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Common Pool Resources (CPRs)

I Types of goods

Excludable Non-excludable

Rival
Private goods

Admission to Dauphine U.

CPRs
Ocean Fisheries

Non-rival
Club goods
Wilderness Area

Public goods
Air, national defense

I A good or service is a CPR if is
I rival (consumption by one individual reduces the amount
available to others)

I non-excludable (costly or impossible to deny an individual
enjoying the good)

I Fisheries, hunting grounds, forests, irrigation system,
computer facility, etc.
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Common Pool Resources (CPRs)

I Rivalry ⇔ negative externality
I Rivalry: Fisher i harvests one more ton, this ton is not
available anymore to others

I Commons are more scarce
I Fisher j 6= i must work harder to maintain her catch level

I Higher cost for j , which is not taken into account by i

I Optimizing joint payoff of all fishers allows to internalize the
externality

I Socially optimal harvest
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Game in strategic form

1. M = {1, . . . ,m} = set of players

2. si strategy of player i
Si set of strategies of player i ∈ M
s = (s1, . . . , si , . . . , sm) ∈ S1 × S2 . . .× Sm , S a strategy
profile
s−i ∈ S−i strategies by all players but i

3. πi (s) ∈ R payoff function of player i

I Information
I Complete / incomplete
I Perfect / imperfect

I Remark: πi depends on all players’strategies. Player i
strictly prefers s to s ′ if πi (s) > πi (s ′). If πi (s) = πi (s ′),
then she is indifferent between s and s ′
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Nash equilibrium

Definition
A strategy profile s∗is a Nash equilibrium if

πi (s∗i , s
∗
−i ) ≥ πi (si , s∗−i ), ∀si ∈ Si , ∀i ∈ M

I Unilateral deviation
I Best reply
I Existence and uniqueness
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CPR: Simplest possible example

I Static (symmetric) game

n fishers (players)
ui : harvest by fisher i
U = ∑ ui ; U−i = U − ui
p : price
x : stock of the resource

Harvesting cost : ci (ui ,U−i , x) =
ui (ui + U−i )

x
Revenue : pui

Profit : πi = ui

(
p − ui + U−i

x

)
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CPR: Simplest possible example

I Equilibrium

maxπi = ui

(
p − ui + U−i

x

)

p
Marginal revenue

=
2ui + U−i

x
Marginal cost

ui (U−i ) =
1
2
(px − U−i )→ strategic substitutability

Equilibrium : uN =
px
n+ 1

, UN =
npx
n+ 1
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CPR: Simplest possible example

I Social optimum (only profits matter)

max
(ui )i=1,...,n

∑
i

πi = ∑
i

(
p − (ui + U−i )

x

)
ui

uSO =
px
2n
, USO =

px
2

I Comparison

Equilibrium : uN =
px
n+ 1

, UN =
npx
n+ 1

I Endogenous price (market power); Consumer surplus in SO
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CPR: Dealing with overexploitation

I Command-and-control policies: tell agents what to do
I Fishing quotas, pollution permit, deforestation level, etc.

Quota = Socially optimal appropriation (SOA)

I Market instruments
I Price the negative externality
I Taxes such that individual optimizers choose SOA level

I Information
I Public Disclosure Program
I Bad guys are punished by consumers and capital markets
I Sustainable processes, certification, blockchain, etc.
I Naming and shaming
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CPR: Dealing with overexploitation

I Mechanisms are harder to implement international arena
I Climate change
I Biodiversity
I High-seas fisheries

I Buying cooperation (compensation)
I Norwegian fund for Amazon forest
I Unidirectional pollution: polluted downstream pays the
upstream polluters

I Piracy!
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CPR: Tragedy of the commons

Selfish (equilibrium) appropriation > socially optimal appropriation

"Ruin is the destination towards which all men rush, each pursuing
his own best interest in a society that

believes in the freedom of the commons"
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Dynamic models of CPRs

I Resource evolves overtime: birth/death rates, agents’actions,
e.g., harvesting

I Framework that distinguishes between flow variables and
stock variables

I Flow variables: harvest (fisheries), deforestation (forests),
emissions (climate change)

I State variables: stock of biomass, forest area, stock of
pollution

I Dynamics: describe the evolution of the state
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Dynamic models: One agent

I Intertemporal externality: trade-off between current and
future consumptions

I Viability theory
I Dynamic optimization

I Dynamic programming
I Optimal control

I Optimal policy: Control function of the state; u∗ (x)
I Optimal time path: Control function of time; u∗ (t)
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Dynamic models of CPRs

I Intertemporal externality + strategic externality
I Several (atomistic, nonatomistic) agents: CPR modelled as a
dynamic game

I Time discrete or continuous
I Payoff of a player’s depends not only on her own decision, but
also on the decisions made by the other players: strategic
interaction

I Strategic interaction: in payoff functions, in state dynamics,
or in both
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CPR as a dynamic game

