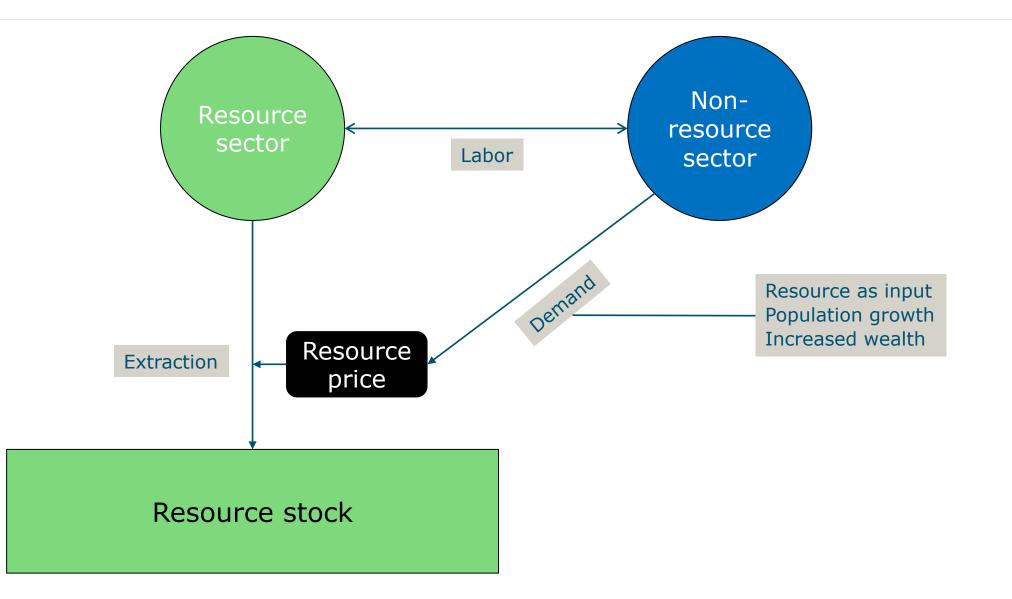
Developing alternatives to resource extraction: A developmental and environmental win-win?

Days MESSH 2023 - Sète

Michael Tanner^{a,c}, **Robbert-Jan Schaap**^b


Cesar Viteri-Mejia^c, Jorge Ramírez-González^c

- A Department of Socioeconomics, University of Hamburg
- B CEE-M, Univ. Montpellier, CNRS, INRAe, Institut Agro
- C Charles Darwin Research Station, Galapagos, Ecuador

Motivation

- Developing countries often lack enforcement power for first best quotas (Copeland and Taylor, 2009).
- In lieu second best policies are implemented to protect the resource (MPAs, input restrictions)
- Access to alternative occupations can increasing the opportunity cost of resource extraction (Jayachandran, 2006).
- Net effect of presence alternative occupations on resource extraction depends on complex set of linkages (Gilliland, 2020).

Conceptual example

This paper

Develop a resource economic model

- Multiple resources different dependencies on a non-resource sector
- Endogenous prices and opportunity costs.
- Under what conditions does the non-resource sector reduce harvesting effort?
- Assess the causal impact of tourism on resource extraction in the Galapagos islands.
 - Are the conditions from the model met?
 - Does a shock to tourism influence effort?

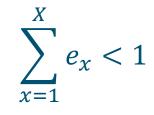
- Starting point: Gordon-Schaefer open-access fishery (Gordon, 1954)
- N identical agents have access to a set of resources (X).
- Resources are heterogeneous in prices (P_x) , catchability (q_x) and abundance (s_x)
- Agents can distribute 1 unit of effort to harvesting these resources.

