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Fishery modelling
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Fishery modelling
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Fishery modelling
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Fishery modelling
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Condition for fishery persistence
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Fish

aggregating devices (FA

Fish aggregating devices (FADs) are floating objects that allow to attract fishes in
the open sea.

Fishermen regularly visit FADs to catch fishes.

FADs are often moored along lines that are parallel to coasts or reefs or around
islands (Dagorn et al. 2007).

It is clear that fishermen move frequently between FADs.

There is evidence that tuna stay around a specific FAD for a relatively short time (a
few days).

It is reasonable to assume that fish movements occur at a fast time scale compared
to the scale at which the fish population grows.



Effect of the number of FADs on the capture
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We assume that the movement rates for the fishing vessels, 5(n;) depend on the fish
stock in the particular patch : When n; increases, then 3(n;) decreases. We can explain
these rates of migration by the fact that the aim of the fleets owners is to increase their
revenues. So, the fishing vessels try to operate in the most abundant patch.
Consequently, the tendency of each fleet to leave a patch must increase when the stock is
locally small.



Effect of stock-dependent boat dispersal
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Effect of stock-dependent boat dispersal
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Effect of stock-dependent boat dispersal
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Effect of stock-dependent boat dispersal
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Effect of stock-dependent boat dispersal
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Fast dynamic
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Fast equilibrium

MMy = MysNs

Bii—1(mi—1)Ei—1 4 Biiv1(nig1)Eiy1 = (51‘—1,1‘(7%) + /Bi+1,i(ni))Ei

N
n=mns+ E n;
i=1



Aggregated model
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Local and global models are different
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Emergence

- If L7y > B(1 — @)? and n* > K then (n*,E*) does not belongs to the positive quadrant
and (K,0) is a stable node.

- If Lry > B(1 — @)?and n* < K then (n*, E*) belong to the positive quadrant and is glob-
ally asymptotically stable while (,0) is a saddle.

S Lm < B(1—a)? and n* > K then (n*,E*) does not belongs to the positive ¢
and (K, 0) is a stable node.
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Optimal number of sites

Total catch at equilibrium
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A two-patch population model with logistic growth and constant fast

migrations

Patch 1 Patch 2

Figure — System of two connected patches with fast migration and harvesting

We still consider a system of two patches connected by fast migrations where fish
sub-populations grow logistically. We still assume that the exchanges between the sites
are fast in comparison to local growth and fishing. The only change we consider is to
assume that the fish population is harvested in both sites. The complete model reads as

follows :
dBl Bl
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A two-patch population model with logistic growth and constant fast

migrations

The complete model can be reduced. As a first step, we consider the fast system which is
obtained by setting ¢ = 0 in the complete system. In our case, the fast equilibrium can
be easily calculated and is given by :

m2

Bf =uB= ——>—B (5)
m1 + ma
Bi=(1-wB=—2_p (6)
m1 + mg
Where u = _m2 represents the constant proportion of fish Biomass in patch 1 and

m1 + m2
(1 — u) in patch 2 at the fast equilibrium. We obtain an aggregated model which reads

as follows : dB B
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dt K

where
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(Koriu? + Kira(1 — u)?)




A two-patch population model with logistic growth and constant fast

migrations
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The 2-patch Holling type II predator-prey model with fast migrations

We consider a system of two fishing areas connected by migrations. We consider the
prey-predator model with a Holling type II functional response at each patch. The prey
and its predator can move from one fishing area to another. The complete model reads
as follows :
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After reduction, the aggregated model reads as follows :
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where the discriminant A is given by

A = [eaD(uv + (1 —u)(1 —v)) — D(d + E)]?> + 4(d + E)D*(ea — (d + E))u(1l — u)
The yield Y*(E) = EP* reads as follows :
E ., B*
57 (1 K ) (16)

Yirsy > Yarsyv1 + Yarsye (17)
This result is obtained in the case of a Lotka—Volterra (type I) or Holling (type II)
functional response for the prey—predator model.

B* = (15)

Y*(E)=EP* = re—
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Un poisson mathématique — par Theo Engell- Nielsen
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