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Overarching Theme

Bioeconomic modeling is necessary for empirical 
analysis of fisheries data

• Models prevent us from drawing spurious 
inferences 

• Models guard against bad policy decisions based on 
spurious inferences 
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Outline

1. Background – coupled systems and the credibility 
revolution

2. Some relevant statistical challenges with nonlinear 
systems

3. Treated units as coupled pairings and empirical 
implications

4. Numerical experiments with feedbacks and statistical 
interference
– Impacts of hypoxia on a fishery

– Effects of Marine Protected Areas

– Effects of a gear restriction



1. BACKGROUND



The Fishery as a Coupled Human-Natural System
Feedbacks, interactions, and couplings

a “two-way feedback is a more specific concept than

‘bi-directional causality’ or ‘joint determination/

simultaneity’ because it implies a causal sequence

in time that has implications for the dynamics of both

the human and natural systems.”

Abbott, Sanchirico, Smith MRE 2018

NatAcSciEngMed 2018

Note: “Coupled human-natural system” often used interchangeably with social-ecological system (SES)



The Credibility Revolution

Angrist, J.D. and Pischke, J.S., 2010. The credibility revolution in empirical economics: 
How better research design is taking the con out of econometrics. Journal of Economic 
Perspectives, 24(2), pp.3-30.

• Focus on research design, more (big) data, and clear econometric identification of 
causal effects

• How much does “treatment” with A cause outcome B to change? Need to know 
what would have happened to B in the absence of treatment with A (the 
counterfactual)

• Statistical models of observational data attempt to generate properties that 
resemble those of randomized experiments (with treated units and control units 
for comparison) 

• “Critics of design-driven studies argue that in pursuit of clean and credible 
research designs, researchers seek good answers instead of good questions. We 
briefly respond to this concern, which worries us little.”



Why should interdisciplinary mathematical modelers of 
fisheries care about causal inference statistics?

• Effects of ecological disturbances and technological disasters
– Ocean warming and catches / fish stocks

– Oil spill and fishery / fish stocks

– Hurricanes and fishery infrastructure

• Policy evaluation
– Effects of catch shares on catches / stocks

– Effects of Marine Protected Areas (marine reserves) on catches / fish stocks

• To answer these questions, you need to know the counterfactual – what 
would have happened in the absence of the shock or intervention

• Policy-makers, general science journals, and the media like causal 
inference studies because conclusions are easy to understand

• Despite the “credibility revolution” in economics,  they (the statisticians 
and econometricians) are likely to get the wrong answers in coupled 
human-natural systems in the absence of modeling



Examples of Purely Empirical 
Causal Inference Studies of Fisheries

• Effects marine reserves on reef fish catches Smith, Zhang, and 

Coleman CJFAS 2006

• Effects of catch shares on “collapse” Costello, Gaines, and Lynham 

Science 2008

• Spillover effects of catch shares (on adjacent region fisheries) 
Cunningham, Bennear, and Smith Land Econ 2016

• Catch shares and safety at sea Pfeiffer and Gratz PNAS 2016

• Catch shares slow the race to fish Birkenbach, Kaczan, and Smith 

Nature 2017

• Spillover benefits of Marine Protected Areas Medoff, Lynham and 

Raynor Science 2022



Directed Causal Graph that Depicts Causal 
Relationship of S on Y and Confounding Variables. 

Ferraro, Sanchirico, and Smith PNAS 2019



2. ESTIMATION PROBLEMS IN 
NONLINEAR SYSTEMS



Problems

• Nonlinear dynamics can lead to multiple 
equilibria, path dependence, and other forms 
of complexity



Even simple models can lead to 
complex behaviors

May, Robert M. "Simple mathematical models with very complicated dynamics."

Nature 261, no. 5560 (1976): 459-467.



