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Modeling of fisheries systems
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= f(n) − h(n, E),

dE
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= ϕ

(
ph(n, E) − cE

)
Smith V.L. (1968). Economics of Production from Natural Resources. American
Economic Review, 409-431
Smith V.L. (1969). On models of commercial fishing. Journal of Political Economy, 77,
181-198

2



Fishery modelling


dn

dt
= f(n) − h(n, E),

dE

dt
= ϕ

(
ph(n, E) − cE

)

3



Fishery modelling


dn

dt
= f(n) − h(n, E)

dE

dt
= ϕ

(
ph(n, E) − cE

)

4



Fishery modelling


dn

dt
= f(n) − h(n, E)

dE

dt
= ϕ

(
ph(n, E) − cE

)

5



Fishery modelling


dn

dt
= f(n) − h(n, E)

dE

dt
= ϕ

(
ph(n, E) − cE

)

6



Fishery modelling


dn

dt
= f(n) − h(n, E),

dE

dt
= ϕ

(
ph(n, E) − cE

)

7



Fishery modelling
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Fishery modelling

f(n) = rn(1 −
n

K
)

h(n, E) = qnE


dn

dt
= rn(1 −

n

K
) − qnE

dE

dt
= ϕ

(
pqnE − cE

)
p= constant, q= constant, ϕ = 1
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Condition for fishery persistence

pqK > c pqK < c
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Artificial reefs
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Artificial Fish habitats
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Fish Aggregating Devices, FAD
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Fish aggregating devices (FADs)

Fish aggregating devices (FADs) are floating objects that allow to attract fishes in
the open sea.
Fishermen regularly visit FADs to catch fishes.
FADs are often moored along lines that are parallel to coasts or reefs or around
islands (Dagorn et al. 2007).
It is clear that fishermen move frequently between FADs.
There is evidence that tuna stay around a specific FAD for a relatively short time (a
few days).
It is reasonable to assume that fish movements occur at a fast time scale compared
to the scale at which the fish population grows.
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Effect of the number of FADs on the capture

β(ni) =
1

βni + β0
We assume that the movement rates for the fishing vessels, β(ni) depend on the fish
stock in the particular patch : When ni increases, then β(ni) decreases. We can explain
these rates of migration by the fact that the aim of the fleets owners is to increase their
revenues. So, the fishing vessels try to operate in the most abundant patch.
Consequently, the tendency of each fleet to leave a patch must increase when the stock is
locally small.
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Effect of stock-dependent boat dispersal



dns

dτ
=

N∑
i=1

msini −
N∑

i=1

misns+εrsns(1 −
ns

ks
)

dni

dτ
= misns − msini+ε

(
rni(1 −

ni

ki
) − qniEi

)
dEi

dτ
= βi,i−1(ni−1)Ei−1 + βi,i+1(ni+1)Ei+1 − (βi−1,i(ni) + βi+1,i(ni))Ei

+ε(pqni − c)Ei

ks = αK,

N∑
i=1

ki = (1 − α)K, ms =
δ

ks
, mi =

δ

ki
, β(ni) =

1
βni + β0
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Fast dynamic



dns

dτ
=

N∑
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msini −
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misns

dni

dτ
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dEi
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Fast equilibrium


msini = misns

βi,i−1(ni−1)Ei−1 + βi,i+1(ni+1)Ei+1 =
(

βi−1,i(ni) + βi+1,i(ni)
)

Ei

n = ns +
N∑

i=1

ni

E =
N∑

i=1

Ei
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Aggregated model


n∗

s = v∗
s n

n∗
i = v∗

i n

E∗
i = µ∗

i (n)E



v∗
s =

ks

K

v∗
i =

ki

K

µ∗
i (n) =

βv∗
i n + β0

β(1 − α)v∗
i n + Nβ0


dn

dt
= rn

(
1 −

n

K

)
− Q(n)nE

dE

dt
= (pQ(n)n − c)E



r = αrs + (1 − α)r1

Q(n) = q

N∑
i=1

v∗
i µ∗

i (n)

= q
τ1n + (1 − α)β0

β(1 − α)n + Nβ0

where τ1 = β

N∑
i=1

v∗2
i
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Local and global models are different



dns

dτ
=

N∑
i=1

msini −
N∑

i=1

misns + εrsns(1 −
ns

ks
)

dni

dτ
= misns − msini + ε

(
rni(1 −

ni

ki
) − qniEi

)
dEi

dτ
= βi,i−1(ni−1)Ei−1 + βi,i+1(ni+1)Ei+1 − (βi−1,ini + βi+1,i)(ni)Ei

+ε(pqni − c)Ei

(1)


dn

dt
= rn

(
1 −

n

K

)
− Q(n)nE

dE

dt
= (pQ(n)n − c)E

(2)
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Emergence
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Optimal number of sites

