varepsilon)^c$, $\mathbb{E}_{\mathbb{P}_f}[1 \bar{\phi}_n(Y^n)] \approx 0$
- Covering number : $\mathcal{N}(r, \mathcal{E}, d) = \min \{k, \exists (f_1, ..., f_k) \text{ such that } \mathcal{E} \subset \bigcup_{i=1}^k B_d(f_i, r) \}.$

Theorem

Theorem (Ghosal, Ghosh and van der Vaart - 2000)

Let ε_n such that $n\varepsilon_n^2 \to +\infty$. Suppose that :

- (i) $\Pi(BK(f_0, \varepsilon_n)) \ge \exp(-Cn\varepsilon_n^2)$
- (ii) There exists a measurable set \mathcal{F}_n such that $\Pi\left(\mathcal{F}_n^c\right) \leq \exp(-(C+4)n\varepsilon_n^2)$
- (iii) There exists $\alpha > 0$ such that for any $\varepsilon > 0$ and for any $f \in \mathcal{F}_n$ with $d(f_0, f) > \varepsilon$, we can construct a test ϕ_n of " f_0 against $B(f_1, a\varepsilon)$ " that verifies :

$$\mathbb{E}_{\mathbb{P}_{f_0}}\left[\phi_n(Y^n)\right] \leq \exp(-\mathit{Kn}\varepsilon_n^2) \ \ \text{and} \sup_{f \in_d(f,\alpha\varepsilon)} \mathbb{E}_{\mathbb{P}_f}\big[1-\phi_n(Y^n)\big] \leq \exp(-\mathit{Kn}\varepsilon_n^2)$$

(iv)
$$\mathcal{N}\left(\varepsilon_n, \mathcal{F}_n, d\right) \leq \exp\left(Dn\varepsilon_n^2\right)$$

Then we have posterior concentration around f_0 at rate ε_n in terms of metric d

Illustration with the example

- Recall : $Y_i = f_0(i/n) + \epsilon_i$ and the model is $\left\{ \bigotimes_{i=1}^n \mathcal{N}(f(i/n), 1) , f \in \mathcal{F} \right\}$.
- We take $\mathcal{F} = \mathcal{H}(\beta), \ \beta \in]0; 1]$,the space of functions f such that there exist L > 0

$$\forall x, y \in [0; 1], |f(x) - f(y)| \le L|x - y|^{\beta}$$

- Prior :
 - $\diamond \ \text{let} \ K_n(\beta) = n^{\frac{1}{2\beta+1}}$
 - $\diamond f(x) = \sum_{k=1}^{K_n(\beta)} f_k \mathbb{1}_{\left[\frac{k-1}{K_n(\beta)}; \frac{k}{K_n(\beta)}\right]}(x) \text{ and } (f_k)_k \stackrel{\text{iid}}{\sim} Laplace(1)$
- We set $\mathcal{F}_n = \{f = \sum_{k=1}^{K_n(\beta)} f_k \mathbb{1}_{\left[\frac{k-1}{K_n(\beta)}; \frac{k}{K_n(\beta)}\right]}, \max_{1 \le k \le K_n(\beta)} |f_k| \le n\}.$
- $\hookrightarrow \lim_{n \to +\infty} \mathcal{F}_n = \bigcup_{n \geq 1} \mathcal{F}_n$ is dense in \mathcal{F} (and even $dist_{\infty}(\mathcal{F}_n, \mathcal{F}^L) \approx Ln^{\frac{-\beta}{2\beta+1}}$)
- The prior puts most of its mass on \mathcal{F}_n and \mathcal{F}_n is simple and small enough (we can construct test and control its covering number).