X

$$\sum_{x=1}^{n} e_x \le 1$$

Theoretical framework

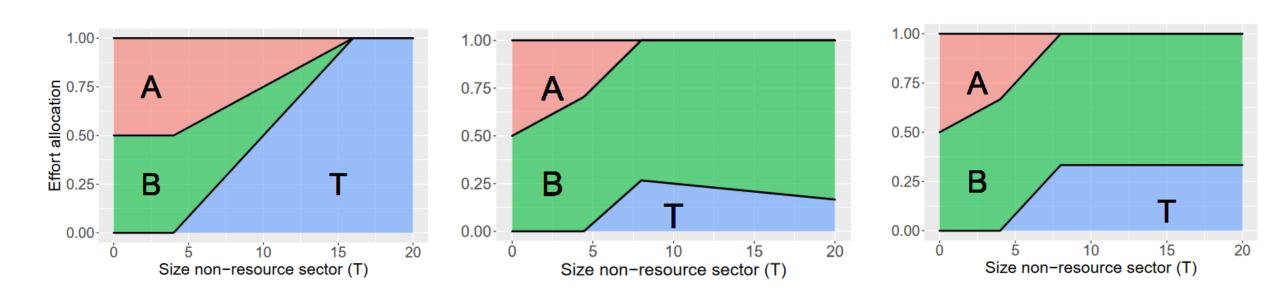
- Agents maximize within period income $\max_{e_x} \pi = \sum_{x=1}^X h_x p_x - e_x (\bar{c} + T\omega)$
- Harvest function


$$h_x = e_x s_x q_x$$

Prices are endogenous and dependent on the non-resource sector

$$p_x = \bar{p}_x + \epsilon_x H_x + \gamma_x T$$
 where $\epsilon_x \le 0$, $\gamma_x \ge 0$

Choice of effort – Internal solution



• In equilibrium: $\forall e_x > 0$, $\frac{\partial h_x p_x}{\partial e_x} = \bar{c} + T\omega$

$$e_x^* = \frac{\bar{c} + \omega T - (T\gamma_x + \bar{p}_x)q_x s_x}{2N\epsilon_x q_x^2 s_x^2}$$

Choice of effort – Non-resource sector

 $\omega > q_b s_b \gamma_b = q_a s_a \gamma_a$

 $q_b s_b \gamma_b > \omega > q_a s_a \gamma_a$

 $q_h s_h \gamma_h = \omega > q_a s_a \gamma_a$

Prediction 1: When the effort constraint is non-binding, harvesting effort allocated to resource x w increases with the size of the non-resource sector when

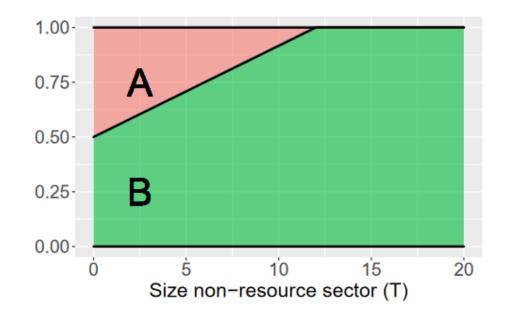
 $q_x s_x \gamma_x > \omega$

Choice of effort – Corner solution

Two resources:

 $X \in (a, b)$

In equilibrium:


$$e_a = 1 - e_b$$

Optimal effort

$$e_{a}^{*} = \frac{2N\epsilon_{b}q_{b}^{2}s_{b}^{2} + (p_{b} + T\gamma_{b})q_{b}s_{b} - (T\gamma_{a} + \bar{p}_{a})q_{a}s_{a}}{2N(\epsilon_{a}q_{a}^{2}s_{a}^{2} + \epsilon_{b}q_{b}^{2}s_{b}^{2})}$$