Problems

• Nonlinear dynamics can lead to multiple 
equilibria and path dependence

– Implication: a small change in “treatment” or 
“history” could lead to qualitative difference in 
outcome

– Huge challenge to external  validity (the 
applicability of empirical findings to other 
settings)



Econometrically recovering system properties 
hardest when closest to a change

• Dynamic open access 
with critical depensation

• Varying cost parameter 
and recovering 
qualitative properties

• From left to right, 
linearized system goes: 
Stable Node, Unstable 
Node, Unstable Focus, 
Center, Stable Focus, 
Stable Node
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3. TREATED UNITS AS COUPLED 
PAIRINGS



Problems

• Nonlinear dynamics can lead to multiple 
equilibria and path dependence

• In coupled system, treated units are coupled 
pairings that trace out a causal sequence

– Counterfactuals must account for both human and 
natural components (challenge to matching and 
initial conditions)



Recall Dynamic Open Access

V. Smith AER (1968) and JPE
(1969)

– Models stocks dynamics
– Models entry/exit based on 

Gordon zero-rent equilibrium
– 2 ODEs
– Stable focus in continuous 

time
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Treated units are coupled pairings of ecological and 
social attributes of the CHANS.

Ferraro, Sanchirico, and Smith PNAS 2019



Treated Dynamic Open Access Fishery
Double Carrying Capacity (e.g., clean up pollution)

Varying Initial Conditions

All parameters are the same. Treated fishery in blue, control fisheries

in red have initial effort +/- 20%.

Pre-treatment Post-treatment

Ferraro, Sanchirico, and Smith PNAS 2019



Problems

• Nonlinear dynamics can lead to multiple 
equilibria and path dependence

• In coupled system, treated units are coupled 
pairings that trace out a causal sequence

– Counterfactuals must account for both human and 
natural components (challenge to matching and 
initial conditions)

– Time of measurement influences conclusion 
(positive or negative effect)



Treated Dynamic Open Access Fishery
Time of Measurement Matters

Negative 

treatment effect

Time of Treatment



4. NUMERICAL EXPERIMENTS WITH 
FEEDBACKS AND STATISTICAL 
INTERFERENCE



Problems

• Nonlinear dynamics can lead to multiple 
equilibria and path dependence

• In coupled system, treated units are coupled 
pairings that trace out a causal sequence

• In spatial-dynamic systems, human mobility 
can violate Stable Unit Treatment Value 
Assumption



SIMULATED DATA EXPERIMENTS TO 
EXPLORE SUTVA (NON-INTERFERENCE) 
VIOLATIONS IN PROGRAM EVALUATION 
OF ENVIRONMENTAL SHOCKS AND 
POLICY INTERVENTIONS

Ferraro, Sanchirico, and Smith PNAS 2019



Fish

Do not fish

TreatedCandidate

Control

1 2 3
Candidate

Control

Ferraro, Sanchirico, and Smith PNAS 2019

Choice Structure and Experimental Design



Empirical Support for Spatial Discrete Choice 
Model Structure

• New England 
Groundfish Holland and 

Sutinen Land Econ 2000 

• Sea urchin fishery Smith 

Land Econ 2002; Smith and 
Wilen JEEM 2003 

• Alaskan pollock Haynie 

and Layton JEEM 2010

• Reef fish Zhang and Smith 

EnvResEcon 2011

• Gulf of Mexico shrimp 
Smith et al. PNAS 2017
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The Model
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Simulating the Model

• Simulate the Model

1. Specify production shocks

2. Specify payoff shocks 

3. Specify initial stock conditions

4. Fishers form expected harvests from equation 2

5. Fishers compute choice-specific payoffs from expected harvests and equation 3 and payoff 

shocks in equation 6

6. Fishers make decisions as in equation 4

7. Decisions feed into equation 2 for each fisher along with production shocks from equation 5

8. Harvests are aggregated across fishers and fed into equation 1

9. Stocks are updated in equation 1

10. Repeat steps 4-9 until the end of the simulation

• Run causal inference econometrics on simulated data

• Compare estimated treatment effect to true treatment effect



NUMERICAL EXPERIMENT 1
HOW DOES HYPOXIA AFFECT THE 
UNDERLYING FISH STOCK?



