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Motivations

Interacting high dimensional network (for example neurons), M nodes.

Only the activity of a small amount (s � M) of nodes (neurons) is recorded.

Find the best approximation of the full network interactions as a graph of
interactions between the s observed nodes.
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Motivations
To perform statistical estimation one needs controls on the activity of the
observed nodes.

Hawkes process, each neuron has intensity

λm
t = µm +

∑
m′

∫ t−

−∞
hm

m′(t − s)dNm′

s .

Given N1,N2,N3, without knowing the rest of the graph of the interactions,
find the best νi , f i

j with i , j = 1, 2, 3 to approximate λi
i by

ψi
t(3, ν, f ) = νi +

3∑
j=1

∫ t−

−∞
f i
j (t − s)dN j

s , for i = 1, 2, 3.

This statistical task requires controls on the moments of N1,N2,N3: Least Square
contrast

LSi(ν, f ) = −2
∫ T

0
ψi

t(3, ν, f )dN i
t + ‖ψi(3, ν, f )‖2

L2(0,T ).
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M-typed tree
U =

⋃
n∈N(N

∗)n with (N∗)0 = {∅} the set of all possible individuals.

A tree τ is a subset of U such that
I ∅ ∈ τ ,
I For any v ∈ τ , if v 6= ∅ then v = uk with k ∈ N∗ and u ∈ τ .

A set of all possible types M = [[1,M]] with M ∈ N∗.

A M-typed tree is an object (u, tp(u))u∈τ where τ is a tree and for any
u ∈ τ , tp(u) ∈ M is the type of u.

For T = (u, tp(u))u∈τ a M-typed tree we define

CardM(T ) =
(
Card({u ∈ τ | tp(u) = m})

)
m∈M

.
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Poissonian Galton Watson processes

Let H = (H j
i )i,j∈M with H j

i ≥ 0. A Pois(H) Galton Watson tree with root of
type m0 ∈ M is a random M-type tree T m = (u, tp(u))u∈τ such that

τ is a random tree with root ∅ and
tp(∅) = m0.

u ∈ τ with type tp(u) = m reproduces
as follows: independently for each
m′ ∈ M, it has Pois(Hm′

m ) children of
type m′.

(ø,tp(ø))

(1,tp(1))

(2,tp(2))

(3,tp(3))

(11,tp(11)) (12,tp(12)) (31,tp(31))
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Poissonian Galton Watson processes

Given T m = (u, tp(u))u∈τ a Pois(H) GW process we are interested in the
moments of

u · CardM(T m)

for u ∈ RM
+ .

If u = (1, 0, · · · , 0) then we only consider the first type.

If u = (1, 2, 1, · · · , 1) then we consider all the types but type 2 counts as
double.

Depends on the type of the root.

If SpR(H) ≥ 1, in expectation T is infinite, and P (extinction) < 1 if
SpR(H) > 1.

Théo Leblanc (CEREMADE) Exponential Estimates for Multi Type Poissonian Branching Processes YRD 3/06/2025 6 / 27



Poissonian Galton Watson processes

Given T m = (u, tp(u))u∈τ a Pois(H) GW process we are interested in the
moments of

u · CardM(T m)

for u ∈ RM
+ .

If u = (1, 0, · · · , 0) then we only consider the first type.

If u = (1, 2, 1, · · · , 1) then we consider all the types but type 2 counts as
double.

Depends on the type of the root.

If SpR(H) ≥ 1, in expectation T is infinite, and P (extinction) < 1 if
SpR(H) > 1.

Théo Leblanc (CEREMADE) Exponential Estimates for Multi Type Poissonian Branching Processes YRD 3/06/2025 6 / 27



Main result for Galton Watson trees

Definition
Let r ,K ≥ 0. A matrix M ∈ Ge (r ,K) if

|||Mn|||∞ ≤ Krn, ∀n ≥ 1.

SpR(H) < 1 ⇐⇒ H ∈ Ge (r ,K) with r < 1.