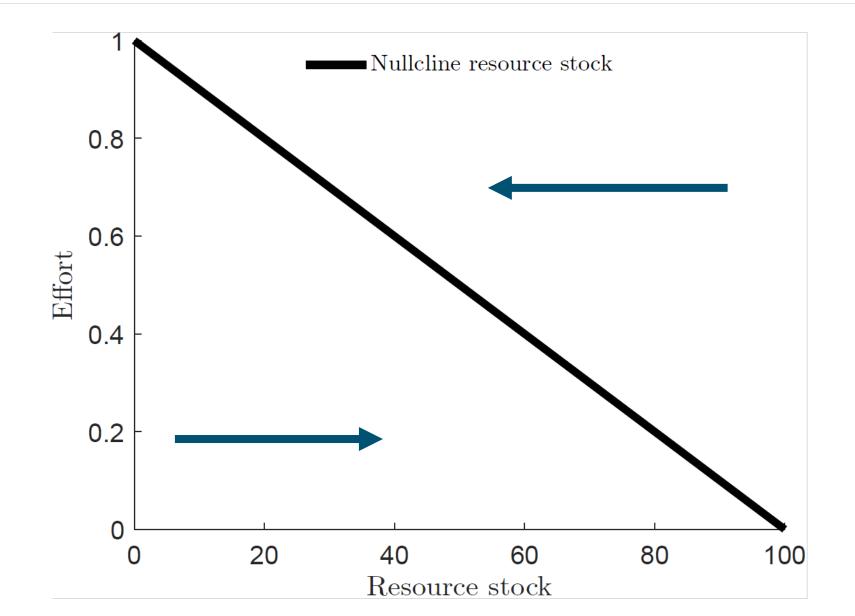
Choice of effort – Non-resource sector

 $q_b s_b \gamma_b > q_a s_a \gamma_a$

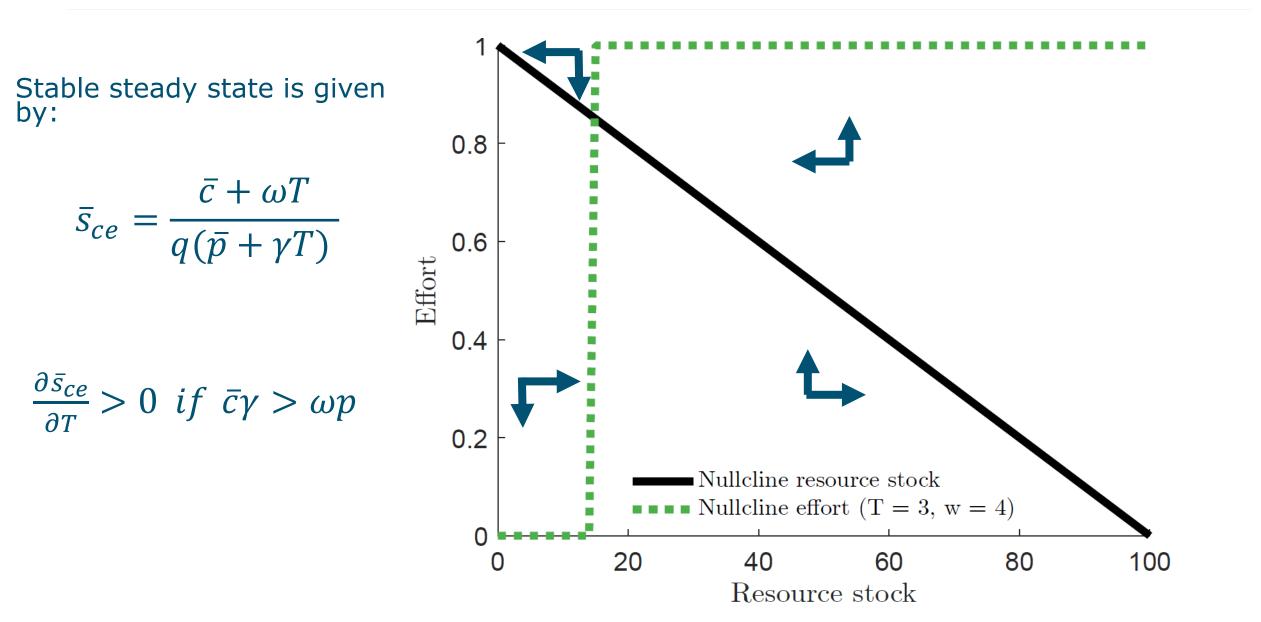
Prediction 2: When the effort constraint is binding, harvesting effort shifts with the size of the non-resource sector to the resource with the highest marginal gain in productivity ($qs\gamma$)

- Simplify to one resource -> study change in steady state when T changes
- Standard resource dynamics

