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Context of the paper

The Gordon-Schaefer model is extended to take account of the
negative impact of �shing on habitats.

The main ingredient: Two interrelated state variables: stock of
�sh and habitat.
Stock and carrying capacity are positively linked, and the
�shing activity has a direct and negative impact on the
carrying capacity.

The goal:To extend and characterize Clark's most rapid
approach optimal solution to this case

How to proceed:
We consider a continuous-time, in�nite-horizon singular
control problem with two state variables and one control:
the e�ort of extraction.
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Context of the paper

The problem of habitat degradation is one of the most
important causes of the over-exploitation of marine resources
(see, e.g., Barbier (2000)).
Considering habitat in the model has been done principally in
two ways

Habitat as a parameter that a�ects growth function
through the intrinsic growth and/or the carrying capacity
and/or the standard Schaefer harvest function.

Carrying capacity is a variable endowed with its own
dynamics entirely dependent on habitat dynamics.
This is the case in our paper.
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Some related papers

A number of papers have tried to model some aspects of
the two-way relationship between �sh stock and the
habitat stock with the purpose of proposing the
implementation of a policy aimed at achieving a given
economic and/or ecological objective (see Holland and
Schnier (2006), Nichols, Yamayaki and Jennings (2018),
Long, Zaccour and Tidball (2020)...).

The closest work related to our paper is in the thesis of
Udumyan (2012); but only some results concerning the
steady states of the models are analyzed.
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Main results

(i) the extension of the singular control model (Clark's
model, most rapid approach) to the case of two state
variables,

(ii) the analytical feedback characterization of the optimal
extraction and adjoint variables (related to resource and
habitat): a) in the singular path, and b) when �shing
activity does not a�ect habitat,

(iii) the numerical approximation that describes the singular
path and gives the optimal solution of the problem when
�shing activity a�ect habitat,

(iv) some results of the steady state.
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Plan

The outline of the paper

The optimal singular control problem with two state
variables and one control

The MRAP optimal solution

How to obtain some analytical optimal solutions

Numerical simulations to give the optimal solution.
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The model

The dynamic model is the following:

Ẋ = F (X ,K )− EX (1)

K̇ = G (K )− βEK (2)

where:

F ,G are the growth functions of X (stock of �sh) and K
(carrying capacity)

β is a positive constant that measures the destructive
e�ects of �shing on the habitat

the function E (·) is a control variable (�shing e�ort).
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The model

The optimization problem is

max
E(·)

∫ ∞
0

e−δtP(X ) E dt (3)

where E (·) belongs to the class of measurable functions such
that 0 ≤ E (t) ≤ E for all t ≥ 0. The function P(X ) is the net
marginal pro�t per unit of e�ort, when the resource stock is
X . A typical form for it is P(X ) = X (p − c(X )), with p a
constant and c(X ) is decreasing and convex in X .(

p − c

X

)
EX , EX = harvesting .

8 / 23



First order conditions

The Hamiltonian of the problem is:

H = P(X )E + λX (F (X ,K )− EX ) + λK (G (K )− βEK )

+ γEE + µE (E − E ) .

Then the �rst-order conditions are:

∂H
∂E

= 0 = P(X )− λXX − βλKK + γE − µE

λ̇X = δλX −
∂H
∂X

= δλX − EP ′(X )− λX
(
∂F

∂X
(X ,K )− E

)
λ̇K = δλK −

∂H
∂K

= δλK − λX
∂F

∂K
(X ,K )− λK (G ′(K )− βE )

plus complementarity conditions. We introduce:

γE − µE = χ := XλX + βKλK − P(X ) .
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Optimal solution

Proposition: Optimal trajectories

On any optimal trajectory, we have necessarily

E (t) =


0 if χ(t) > 0

E if χ(t) < 0

some E ∈ [0,E ] such that χ(t) = 0.
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The logistic growth functions

The analysis is pursued with speci�c growth functions
functions, speci�ed as:

F (X ,K ) = rX

(
1− X

K

)
G (K ) = ρK

(
1− K

K

)
.
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SS for optimal E (if it exists)

The set of stationary states satis�es

K∞ = K

(
1− βE∞

ρ

)
and: either X∞ = 0, λ∞K = 0 and λ∞X = E∞P′(0)

δ−r+E∞ ,
or:

X∞ = K∞
(
1− E∞

r

)
= K

(
1− βE∞

ρ

)(
1− E∞

r

)
λ∞X =

P ′(X∞)E∞

δ + r − E∞

λ∞K = λ∞X

(
1− E∞

r

)2
r

δ + ρ− βE∞
,

for some e�ort E∞. It is necessary that E∞ ≤ ρ/β (and
E∞ ≤ r in the case X∞ 6= 0) and 0 ≤ E∞ ≤ E for such a
stationary solution to exist.
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Existence of SS

When P(X ) = pX − c with P(K ) > 0(
p − c

X

)
EX , EX = harvesting .

If c > 0 there exists an unique 0 < E∞ < min(r , ρ/β)
optimal SS, (X∞ > 0,K∞ > 0).

If c = 0 and ρ/β < r then

E∞ = ρ/β, K∞ = X∞ = 0

.

All provided that
E∞ ≤ E .
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Analytical solutions: feedback characterization of

adjoint variables and optimal extraction on the

singular curve and trajectories for constant E

Solving
χ = χ̇ = χ̈ = 0,

we can �nd

λX (X ,K ), λK (X ,K ), E (X ,K ).

But there are not enough equations to �nd χ.

Yet there are analytical formulas:

when β = 0 (see examples to follow)

for the non-singular pieces of trajectories: optimal control
consists of piecewise-constant functions E (·), and we can
solve analytically the solution of the di�erential system
where E is constant.
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Characterization when β = 0

Consider the following parameters:

K = 1, r = 8, δ = 0.05, ρ = 4, β = 0, p = 1, c =
205

808
, E = 5.

The equation of the singular curve is:

258560X 2 − 128472XK − 205K − 32800X = 0

and the stationary point (with non-zero X ) is:

E∞ = 3, K∞ = 1, X∞ =
5

8
.

The optimal feedback control on the singular curve has the
form:

E ∗(K ,X ) = 8

(
1− X

K

)
+

4K (1− K ) (128472X + 205)

X (128472K − 517120X + 32800)
.
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β = 0, large E . Optimal solutions
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β = 0, large E . Optimal solutions (ctd)
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β = 0, small E . Optimal solutions

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

X

K

singular curve
switching curve 0/max
switching curve max/0

actual SS point
singular SS point

E=0 in singular point
E=Emax in singular point

leave point
c/p

18 / 23



β = 0, small E . Optimal solutions (ctd)
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β = 0, small E . One particular trajectory
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Numerical examples with β > 0. Comparison
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Conclusions

We have made an extension of the singular control model
(Clark's model, most rapid approach) when habitat is
taken into account.

We have obtained some analytical optimal solutions,
completed with simulations, that give the optimal
solution of the problem.

Clark solution follows when some parameters are zero
(ρ = β = 0)

Case β = 0, analytical characterization when E < Ē

Case β > 0, Value Iteration converges quickly.
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Extensions

Find a way to compute the singular curve analytically

Consider β as a control.

???
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