Definition
Let u � 0, and define L(u) ∈ [0,∞]M by

E
[
eu·CardM(T m)

]
= exp

(
em ·L(u)

)
where T m is a Pois(H) GW with root of type m.
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Theorem
The following holds

We have the following finiteness condition,

|L(u)|∞ <∞ ⇐⇒ ∃x � 0, x = u + H(ex − 1). (1)

If |L(u)|∞ <∞ then L(u) is the smallest solution (for �), among the
solutions non negative solutions, of this equation

L(u) = u + H(eL(u) − 1). (2)

If H ∈ Ge (r ,K) with r < 1, and if we define

t0(r ,K) =
log

( 1+r
2r

)
1 + 2K

1−r
, (3)

for all u � 0 such that |u|∞ ≤ t0(r ,K) the following holds

L(u) �
(
Id−1 + r

2r H
)−1

u � |u|∞
(
1 +

K(1 + r)
1 − r

)
1. (4)
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Sketch of proof

CardM(T m
≤n+1)

d
= em +

∑
m′∈M

Xm′
m∑

k=1
CardM(T m′,k

≤n )

where,
Xm′

m , T m′,k
≤n for m′ ∈ M, k ∈ N∗ are

independent,
Xm′

m ∼ Pois(Hm′

m ),
and T m′,k

≤n ∼ T m′

≤n .

n + 1

If we denote L(u)n =
(
logE

[
eu·CardM(T m

≤n)
] )

m∈M
then we have

L(u)0 = u = fu(0),

L(u)n+1 = fu(L(u)n) = f n+1
u (0),

with
fu(x) = u + H(ex − 1).
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Sketch of proof

By Monotone Convergence Theorem

L(u)n −−−→
n→∞

L(u).

Thus if |L(u)|∞ <∞ we have L(u) = fu(L(u)).

Reciprocally, if ∃y � 0 such that y = fu(y), since fu is increasing we have

f n
u (0) ≤ f n

u (y) = y , and thus L(u) � y .
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Sketch of proof
In previous work it has been proved that if H ∈ Ge (r ,K) with r < 1 then we have

L(u) � L(|u|∞1) � |u|∞
(
1 +

2K
1 − r

)
1 � log

(1 + r
2r

)
1, (5)

for any u such that |u|∞ ≤ t0(r ,K).

Let u has above. Then,

L(u) =
∞∑

n=0
f n+1
u (0)− f n

u (0)

= u +
∞∑

n=1
H
(
ef n

u (0) − ef n−1
u (0))

� u +
∞∑

n=1
e|L(u)|∞H(f n

u (0)− f n−1
u (0))

= u +
1 + r

2r H
[ ∞∑

n=0
f n+1
u (0)− f n

u (0)
]

= u +
1 + r

2r HL(u).
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Sketch of proof

Thus we have, (
Id−1 + r

2r H
)
L(u) � u.

But SpR(H) ≤ r and thus
SpR

(1 + r
2r H

)
< 1

and thus
L(u) �

(
Id−1 + r

2r H
)−1u.

The last inequality comes from

|||
(1 + r

2r H
)n|||∞ ≤ K

(1 + r
2

)n
, n ≥ 1.

And thus
|||
(
Id−1 + r

2r H
)−1|||∞ ≤ 1 + K (1 + r)/2

1 − (1 + r)/2 .
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(
Id−1 + r

2r H
)−1|||∞ ≤ 1 + K (1 + r)/2

1 − (1 + r)/2 .
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Exact solutions
Can we find ”the greatest” u such that L(u) ≺ ∞? In the single type case?

Single type case: Pois(α) GW tree with α < 1.

Find the greatest u ≥ 0 such that x = u + α(ex − 1) has a non negative
solution.

Critical case when at xc such that αexc = 1 and uc such that both curves touches,
ie

uc = xc − α(exc − 1) = log(1/α)− (1 − α).
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Exact solutions

We proved the following.

Theorem
Let T a Pois(α) GW tree with α < 1. Then for any ≥ 0 we have

E
[
eu Card(T )

]
<∞ ⇐⇒ u ≤ uc

where uc = log(1/α)− (1 − α) and

L(uc) = log
(
E
[
euc Card(T )

] )
= log

(
1
α

)
.

Moreover, for any x ≥ 0 such that x − α(ex − 1) ≥ 0 we have

x = L(x − α(ex − 1)) ⇐⇒ αex ≤ 1.

Is there a multitype extension of this result?
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Exact solutions

Consider now Pois(H) Galton Watson trees with SpR(H) < 1.

Let E = {u � 0 | |L(u)|∞ <∞}.

E is star shaped: if u ∈ E then tu ∈ E for all 0 ≤ t ≤ 1.

E is convex (Hölder inequality).

E is closed. Suppose un = L(un)− H(eL(un) − 1) −−−→
n→∞

u∗ then L(un)

must be bounded.

Théo Leblanc (CEREMADE) Exponential Estimates for Multi Type Poissonian Branching Processes YRD 3/06/2025 15 / 27



Exact solutions

Consider now Pois(H) Galton Watson trees with SpR(H) < 1.