Difference-in-differences (BACI)
Finds No Effects on Catches

Smith et al. PNAS 2017



Interference: Low Versus High Mobility

Low Mobility

The candidate control zone 

tracks the counterfactual 

treated zone

High Mobility

The candidate control zone 

tracks the counterfactual 

treated zone



Mobility Biases the Estimated 
Treatment Effect Downward



Insights so far

• Unbiased only at extremely low levels of 
mobility (fishers basically do not switch fishing 
grounds and choose to stay in the treated area 
or not fish)

• Downward bias worsens as mobility increases

• Mobility also affects the true treatment effect 
size 



NUMERICAL EXPERIMENT 2
HOW DOES CREATION OF A MARINE 
PROTECTED AREA IN A SOURCE AFFECT THE 
UNDERLYING FISH STOCK IN CORRESPONDING 
SINK?



Candidate

Control

Fish

Do not fish

Source

4 (Reserve)
Sink

3

Source

2

Sink

1
TreatedCandidate

Control

Experimental Design
Compare Paired Sink/Source with Treatment to Paired 

Sink/Source without Treatment



Interference: Low Versus High Mobility

Low Mobility

Upward bias in the 

estimated treatment effect

High Mobility

Downward bias in the 

estimated treatment effect



Mobility Biases the Estimated Treatment Effect 
(Both Upward and Downward, Depending)



Additional Insight

• Ecological dispersal acts as a compounding 
source of interference in addition to human 
mobility



NUMERICAL EXPERIMENT 3
HOW DOES A GEAR RESTRICTION IN ONE ZONE 
AFFECT THE FISH STOCK?

Based on Schlüter, Brelsford, Ferraro, Orach, Qiu, Smith, In Prep, 2023

Fish

Do not fish

TreatedCandidate

Control

1 2 3
Candidate

Control



Mobility affects true treatment effect size

Pre-restriction Exploitation: Modest Pre-restriction Exploitation: High

REMOVED FIGURES THAT ARE UNPUBLISHED (IN PREP)



Mobility can induce upward or downward bias, 
depending on pre-treatment exploitation level

Pre-restriction Exploitation: Modest Pre-restriction Exploitation: High

REMOVED FIGURES THAT ARE UNPUBLISHED (IN PREP)



Additional Insights

• Effect of mobility on true treatment effect size 
is non-monotonic and depends on pre-
treatment exploitation level 

• Estimated treatment effect could be upper or 
lower bound, depending on the degree of 
exploitation

• Treatment can increase stocks in untreated 
areas (due to compensatory effects)!



Discussion

• Models prevent us from drawing spurious inferences 
– Plausible causal inference statistical designs get the wrong answers in 

some cases
– These problems cannot be diagnosed without models of the coupled 

system
– Models inform what effect size to expect, which has helps to power 

studies 

• Models guard against bad policy decisions based on spurious 
inferences 

• Models still useful for all of the other things that they do as well, 
e.g. ex ante policy analysis, deriving optimal policy, etc.



Thank You!



EXTRAS – COULD DISCUSS SOME IF 
TIME



Seafood Prices Reveal Impacts of a Major 
Ecological Disturbance

The Case of the Gulf of Mexico Dead Zone

Thanks to NOAA Grant #NA09NOS3780235

P
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Smith, Martin D., et al. "Seafood prices reveal impacts of a major ecological disturbance." 

Proceedings of the National Academy of Sciences 114.7 (2017): 1512-1517.



Does the Gulf of Mexico “dead zone” 
harm the shrimp fishery?