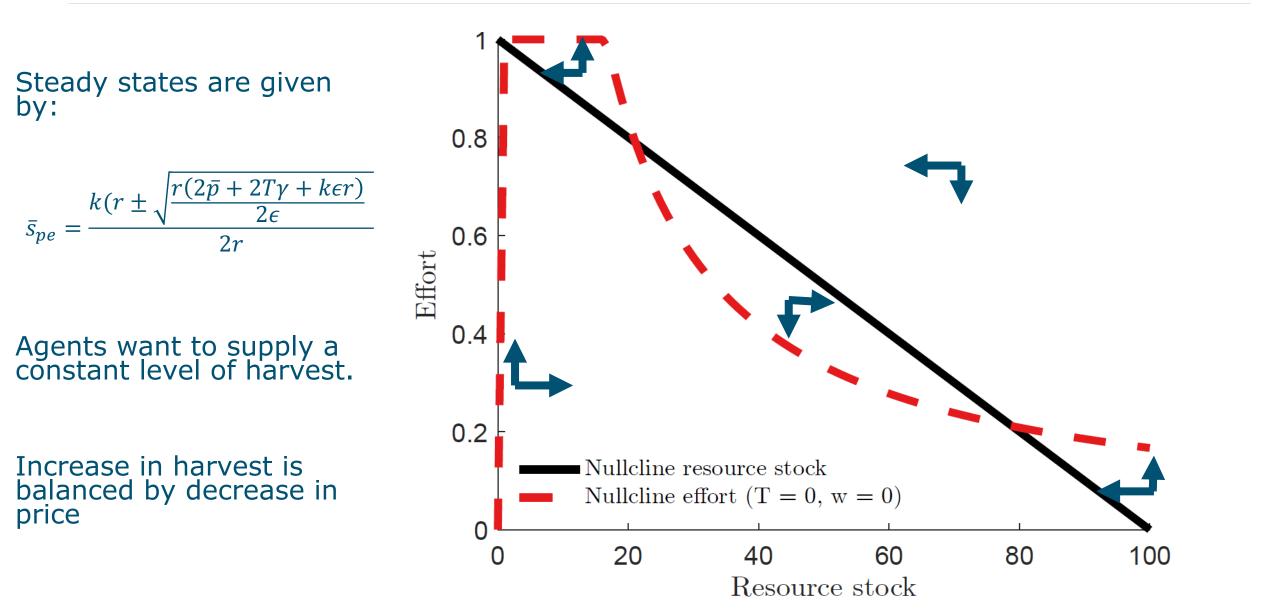
$$s_{t+1} = s_t + G(s_t) - H_t$$

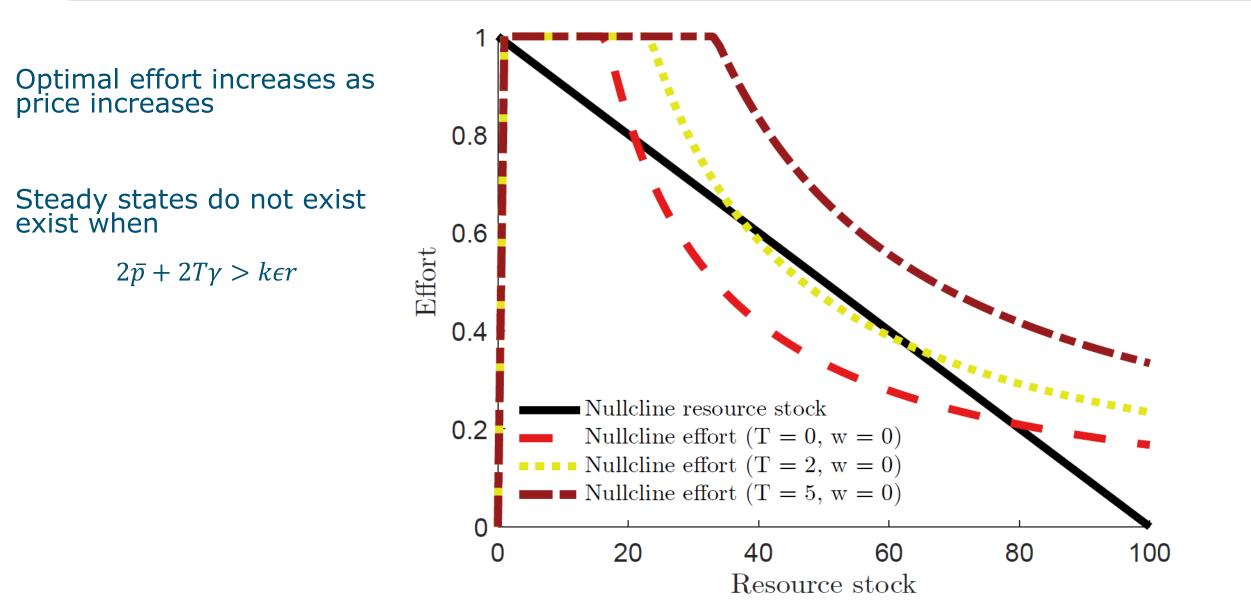

Logistic growth function

$$G(s_t) = rs_t(1 - \frac{s_t}{k})$$


Resource stock nullcline

$$\bar{e}(s) = \frac{kr - sr}{Nkq}$$


Steady states $(\epsilon = 0)$


Steady states $(\epsilon = 0)$

Steady states (
$$\bar{c} = \omega = 0$$
)