Let E = {u � 0 | |L(u)|∞ <∞}.

E is star shaped: if u ∈ E then tu ∈ E for all 0 ≤ t ≤ 1.

E is convex (Hölder inequality).

E is closed. Suppose un = L(un)− H(eL(un) − 1) −−−→
n→∞

u∗ then L(un)

must be bounded.

Théo Leblanc (CEREMADE) Exponential Estimates for Multi Type Poissonian Branching Processes YRD 3/06/2025 15 / 27



Exact solutions

Consider now Pois(H) Galton Watson trees with SpR(H) < 1.

Let E = {u � 0 | |L(u)|∞ <∞}.

E is star shaped: if u ∈ E then tu ∈ E for all 0 ≤ t ≤ 1.

E is convex (Hölder inequality).

E is closed. Suppose un = L(un)− H(eL(un) − 1) −−−→
n→∞

u∗ then L(un)

must be bounded.

Théo Leblanc (CEREMADE) Exponential Estimates for Multi Type Poissonian Branching Processes YRD 3/06/2025 15 / 27



Exact solutions

Consider now Pois(H) Galton Watson trees with SpR(H) < 1.

Let E = {u � 0 | |L(u)|∞ <∞}.

E is star shaped: if u ∈ E then tu ∈ E for all 0 ≤ t ≤ 1.

E is convex (Hölder inequality).

E is closed. Suppose un = L(un)− H(eL(un) − 1) −−−→
n→∞

u∗ then L(un)

must be bounded.

Théo Leblanc (CEREMADE) Exponential Estimates for Multi Type Poissonian Branching Processes YRD 3/06/2025 15 / 27



Exact solutions

Let us look at regularity properties.

L is continuous on any {v | v � u} for any u ∈ E . (Dominated Convergence
Theorem)

L is C∞ on E̊ . (Theorem for swapping
∫

and d
dx .)

A priori no continuity on ∂E .

Théo Leblanc (CEREMADE) Exponential Estimates for Multi Type Poissonian Branching Processes YRD 3/06/2025 16 / 27



Exact solutions

Let us look at regularity properties.

L is continuous on any {v | v � u} for any u ∈ E . (Dominated Convergence
Theorem)

L is C∞ on E̊ . (Theorem for swapping
∫

and d
dx .)

A priori no continuity on ∂E .

Théo Leblanc (CEREMADE) Exponential Estimates for Multi Type Poissonian Branching Processes YRD 3/06/2025 16 / 27



Exact solutions

Let us look at regularity properties.

L is continuous on any {v | v � u} for any u ∈ E . (Dominated Convergence
Theorem)

L is C∞ on E̊ . (Theorem for swapping
∫

and d
dx .)

A priori no continuity on ∂E .

Théo Leblanc (CEREMADE) Exponential Estimates for Multi Type Poissonian Branching Processes YRD 3/06/2025 16 / 27



Exact solutions

Let us look at regularity properties.

L is continuous on any {v | v � u} for any u ∈ E . (Dominated Convergence
Theorem)

L is C∞ on E̊ . (Theorem for swapping
∫

and d
dx .)

A priori no continuity on ∂E .

Théo Leblanc (CEREMADE) Exponential Estimates for Multi Type Poissonian Branching Processes YRD 3/06/2025 16 / 27



Exact solutions

Can we extend the characterisation αex ≤ 1 to the multitype case?

If u ∈ E̊ then we can differentiate u = L(u)− H(eL(u) − 1), thus

Id =
(
Id−H diag(eL(u))

)
× DuL.

Thus
(
Id−H diag(eL(u))

)−1 exists and since SpR(H) < 1, by continuity and
(weak) Perron-Frobenius Theorem we must have SpR(H diag(eL(u))) < 1.

The reciprocal also holds.

Thus, we must have

∂E = {u ∈ E | SpR
(
H diag(eL(u)) = 1}.

For any u � 0, there exists at most one solution of y = u + H(ey − 1) such
that y � 0 and SpR

(
H diag(ey )

)
≤ 1.
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Exact solutions
To sum up we have the following.
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Poissonian Clusters

Let h = (hj
i )i,j∈M where hj

i : R+ −→ R+ and denote H = (‖hj
i‖1)i,j .

A Pois(h) cluster with root of type m ∈ M and born at time t ∈ R is a random
variable Gm

t = (u, tp(u), bd(u))u∈τ such that

bd(u) ∈ R is the birth date of u,

(u, tp(u))u∈τ is a Pois(H) Galton Watson tree with root of type m.