I Time; continuous [0,T ]; discrete t = 0, . . . ,T
I Set of players M = {1, . . . ,m} ;
I Vector of controls uj (t) ∈ Uj ⊆ Rmj , j ∈ M;
I Vector of state variables x(t) ∈ X ⊆ Rn. State equations:

ẋ(t) =
dx
dt
(t) = f (x(t),u(t), t) , x(0) = x0,

x (t + 1) = f (x(t),u(t), t) , x(0) = x0,

where u(t) , (u1(t), . . . ,um(t));

16



Examples of state equations: Fish war

I Great fish war (Levhari and Mirman (1980))

x(t + 1) = (x(t)− u1(t)− . . .− un(t))α, t = 0, 1, . . . ,

ui (t) : harvest of player i at time t
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Examples of state equations: Interacting species

I Interacting species (Fisher and Mirman (1992, 1996), Doyen et al.
(2018))

I Two species (Breton et al. (2019))

xl ;t+1 =

(
xlt − ∑

i∈Nl
uilt

)αl
(
xmt − ∑

i∈Nm
uimt

)βl

, l = 1, 2;m = 3− l

αl > 0 : regeneration capacity of species l ; βl 6= 0 : indirect effect
that species m exerts on species l .

I Relationship
I symbiotic: β1, β2 > 0
I competitive: β1, β2 < 0
I prey-predator: β1 and β2 have opposite signs
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Examples of state equations: Habitat

I Importance of protecting the habitat (Barbier (2000), Fluharty
(2000), Kaiser and de Groot (2000), Botsford et al. (1997)).

I Directives of the European Parliament.
I Magnuson-Stevens Fishery Act (US) defines “essential fish
habitat” as “those waters and substrate necessary for
spawning, breeding, feeding, or growth to maturity.”
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Examples of state equations: Habitat

I Two-way relationship between commercial fishing and fish
habitat

I Mobile fishing gear can remove biogenic and sedimentary
structures, and organisms creating these structures.

I Damage to habitat leads to loss of spawning → reduction in
growth rate of fish stock.

I No formal modelling of this dynamic two-way relationship.
I Long, Tidball, Zaccour (2019): model this dynamic two-way
relationship
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Examples of state equations: Habitat

I Foley et al. (2012):

F (x ,H) = r(H)x
(
1− x

K (H)

)
x : stock of fish; H : habitat; K (H) : carrying capacity; r(H) :
growth rate

I Long Tidball, Zaccour (2019)

e (t) : Fishing effort at t; ui (t) = qei (t) x (t)
State dynamics:

ẋ (t) = bH (t) x (t)
(
1− x (t)

gH (t)

)
−∑

i
ui (t) , x(0) = x0,

Ḣ (t) = H (t) (1−H (t))−∑
i
ui (t) , H(0) = H0.
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CPR as a dynamic game

I Payoff for Player j ∈ M,

Jj ,
∫ T

0
gj (x(t),u(t), t) dt + Sj (x(T ))

Jj ,
T

∑
t=0
gj (x(t),u(t), t) + Sj (x(T ))

gj : instantaneous payoff; Sj : terminal payoff
I Information structure, i.e., information available to Player j
when he selects uj (t) at t;

I Strategy set Γj , where γj ∈ Γj is a decision rule that defines
the control uj (t) ∈ Uj as a function of the information
available at time t.
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CPR as a dynamic game

Time horizon:

I T can be finite or infinite;
I T can be prespecified or endogenous (e.g., resource depletion,
patent-race game).

Control set: uj (t) ∈ Uj , with Uj set of admissible controls (or
control set).

I Time-invariant and independent of the state;
I Depends on the position of the game (t, x(t)), i.e.,
uj (t) ∈ Uj (t, x(t))).

I Depends also on controls of other players (coupled
constraints, Rosen equilibrium)
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CPR as a dynamic game

Information structure and strategies:

Open loop: Decisions based on time and initial condition

Open-loop strategy : uj (t) = µj (x
0, t)

Feedback or Markovian: Decisions based on the position of the
game (t, x(t))

Feedback strategy : uj (t) = σj (t, x(t))

Non-Markovian: Decisions are history-dependent

Non-Markovian strategy : uj (t) = σj (H(t))
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Open-Loop Nash Equilibrium

Definition
The control m-tuple u∗(·) = (u∗1(·), . . . ,u∗m(·)) is an open-loop
Nash equilibrium (OLNE) at (t0, x0) if the following holds:

Jj (t0, x0;u∗(·)) ≥ Jj (t0, x0; [uj (·),u∗−j (·)]), ∀uj (·), j ∈ M,
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Feedback-Nash Equilibrium

Definition
The feedback m-tuple σ∗(·) = (σ∗1(·), . . . , σ∗m(·)) is a feedback
or Markovian-Nash equilibrium (MNE) on [0,T ]× X if for each
(t0, x0) in [0,T ]× X , the following holds:

