An eco-viability approach for the management of mixed fisheries under output controls

Olivier Thébaud

3 days MESSH 2023, Sète, France

Acknowledgements:

Michel Bertignac, Florence Briton, Luc Doyen, Nick Ellis, Caleb Gardner, Sophie Gourget, Sarah Jennings, Christelle Legrand, Rich Little, Claire Macher, Vincent Martinet, Mathieu Merzéréaud, ...

Fisheries management

Traditional fisheries management

- « Single-species » approaches : assessment and objectives set at the species-level
- Management objectives \rightarrow reference points
 - Limit reference points = thresholds that should not be crossed e.g. limit biomass
 - Target reference points = states to aim for e.g. Maximum Sustainable Yield (MSY), Maximum Economic Yield (MEY)

Fisheries management

Context

Fisheries characterized by various interactions :

Complicates the task of setting Total Allowable Catch limits (TACs) for individual species:

- « Choke species » problem & incentives to exceed quotas of limiting species & discard over-quota catches (Ulrich et al. 2012)
- Potentially complex economic & social trade-offs
- → Motivated development of mixed fisheries management plans & supporting scientific advice

Focus

Decision support tools

- Temporal scale: short to mediumterm (« tactical »)
- Capacity to build on existing information basis used to inform management

- Ability to develop / use the models in collaboration with stakeholders

Plaganyi et al., 2012

Additional requirements

- 1. Account for system dynamics
- 2. Explicitly account for ecological, economic and social dimensions \rightarrow multiple evaluation criteria
- 3. Importance of distributional aspects (across time, space, economic & social groups, ...)
- \rightarrow Viable (rather than optimal) control approaches

Viability ??

Aubin, J.-P. (1991). Viability theory. Birkhauser: Springer; De Lara and Doyen. Sustainable Management of Natural Resources. Mathematical Models and Methods. Springer-Verlag, Berlin. 2008; Béné, C., Doyen, L., & Gabay, D. (2001). Ecological Economics, 36, 385–396.

Applying viability analysis to fisheries management

Seaview network

FG : French Guiana ; NPF : Australian Northern Prawn ; SI : Solomon Islands ; BoB : Bay of Biscay

WILEY THE MERINE

Ecoviability for ecosystem-based fisheries management

Luc Doyen¹© | Christophe Béné² | Michel Bertignac³ | Fabian Blanchard⁴ | Abdoul Ahad Cissé⁴ | Catherine Dichmont⁵ | Sophie Gourguet⁴ | Olivier Guyader⁴ | Pierre-Yves Hardy⁷ | Sarah Jennings⁶ | Lorne Richard Little⁹ | Claire Macher⁴ | David Jonathan Mills^{10,11} | Ahmed Noussair¹² | Sean Pascoe⁶ | Jean-Christophe Pereau⁴ | Nicolas Sanz⁴ | Anne-Maree Schwarz¹⁰ | Tony Smith⁹ | Olivier Thébaud^{5,6}

Ecoviability for EBFM, Fish and Fisheries, 2017

Key steps

Resource system dynamics

Ecological & social performance scores

Viability thresholds

"Local" viability index

"Regional" viability index

"Global" viability index

Expected viability

 $B(r, t+1) = F(B(r, t), h(r, t), \omega(r, t)), \quad t \in T \equiv \{t_1, \dots, t_{n_T}\}$ $I_k(r, t) = G(B(r, t), h(r, t), \omega(r, t)), \quad r \in R \equiv \{1, \dots, n_R\} \quad t \in T$

$$v\left(r, t, \theta_{k}, \omega\right) = \begin{cases} 1 & I_{k}(r, t) \geq \theta_{k} \\ 0 & I_{k}(r, t) < \theta_{k} \end{cases}$$
$$V\left(r, t, \theta, \omega\right) = \prod_{k=1}^{K} v\left(r, t, \theta_{k}, \omega\right)$$
$$V_{R}\left(r, \theta, \omega\right) = g_{R}\left(V\left(\cdot, t, \theta, \omega\right)\right)$$
$$V_{RT}\left(\theta, \omega\right) = f_{T}\left(V_{R}\left(\cdot, \theta, \omega\right)\right)$$
$$\overline{V}(\theta) = E_{\omega}\left[V_{RT}\left(\theta, \omega\right)\right]$$

We started off with

Martinet et al., 2007. Ecological Economics.

Applied to the Bay of Biscay Nephrops Fishery

Surplus-biomass model calibration
Economics: survey based estimates
Biology: non-parametric adjustment of CPUE time series

Historical situations

	2003	1994
Estimated stock biomass (tons)	18,600	14,300
Fleet size (vessels)	235	309
Profit (euros per vessel)	165,000	78,000
Catches (tons)	5,769	5,179

Viability constraints

- Biological :Min. stock biomass : 5,000 T
- Economic :

Min. annual profit/v.: 130 k€

Social :

Min. fleet size: 100 vessels Max variation: 10 v./yr

Control: fishing effort (vessel.days)

Viability kernel (in white) and historical dynamics of the fishery as estimated via the model \rightarrow 1994 not viable

Martinet et al., 2007. Ecological Economics.