Proof, first step: "global" test

On board if time

Proof, second step: isolating the main term

- By (i), (ii) and lemma 2, $\Pi(\mathcal{F}_n^c|Y^n) \xrightarrow[n \to +\infty]{} 0$.
- Let $C_n = \big\{ f \in \mathcal{F}_n, \ d(f,f_0) \geq M \varepsilon_n \big\}$, we have to show that $\Pi(C_n|Y^n) \xrightarrow{n \to +\infty} 0$.
- Let also $B_n = \left\{ \int \frac{p_f^n(Y^n)}{p_{f_0}^n(Y^n)} d\Pi(f) \ge \Pi\Big(BK(f_0,\varepsilon) \times \exp\big(-(1+C)n\varepsilon^2\big) \right\}$, by the first lemma, $\mathbb{P}_{f_0}(B_n^c) = o(1)$. In addition, $\mathbb{E}_{\mathbb{P}_{f_0}}[\bar{\phi}_n(Y^n)] = o(1)$.
- So, as $\Pi(C_n|Y^n) \leq 1$, we have :

$$\begin{split} \Pi(C_n|Y^n) &= \Pi(C_n|Y^n) \mathbb{1}_{B_n} (1 - \bar{\phi}_n(Y^n)) + o_{\mathbb{P}_{f_0}}(1) \\ &= \frac{\displaystyle \int_{C_n} \frac{p_f^n(Y^n)}{p_{f_0}^n(Y^n)} (1 - \bar{\phi}_n(Y^n)) \ d\Pi(f)}{\displaystyle \int_{\mathcal{F}} \frac{p_f^n(Y^n)}{p_{f_0}^n(Y^n)} \ d\Pi(f)} \mathbb{1}_{B_n} + o_{\mathbb{P}_{f_0}}(1) \end{split}$$

Proof, second step

Taking expectation we have :

$$\begin{split} \mathbb{E}_{\mathbb{P}_{f_0}} \left[\Pi(C_n | Y^n) \right] &= \mathbb{E}_{\mathbb{P}_{f_0}} \left[\frac{\displaystyle \int_{C_n} \frac{p_f^n(Y^n)}{p_{f_0}^n(Y^n)} (1 - \bar{\phi}_n(Y^n)) \ d\Pi(f)}{\displaystyle \int_{\mathcal{F}} \frac{p_f^n(Y^n)}{p_{f_0}^n(Y^n)} \ d\Pi(f)} \mathbb{1}_{B_n} \right] + o(1) \\ &\leq \mathbb{E}_{\mathbb{P}_{f_0}} \left[\frac{\displaystyle \int_{C_n} \frac{p_f^n(Y^n)}{p_{f_0}^n(Y^n)} (1 - \bar{\phi}_n(Y^n)) \ d\Pi(f)}{\displaystyle \Pi\left(BK(f_0, \varepsilon) \times \exp\left(-(1 + C)n\varepsilon^2\right)} \mathbb{1}_{B_n} \right] + o(1) \ \text{by def. of } B_n \right] \\ &\leq \frac{\displaystyle \int_{C_n} \mathbb{E}_{\mathbb{P}_{f_0}} \left[\frac{p_f^n(Y^n)}{p_{f_0}^n(Y^n)} (1 - \bar{\phi}_n(Y^n)) \right] d\Pi(f)}{\displaystyle \Pi\left(BK(f_0, \varepsilon) \times \exp\left(-(1 + C)n\varepsilon^2\right)} + o(1) \ \text{by Fubini} \\ &= \frac{\displaystyle \int_{C_n} \mathbb{E}_{\mathbb{P}_f} \left[(1 - \bar{\phi}_n(Y^n)) \right] d\Pi(f)}{\displaystyle \Pi\left(BK(f_0, \varepsilon) \times \exp\left(-(1 + C)n\varepsilon^2\right)} + o(1) \ details \end{split}$$

Proof, conclusion

Using the property of the test $\bar{\phi}_n$, and the "prior mass condition" we finally have :

$$\mathbb{E}_{\mathbb{P}_{f_0}}\left[\Pi(C_n|Y^n)\right] \leq \exp\left((C+2)n\varepsilon_n^2\right) \times \exp\left(-\left(C+4\right)n\varepsilon_n^2\right) + o(1) = o(1) \quad \ (1)$$

Reference: Convergence rates of posterior distributions - Subhashis Ghosal, Jayanta K. Ghosh, Aad W. van der Vaart - Annals of Statistics - 2000