Total catch at equilibrium
n∗ =

cL

pq(1 − α)

Y ∗ = Q(n∗)n∗E∗ = rn∗(1 − n∗/K) = F (L)

Identically sites :

ki =
(1 − α)K

L
we obtain Lopt =

pq(1 − α)K
2c
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A two-patch population model with logistic growth and constant fast
migrations

Figure – System of two connected patches with fast migration and harvesting

We still consider a system of two patches connected by fast migrations where fish
sub-populations grow logistically. We still assume that the exchanges between the sites
are fast in comparison to local growth and fishing. The only change we consider is to
assume that the fish population is harvested in both sites. The complete model reads as
follows :

dB1

dτ
= m2B2 − m1B1 + ϵ

(
r1B1(1 −

B1

K1
) − qEB1

)
(3)

dB2

dτ
= m1B1 − m2B2 + ϵ

(
r2B2(1 −

B2

K2
) − qEB2

)
(4)
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A two-patch population model with logistic growth and constant fast
migrations

The complete model can be reduced. As a first step, we consider the fast system which is
obtained by setting ϵ = 0 in the complete system. In our case, the fast equilibrium can
be easily calculated and is given by :

B∗
1 = uB =

m2

m1 + m2
B (5)

B∗
2 = (1 − u)B =

m1

m1 + m2
B (6)

Where u =
m2

m1 + m2
represents the constant proportion of fish Biomass in patch 1 and

(1 − u) in patch 2 at the fast equilibrium. We obtain an aggregated model which reads
as follows :

dB

dt
= rB(1 −

B

K
) − EB (7)

where
r = r1u + (1 − u)r2

K =
K1K2(r1u + r2(1 − u))

(K2r1u2 + K1r2(1 − u)2)
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A two-patch population model with logistic growth and constant fast
migrations

B∗ = K > K1 + K2

rK

4
≤

r1K1

4
+

r2K2

4
r = r1u + (1 − u)r2

K =
K1K2(r1u + r2(1 − u))

(K2r1u2 + K1r2(1 − u)2)
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The 2-patch Holling type II predator-prey model with fast migrations

We consider a system of two fishing areas connected by migrations. We consider the
prey-predator model with a Holling type II functional response at each patch. The prey
and its predator can move from one fishing area to another. The complete model reads
as follows :

dB1

dτ
= m2B2 − m1B1 + ϵ

(
r1B1(1 −

B1

K1
)
)

− ϵ
( aB1P1

B1 + D

)
(8)

dB2

dτ
= m1B1 − m2B2 + ϵ

(
r2B2(1 −

B2

K2
)
)

− ϵ
( aB2P2

B2 + D

)
(9)

dP1

dτ
= k2P2 − k1P1 + ϵ

( eaB1P1

B1 + D
− dP1 − EP1)

)
(10)

dP2

dτ
= k1P1 − k2P2 + ϵ

( eaB2P2

B2 + D
− dP2 − EP2)

)
(11)

Figure – System of two connected patches with fast migration and harvesting
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After reduction, the aggregated model reads as follows :

dB

dt
= rB(1 −

B

K
) −

auvBP

uB + D
−

a(1 − u)(1 − v)BP

(1 − u)B + D
(12)

dP

dt
=

eauvBP

uB + D
+

ea(1 − u)(1 − v)BP

(1 − u)B + D
− dP − EP (13)

u =
m2

m1 + m2
v =

k2

k1 + k2
(14)
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B∗ =
−eaD(uv + (1 − u)(1 − v)) + D(d + E) +

√
∆

2(ea − (d + E))u(1 − u)
(15)

where the discriminant ∆ is given by

∆ = [eaD(uv + (1 − u)(1 − v)) − D(d + E)]2 + 4(d + E)D2(ea − (d + E))u(1 − u)

The yield Y ∗(E) = EP ∗ reads as follows :

Y ∗(E) = EP ∗ = re
E

d + E
B∗

(
1 −

B∗

K

)
(16)

Y ∗
MSY > Y ∗

MSY 1 + Y ∗
MSY 2 (17)

This result is obtained in the case of a Lotka–Volterra (type I) or Holling (type II)
functional response for the prey–predator model.
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Thank you for your attention
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