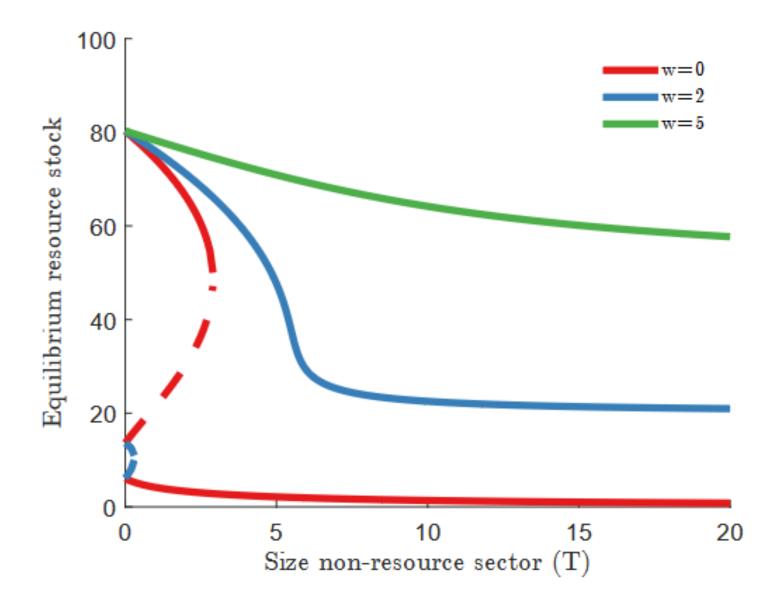
Steady states (
$$\bar{c} = \omega = 0$$
)

Steady states ($\bar{c} > 0, \omega > 0, \epsilon > 0$)

Development of steady states as T increases, is dependent on the ratio between ω and γqs

Development of steady states

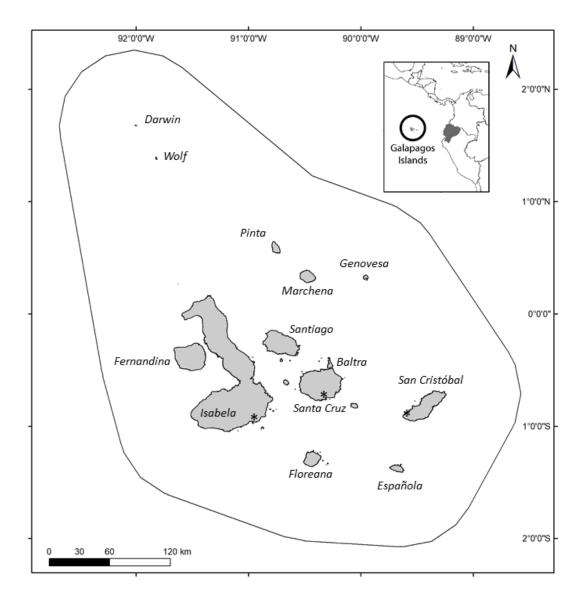
Development of steady states as T increases, is dependent on the ratio between ω and γqs