Nitrogen algae
Oxygen 

demand

hypoxia

Aggregation on edges

of dead zone
Slowed growth

Water
stratification

Relative increase 
small-to-large 

shrimp late 
season 

Increased catch 
early-season 

(small shrimp)
Mortality

Harvest
Decrease



Example: Effects of hypoxia on 
brown shrimp catches in the Gulf of 

Mexico



1. NAÏVE DIFFERENCE-IN-DIFFERENCES



Naïve difference-in-differences
(LIKE BACI)

• Clear predictions from marine ecology about 
effects of hypoxia on shrimp growth

– More small and fewer large!
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Fig. 12. Distribution of shrimp vessels (squares) relatively to bottom 

dissolved oxygen mapped synoptically during an 8-d period in July on 

the inner Louisiana shelf (Craig et al., unpubl. data).  The inset map in 

white (top) shows the two study sites (open black squares) on the 

western Louisiana shelf.

Fig. 13. Cumulative distribution of shrimp vessels and catch-per-unit-

effort of shrimp and croaker versuse distance to the edge of the hypoxic 

zone.  Vessels were sighted during aerial surveys over an 8-day period in 

July synoptically with shipboard hydrographic and trawl surveys to map 

the distribution of bottom dissolved oxygen and demersal species (Craig 

et al., unpubl. data).   



Naïve difference-in-differences
• Clear predictions from marine ecology about 

effects of hypoxia on shrimp growth

• Exogenous spatio-temporal variation in hypoxia



Naïve difference-in-differences

• Clear predictions from marine ecology about 
effects of hypoxia on shrimp growth

• Exogenous spatio-temporal variation in hypoxia

• Spatio-temporal and size-based resolution of 
shrimp catches



Naïve difference-in-differences

• Clear predictions from marine ecology about 
effects of hypoxia on shrimp growth

• Exogenous spatio-temporal variation in hypoxia

• Spatio-temporal and size-based resolution of 
shrimp catches

• Sounds like a straightforward natural 
experiment!



Identification Strategy

• Compare catches in zones “treated” with 
hypoxia to catches in other zones before and 
after “treatment”

• Condition catches on fishing effort 
– Smith, Zhang, and Coleman (2006)

• Instrument for time- and zone-specific fishing 
effort 
– 31-choice conditional logit on stratified random 

sample



Effort Conditional Logit Restults
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Diff-in-diff Estimates – Large Shrimp



Diff-in-diff Estimates – Large Shrimp
Null Results!



Diff-in-diff Estimates – Small Shrimp
Null Results!



2. SPATIAL-DYNAMIC 
BIOECONOMIC SIMULATION



Spatial-dynamic Bioeconomic Simulation

𝑁0,𝑗,𝑦 = ෩𝑁(1 + 𝜀𝑗,𝑦)𝜃𝑗

𝑁𝑡,𝑗,𝑦 = 𝑁0,𝑗,𝑦𝑒
σ𝑠 −𝑚𝑠+σ𝑠 −𝑓𝑠

𝐿𝑡 = 𝐿∞(1 − 𝑒−𝛿𝑡)

𝑚𝑡 = 𝛽 𝐿𝑡
𝜌

𝑓𝑡 = 𝑞𝐸𝑡

𝑤𝑡 = 𝜔 𝐿𝑡
𝛾

𝐻𝑡 =
𝑓𝑡

𝑓𝑡 +𝑚𝑡
(1 − 𝑒−𝑓𝑡)𝑤𝑡𝑁𝑡

෦𝑚𝑡 = (1 + ∆𝑚)𝑚𝑡

𝑞𝑡 = (1 + ∆𝑞)𝑞

෩𝛿𝑡 = (1 − ∆𝛿)𝛿

Space as (3 x 3) Grid with stochastic hypoxia (worse in middle) 

Recruitment

Survival

Natural Mortality

Fishing Mortality

Growth

Allometric (length to weight)

Harvest

Hypoxia Adjustments

𝑁𝑎,𝑡,𝑗,𝑦 Now adding cohorts!
Based on Smith et al., MRE 2014



Spatial-dynamic Bioeconomic Simulation
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Diagnosing Treatment-Control Contamination
(Violations of SUTVA)