... then we moved to a more complete picture of the fishery

Doyen et al., 2012; Gourguet et al., 2013

Multiple fleets with variable levels of dependence on different species, stochastic fish prices & viability constraints / fleet

Technical interactions through mixed catches

Age-structured population dynamics models with stochastic recruitment & viability constraints / species

Dynamics, controls and management strategies

$$\vec{\mathbf{N}}_{s}(t+1) = \mathbf{f}_{s}\left(t, \vec{\mathbf{N}}_{s}(t), \vec{F}_{s}(t)\right)$$
$$\mathbf{N}_{s,1}(t+1) = \varphi_{s}\left(\mathbf{SSB}_{s}(t), \omega_{s}(t)\right)$$

Population dynamics

(Uncertain) recruitment

$$F_{s,a} = \sum_{f=1}^{17} q_{s,a,f} \mathbf{E}_f(t_0) u_f \mathbf{K}_f(t_0)$$

Fishing mortality

$$\succ \underline{SQ}$$
: status quo: $u_f^{sq} = 1$,

 $\sum_{u} \underline{NPV}: \text{ find } u^{NPV} \text{ such that } \max_{u} \mathbb{E}_{\omega(.)} \left[NPV(u) \right] \text{ with } NPV = \sum_{t=0}^{t_f} \frac{\pi(t)}{(1+r)^t}$ $\sum_{u} \underline{CV}: \text{ find } u^{CVA} \text{ such that } \max_{u} \mathbb{P} \left(\text{constraints are satisfied}, t = t_0, \dots, t_f \right)$ $\text{With constraints: } SSB_s(t) \ge B_s^{pa}, \quad \pi_f(t) > 0,$

Gourguet et al., 2013

Comparing alternative management strategies

Gourguet et al, 2013. Fisheries Research

Identifying tradeoffs between economic yield and coviability

Gourguet et al, 2013. Fisheries Research

... and on to introducing more realistic viability criteria & controls

Briton, 2019

Using the Integrated Assessment Model (IAM) model developed by Ifremer

IAM model (Ifremer) = multi-species, multi-metier and individual-based simulation model

Merzereaud et al. 2011; Guillen et al. 2013, 2014; Bellanger et al. 2017

Short-term effort determination based on quota in the Bay of Biscay model

→ Determine individual fishing efforts at métier level ($E_{i,m,t}$), with métier = combination of gear and targeted species

National quota allocated to producer organisations (POs), and in turn to individual harvesters following an allocation key $Qshr_s$ provided as an input: $Q_{i,s,t} = Qshr_{i,s} \times Q_{s,t}$

1. Calculation of the effort $E_{i,m,s,t}$ required to catch the quota $Q_{i,s,t}$ for each individual harvester *i*, metier *m* and stock *s*

Find
$$\lambda_{i,s,t}$$
 such that
$$\begin{cases} \sum_{m} L_{i,m,s,t} = Q_{i,s,t}, \\ E_{i,m,s,t} = E_{i,s,t} \times \alpha_{i,m}, \\ E_{i,s,t} = E_{i,t_0} \times \lambda_{i,s,t}. \end{cases}$$

With $\alpha_{i,m}$ the proportion of total effort of *i* attributed to metier *m*, and $L_{i,m,s,t}$ a function of $E_{i,m,s,t}$

2. Stop fishing with métier m when most constraining quota is exhausted or when reaching $E_{max,i,m}$

Identifying the operating domain of the fishery

Briton, F. et al., 2019. Environmental Modeling & Assessment

Identifying biological, economic and social viability domains

4 key species

Biologically viable domain

Socio-economically viable domain

Briton, F. et al., 2019. Environmental Modeling & Assessment

Trade-offs across viability criteria & possible compromises

- Long-term economic viability of entire fleet not possible
- Trade-off between surplus of capital owners and wages of fishing crews
- Improvement possible relative to reference year

Some challenges

- Identify & model key processes driving system dynamics, including economic decisions
- Specify elements which determine the persistence of the system, i.e. which variables should be constrained
- Define the acceptability threshold for the identified variables
- Identify tolerance levels regarding the frequency with which these thresholds should be met (in stochastic systems)
- Explore decision space with more than two dimensions

Working across disciplines ...

http://www.umr-amure.fr

Images ©2015 Landsat, Data SIO, NOAA, U.S. Navy, NGA, GEBCO, IBCAO, U.S. Geological Survey, Données cartographiques ©2(