 $\lim \bar{s} =$

 $T \rightarrow \infty$

()

qγ


Single steady state converges to

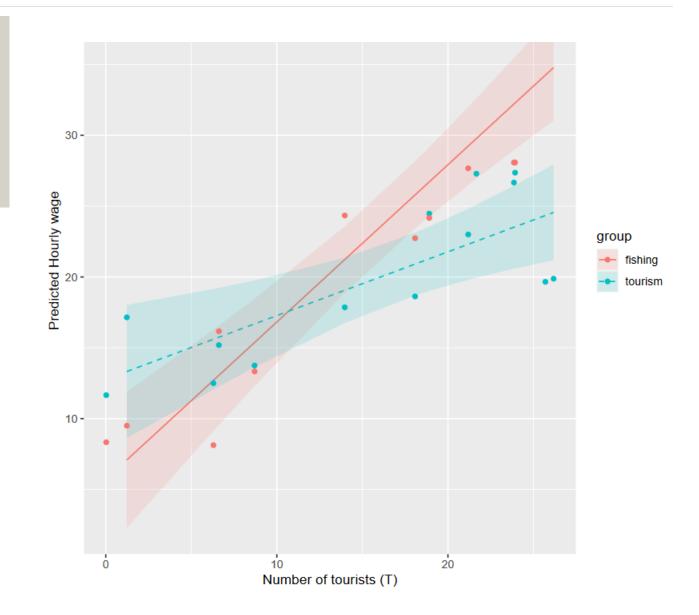
Field setting – The Galapagos Islands

- Hotspot for biodiversity and conservation.
- Multiple fisheries are overexploited due to quotas not being enforceable.
- Galapagos marine protected area (138,000 km2) and input restrictions

Dual economy, tourism and fisheries.

Testing Hypothesis 1: Two sectors

Copyright: CDF

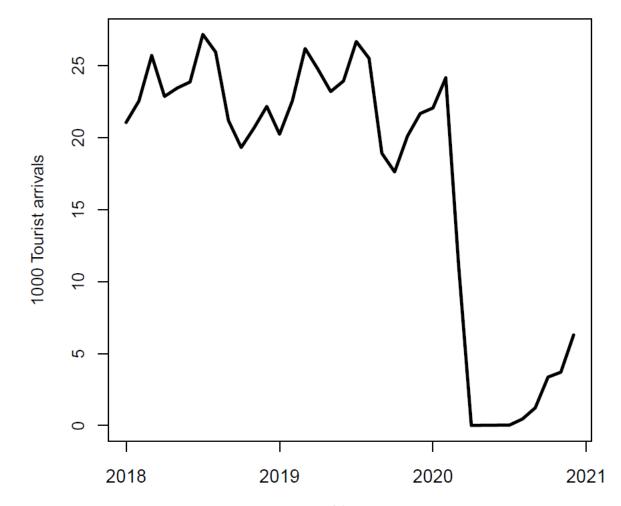

Testing Hypothesis 1: Parameterizing model

Prediction 1: When the effort constraint is non-binding, harvesting effort weakly increases with the size of the non-resource

sector when $qs\gamma > \omega$

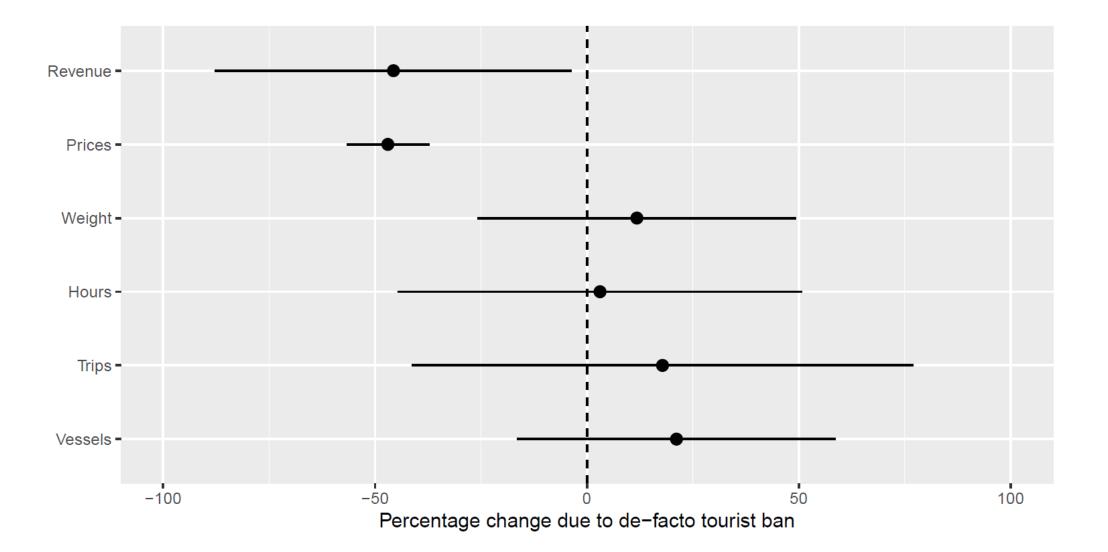
- Regress hourly wage in fisheries sector and tourism sector on tourist arrivals.
- Data from quarterly national census (2018-2021).