Major

Contamination

Minor

Contamination



3. EVALUATING EVIDENCE OF 
TREATMENT-CONTROL 
CONTAMINATION



Evidence of SUTVA Violations

• Conditional logit model (sorting behavior)

• Panel effort models: controlling for two-way 
fixed effects, hypoxia explains
– Contemporaneous effort

– Temporally lagged effort

– Spatially lagged effort

• Pattern resembles 

conjugate pair

Contemporaneous 36.786**

Lag 1 26.68

Lag 2 -55.858**

Lag 3 -23.673

Lag 4 46.084**

Lag 5 -5.795

Lag 6 -78.416***

spatial.lag 9.851*



Effort Conditional Logit Restults

-8

-7

-6

-5

-4

-3

-2

-1

0

0 5 10 15 20 25 30 35

Alternative-specific Constants

Louisiana Texas



Marginal Rates of Substitution indicate 
SUTVA violations are major

• MRS of Distance for Expected Revenue

– Simulation (Major) 4 km/$ - very responsive

– Simulation (Minor) 40 km/$ - unresponsive

• Empirical estimate 0.4 km/$  - extremely responsive

• Treatment/control contamination likely introduces 
severe bias in diff-in-diff estimates



4. TIME SERIES ANALYSIS OF SHRIMP 
PRICES – LET THE MARKET REVEAL 
THE ECOLOGICAL DISTURBANCE



Shrimp Sold by Size Class (#/pound)
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Econ 1 Intuition for Regime Shift Detection

Ordinary
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Shock
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Key assumption: markets determine what a meaningful supply shift is



Law of One Price (LOP) in the  shrimp market

• ln (price) series non-stationary in levels but stationary in 1st difference 
(ADF and KPSS tests)

• Series are cointegrated (bivariate Johansen tests)

• Fail to reject null of LOP in eight of nine pairwise comparisons

• Implications of LOP 
– If holds, then regress relative prices on hypoxia (and other covariates)

– If does not hold, regress large price on small price (and other coavariates)
– We do both – January 1990 through March 2010

• Covariates: sea surface temperature, fuel price, monthly dummies

( )L SP P


= 1 =



Hypoxia causes increase in price of 
large shrimp conditioning on small

Areal Extent (2.0 mg/l)



Hypoxia causes increase in price of 
large shrimp conditioning on small

Volumetric Extent (2.0 mg/l)



Hypoxia causes increase in relative price of 
large-to-small shrimp

Areal Extent (2.0 mg/l)



Supporting evidence 
and robustness checks

• Two interpolation schemes

• Areal extent: 1.5 mg/l, 2.0 mg/l, 2.5 mg/l

• Volumetric extent 2.0 mg/l

• Models with relative price (LOP) and conditioning on small 
shrimp price

• Fuel prices negative effect on large shrimp prices (due to 
growth overfishing)

• Removing first or last 24 months (not in paper)

• Models with difference subsets of covariates (not in paper)

• Regime-shift models using mixing distribution (not in paper)



Conclusions

• Feedbacks in the coupled human-natural 
system undermine identification in a 
treatment effects framework
– True for any spatial-dynamic system

– Severity of contamination is an empirical question

• Market-based counterfactual is immune to 
this problem

• Hypoxia causes deviations from stable long-
run price relationships



Discussion

• For market goods, prices may be better judge of whether a consequential 
ecological disturbance has occurred than quantities

• We still do not know the welfare impacts of hypoxia

• Next step: structural bioeconometric model with synoptic spatio-temporal 
DO data

• When ecological disturbance worse for economic outcomes (no price 
compensation), it may be more difficult to detect

• Examples of spatial-dynamic treatment-control contamination

– marine reserves

– oil spills

– Hurricanes

– terrestrial protected areas and deforestation

• Examples of price-based identification of ecological disturbance

– Hard and soft blue crabs, molting,  and hypoxia

– ENSO and soybean meal / fishmeal markets

– Ocean acidification and calcifying organisms 
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