Given (u, tp(u))u∈τ , for u, v with v a child of u, the random variable
bd(u)− bd(v) are independent and

bd(u)− bd(v) ∼
htp(v)
tp(u)(s)

Htp(v)
tp(u)

ds.
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Thinning in a Poisson random measure
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Tail of clusters

Let Gm
0 a Pois(h) cluster. For t ∈ R we denote by Gm

0 ∩ [t,∞) the points u of
Gm

0 such that bd(u) ≥ t.

We are interested in the Laplace
transform of

CardM
(
G0

m ∩ [t,∞)
)
.

t
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Fixed point equation
Let u � 0, t ∈ R and define

fu(t) =
(
log

[
E
[
eu·CardM(Gm

0 ∩[t,∞))
] ])

m∈M
.

Then the following holds.

Theorem
For all u ∈ E and all t ∈ R we have

fu(t) = 1t≤0u +
[
h ? (efu − 1)

]
(t)

and for t ≤ 0,
fu(t) = L(u).

For all u ∈ E̊ , for all t > 0, we have

fu(t) �
∫ ∞

t

∞∑
n=1

[
h diag(eL(u))

]?n
(s)ds ×L(u).
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Sketch of proof
The fixed point equation comes from the branching property.

u · CardM(Gm
0 ∩ [t,∞)) ∼ 1t≤0um +

∑
v∈first gen.

u · CardM(G tp(v)
bd(v) ∩ [t,∞)),

and CardM(G tp(v)
bd(v) ∩ [t,∞)) ∼ CardM(G tp(v)

0 ∩ [t − bd(v),∞)).

If t ≤ 0 it is clear that CardM(Gm
0 ∩ [t,∞)) = CardM(Gm

0 ) and thus fu(t) = L(u).
Let u ∈ E̊ , denote hu = h diag(eL(u)) and gu(t) = 1t>0fu(t). If t > 0 then

gu(t) =
∫ t

0
h(s)(efu(t−s) − 1)ds +

∫ ∞

t
h(s)ds × (eL(u) − 1)

�
∫ t

0
hu(s)fu(t − s)ds +

∫ ∞

t
hu(s)ds ×L(u)

=
[
hu ? gu

]
(t) +

∫ ∞

t
hu(s)ds ×L(u).

Théo Leblanc (CEREMADE) Exponential Estimates for Multi Type Poissonian Branching Processes YRD 3/06/2025 23 / 27



Sketch of proof
The fixed point equation comes from the branching property.

u · CardM(Gm
0 ∩ [t,∞)) ∼ 1t≤0um +

∑
v∈first gen.

u · CardM(G tp(v)
bd(v) ∩ [t,∞)),

and CardM(G tp(v)
bd(v) ∩ [t,∞)) ∼ CardM(G tp(v)

0 ∩ [t − bd(v),∞)).

If t ≤ 0 it is clear that CardM(Gm
0 ∩ [t,∞)) = CardM(Gm

0 ) and thus fu(t) = L(u).
Let u ∈ E̊ , denote hu = h diag(eL(u)) and gu(t) = 1t>0fu(t). If t > 0 then

gu(t) =
∫ t

0
h(s)(efu(t−s) − 1)ds +

∫ ∞

t
h(s)ds × (eL(u) − 1)

�
∫ t

0
hu(s)fu(t − s)ds +

∫ ∞

t
hu(s)ds ×L(u)

=
[
hu ? gu

]
(t) +

∫ ∞

t
hu(s)ds ×L(u).

Théo Leblanc (CEREMADE) Exponential Estimates for Multi Type Poissonian Branching Processes YRD 3/06/2025 23 / 27



Sketch of proof
The fixed point equation comes from the branching property.

u · CardM(Gm
0 ∩ [t,∞)) ∼ 1t≤0um +

∑
v∈first gen.

u · CardM(G tp(v)
bd(v) ∩ [t,∞)),

and CardM(G tp(v)
bd(v) ∩ [t,∞)) ∼ CardM(G tp(v)

0 ∩ [t − bd(v),∞)).

If t ≤ 0 it is clear that CardM(Gm
0 ∩ [t,∞)) = CardM(Gm

0 ) and thus fu(t) = L(u).