$$qs\gamma = 1.11 \quad \omega = 0.45$$


Testing Hypothesis 1: Empirical strategy

Regression discontinuity in time (RDiT) – Exploit exogenous shock to tourism

 $y_t = (t > t_{TB})\beta_1 + X_t \beta + \gamma_t + \epsilon$


- Total changes in effort, weight landed, prices and revenue.
- X_t time-variant controls for seasonality and policy.
- Heteroscadisticy and autocorrelation robust standard errors (Newey and West, 1987)

Testing Hypothesis 1: Shock to non-resource sector

Year

Testing Hypothesis 1: Regression results

Yellowfin Tuna (*Thunnus albacares*) ICUN: Near Threatened

Galapagos slipper lobster (Scyllarides astori) ICUN: Data deficient

Camotillo (*Paralabrax albomaculatus*) *ICUN: Endangered & Endemic to Galapagos* Galapagos Grouper (*Mycteroperca olfax*) ICUN: Vulnerable & Endemic to Galapagos

+40

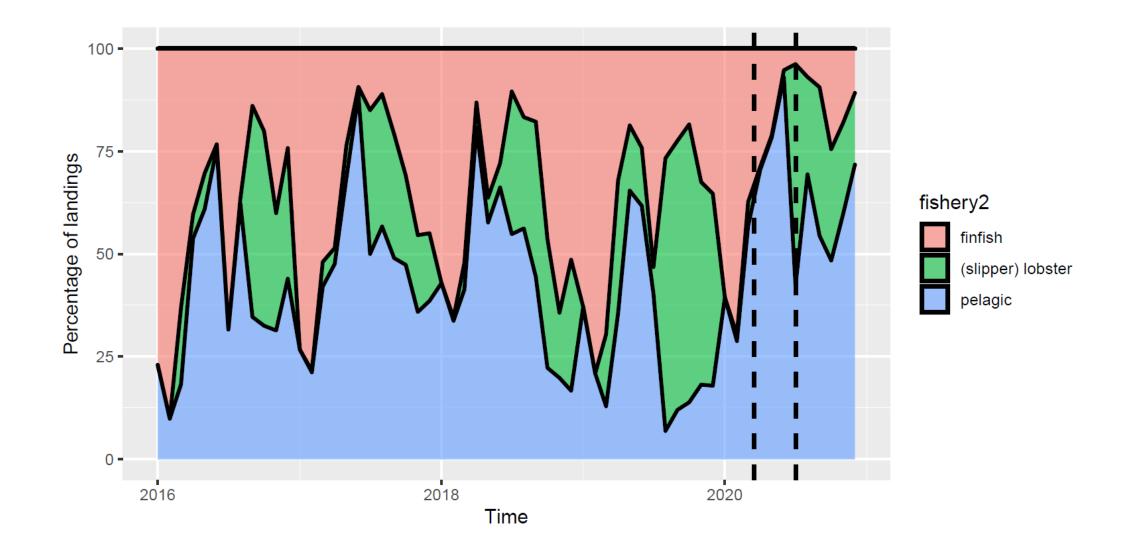
Testing Hypothesis 2: Parameterizing model