Let u ∈ E̊ , denote hu = h diag(eL(u)) and gu(t) = 1t>0fu(t). If t > 0 then

gu(t) =
∫ t

0
h(s)(efu(t−s) − 1)ds +

∫ ∞

t
h(s)ds × (eL(u) − 1)

�
∫ t

0
hu(s)fu(t − s)ds +

∫ ∞

t
hu(s)ds ×L(u)

=
[
hu ? gu

]
(t) +

∫ ∞

t
hu(s)ds ×L(u).

Théo Leblanc (CEREMADE) Exponential Estimates for Multi Type Poissonian Branching Processes YRD 3/06/2025 23 / 27



Sketch of proof
The fixed point equation comes from the branching property.

u · CardM(Gm
0 ∩ [t,∞)) ∼ 1t≤0um +

∑
v∈first gen.

u · CardM(G tp(v)
bd(v) ∩ [t,∞)),

and CardM(G tp(v)
bd(v) ∩ [t,∞)) ∼ CardM(G tp(v)

0 ∩ [t − bd(v),∞)).

If t ≤ 0 it is clear that CardM(Gm
0 ∩ [t,∞)) = CardM(Gm

0 ) and thus fu(t) = L(u).
Let u ∈ E̊ , denote hu = h diag(eL(u)) and gu(t) = 1t>0fu(t). If t > 0 then

gu(t) =
∫ t

0
h(s)(efu(t−s) − 1)ds +

∫ ∞

t
h(s)ds × (eL(u) − 1)

�
∫ t

0
hu(s)fu(t − s)ds +

∫ ∞

t
hu(s)ds ×L(u)

=
[
hu ? gu

]
(t) +

∫ ∞

t
hu(s)ds ×L(u).

Théo Leblanc (CEREMADE) Exponential Estimates for Multi Type Poissonian Branching Processes YRD 3/06/2025 23 / 27



Sketch of proof
The fixed point equation comes from the branching property.

u · CardM(Gm
0 ∩ [t,∞)) ∼ 1t≤0um +

∑
v∈first gen.

u · CardM(G tp(v)
bd(v) ∩ [t,∞)),

and CardM(G tp(v)
bd(v) ∩ [t,∞)) ∼ CardM(G tp(v)

0 ∩ [t − bd(v),∞)).

If t ≤ 0 it is clear that CardM(Gm
0 ∩ [t,∞)) = CardM(Gm

0 ) and thus fu(t) = L(u).
Let u ∈ E̊ , denote hu = h diag(eL(u)) and gu(t) = 1t>0fu(t). If t > 0 then

gu(t) =
∫ t

0
h(s)(efu(t−s) − 1)ds +

∫ ∞

t
h(s)ds × (eL(u) − 1)

�
∫ t

0
hu(s)fu(t − s)ds +

∫ ∞

t
hu(s)ds ×L(u)

=
[
hu ? gu

]
(t) +

∫ ∞

t
hu(s)ds ×L(u).

Théo Leblanc (CEREMADE) Exponential Estimates for Multi Type Poissonian Branching Processes YRD 3/06/2025 23 / 27



Sketch of proof
Remark that for any ψ : R+ −→ MN(R) we have

R(ψ)t :=

∫ ∞

t
ψ(s)ds = (ψ ? IdN 1R−)(t).

We proved that
gu � hu ? gu + R(hu)×L(u).

Thus by iterating the previous inequality,

gu �
( n−1∑

k=0
h?k

u

)
? R(hu)×L(u) + h?n

u ? gu.

Since u ∈ E̊ , we have SpR(‖hu‖1) < 1 and thus h?n
u ? gu −−−→

n→∞
0. Finally, we have

( n−1∑
k=0

h?k
u

)
? R(hu) = R

( n∑
k=1

h?k
u

)
.
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Decay of a convolution series

To have a complete result we need to understand the decay of Ψf :=
∑∞

n=1 f ?n

given the decay of f where ‖f ‖1 < 1 and f ≥ 0.

If f decays exponentially fast: R(f )t . e−ct . Then R(Ψf )t . e−c′t .
(exponential passes through the convolution)

If f decays according to a power law: R(f )t . (1 + t)−γ . Then we have
R(Ψf )t .δ (1 + t)−γ(1−δ) for any 0 < δ < 1.

How to prove it? For a, b non negative functions, we have

R(a ? b)t ≤ ‖a‖1R(b)(1−p)t + R(a)pt‖b‖1, t ∈ R, 0 < p < 1.

Choose the right p (depends on δ) and iterate this bound to

Ψ(f ) = f ? (Ψ(f ) + δ0).
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Thank you for your attention!
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