	Dependent variable: Price				
	Pelagic	Finfish	Langosta	Langostino	
	(1)	(2)	(3)	(4)	
Weight landed (ϵ_x)	-0.03^{***}	0.005	0.03	-0.59^{*}	
_ ()	(0.01)	(0.01)	(0.02)	(0.32)	
1000 Tourists (γ_x)	0.04***	0.05***	0.28***	0.36***	
	(0.01)	(0.02)	(0.04)	(0.07)	
Time-trend	0.03***	0.03***	0.08***	0.01	
	(0.005)	(0.01)	(0.03)	(0.03)	
Constant $(\bar{p_x})$	5.43***	4.97^{***}	6.79***	6.86***	
	(0.34)	(0.97)	(1.03)	(1.52)	
Observations	60	60	29	19	
\mathbb{R}^2	0.67	0.66	0.83	0.31	
Adjusted R ²	0.57	0.56	0.76	-0.03	
Note:	*	p < 0.10;	** $p < 0.05;$	*** $p < 0.01$	

			$\gamma_x q_x s_x$
Fishery	γ_x	$q_{x}s_{x}$	n_x
Pelagic	0.04	25.6	0.24
Finfish	0.05	30.32	0.64
Langosta	0.28	10.2	1.16
Langostino	0.36	8.9	1.24
Fishing			1.11
Tourism			0.45

Testing Hypothesis 1: Per fishery

Prediction 1: When the effort constraint is non-binding, harvesting effort allocated to a resource x is predicted to increase due to a negative shock to T when $\omega > q_x s_x \gamma_x$


		Dependent variable:				
		Total	Pelagic	Finfish	Langosta	Langostino
		(1)	(2)	(3)	(4)	(5)
$x^{S_{x}}\gamma_{x}$ nfish	Tourist-Ban	62.00	92.79***	-39.40	-25.11	-22.00^{***}
		(41.68)	(19.74)	(35.81)	(19.30)	(6.46)
	longline	161.26^{*}	173.39***	-34.81	37.87	-4.81
		(90.21)	(42.71)	(77.50)	(28.98)	(17.17)
	ENSO-index	-16.72	-28.65^{***}	3.53	3.84	-2.89
		(15.20)	(7.20)	(13.06)	(8.77)	(3.90)
ω ourism	Time-trend	1.08	-0.20	0.43	3.38***	0.85^{*}
		(0.74)	(0.35)	(0.63)	(0.75)	(0.46)
	Observations	$5,\!432$	$5,\!432$	$5,\!432$	2,910	$1,\!940$
	\mathbf{R}^2	0.01	0.02	0.01	0.02	0.02
	Note:		*	p < 0.10;	** $p < 0.05;$	*** $p < 0.01$

Testing Hypothesis 2: Per fishery

Prediction 2: When the effort constraint is binding, a negative shock to T will shift harvesting effort to resources with lower $(qs\gamma)$

			Dependent variable:				
			Total	Pelagic	Finfish	Langosta	Langostino
$q_x s_x \gamma_x$			(1)	(2)	(3)	(4)	(5)
Lobster	Tourist-Ban	18.16	69.61***	-16.98	-62.05^{***}	-28.72^{***}	
			(31.63)	(16.97)	(25.55)	(19.02)	(5.58)
$\frac{q_x s_x \gamma_x}{Finfish} +/-$	longline	347.78***	336.37***	-3.72	20.58	3.57	
	-	(65.60)	(35.20)	(52.99)	(27.37)	(14.21)	
	ENSO-index	-3.91	-15.26^{**}	1.70	5.37	7.39**	
		(11.54)	(6.19)	(9.32)	(8.64)	(3.37)	
	Time-trend	0.43	0.14	-0.63	3.16***	2.09***	
		(0.56)	(0.30)	(0.45)	(0.74)	(0.40)	
$\begin{array}{c} q_x s_x \gamma_x \\ \text{Pelagic} \end{array} \clubsuit$	Observations	4,984	4,984	4,984	$2,\!670$	1,780	
	\mathbb{R}^2	0.02	0.03	0.02	0.03	0.02	
		Note:			* $p < 0.10;$	** $p < 0.05;$	*** $p < 0.01$

Catch composition

Conclusions

- The presence and intensification of an alternative economic sector can increase or decrease harvesting effort.
 - The direction is determined by the responsiveness of the effective wage in each sector to the growing alternative economic sector.
- A shock to the tourism sector in Galapagos had no significant effect on total effort in the fisheries sector, but did shift effort between fisheries.
- Tourism in the Galapagos is likely detrimental to the lobster stocks and potentially the vulnerable finfish stocks