Jj (t0, x0; σ∗(·)) ≥ Jj (t0, x0; [σj (·),σ∗−j (·)]), ∀σj (·), j ∈ M,
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Cooperative games

I Coalition: K ⊆ M;
I Strategic force of a coalition (characteristic function
v (K ) : P (M)→ R)

I Cooperative game theory: grand coalition M will form
I Noncooperative approach to coalition formation

I Climate change
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Cooperation

Static game

I Determine a collectively optimal solution (joint optimization)
I Allocate the collective outcome to the players

I Solutions of a cooperative game (core, Shapley value, etc.)
I Axiomatic approach (stability, fairness, etc.)

Dynamic game

I Sustainability of cooperation over time
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Motivation

I Long-term contracts are common
I Marriage
I Union and management
I International agreements (trade, environments, etc.)

I Why to commit?
I Negotiation and contracting cost
I Future’s outcomes depend on today’s decisions

I Breakdowns before maturity; Time inconsistency
I Time consistency: Sustainability, dynamic individual
rationality, dynamic stability, durability, agreeable solution, etc.

I Design mechanisms, schemes, side payments, etc.
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Sustaining Cooperation

Cooperative Equilibria

I Trigger strategies: based on past actions;
I Threat to punish credibly cheating on the agreement
I Dutta (1995), Parilina and Zaccour (2015), Tolwinski, Haurie &
Leitmann (1986), (Haurie, Hämäläinen, Pohjola (1980s)),
DoJøLoSo (2000), HKZ (2012)

I Incentive strategies:, Ehtamo and Hämäläinen (1986, 1989, 1993).
Two players (u∗1 , u

∗
2 )

Sj (u3−j ) = u∗j + pj
(
u∗3−j − u3−j

)
, pj (0) = 0, j = 1, 2;

I Main issue: credibility
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Sustaining Cooperation

I Time consistency:

Coop. payoff-to-go ≥ noncoop. payoff-to-go, ∀j , ∀t

I Comparison along the optimal state trajectory
I Starr and Ho (1973), Haurie (1976), Petrosjan (1979)
I Large literature with various applications (Yeung and Petrosjan
(2005, 2018), Zaccour (2008, 2017), Petrosjan and Zaccour (2018))

I Agreeability Kaitala and Pohjola (1990)
I Payoff dominance along any state trajectory

Agreeability ⇒ Time consistency
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Research paper

Great fish war with moratorium

Ilyass Dahmouni, Elena Parilina, Georges Zaccour
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Introduction

I Fishery exploited by n firms
I Regulator implements a moratorium on harvesting any time
the stock x ≤ x .

I Questions:

1. Can a moratorium be avoided in equilibrium?
2. If a moratorium is not avoidable, what should be its optimal
duration?

3. Can the players design a coordinated harvesting profile such
that

3.1 the corresponding steady-state value is x ; and
3.2 the outcome is a Nash equilibrium?
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Introduction

I Forms of a moratorium
I Seasonal fishing moratorium (Pearl River estuary (Wang et al.
(2015));

I Partial moratorium (American shad in Virginia riverine fisheries
(Olney and Hoenig (2001));

I Transshipment in high seas(Ewell et al. (2017));
I Administrative form (Indonesian government moratorium on
fishing licenses for foreign vessels (Khan et al. (2018));

I Operational form (United Nations ban on all driftnets over 2.5 km
in length (Hewison (1994)).
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Introduction

I Moratorium on cod harvesting imposed by Canada in 1992
(Frank et al. (2005) and Rose and Row (2015)).

I Stock severely impoverished under open-access in 1960s and
1970s.

I In 1968, 85% of harvest is by foreigners (Baird et al. (1991))
I In 1977 foreign vessels were banned from Canada’s Exclusive
Economic Zone (EEZ)

I Full recovery of the stock expected by 2030 (Castaneda et al.
(2020)).
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Introduction

I Literature recommends preventive actions over regulations.
I Cooperation among fishers may fail if no legal framework is
put in place (Hardin (1968)).

I Coalition stability achieved by a small subset of players (Breton
and Keoula (2014) and Kwon (2006)).

I Support cooperation (2 players) using incentive strategies
(Mazalov and Rettieva (2010)).

I Game theory literature (Bailey et al. (2010); Hannesson (2011),
Sumaila (2013) and Gronbæk et al. (2018)).

I Regime switching (Gromov and Gromova (2017)).
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Model

I Fish war model à la Levhari and Mirman (1980)
I N = {1, 2, . . . , n} : Set of players.
I ui (t) ∈ Ui : harvest effort at t = 0, 1, . . .,
I u(t) = (u1(t), . . . , un(t)) ∈ ∏i∈N Ui : Strategy profile at
time t

I x(t) ∈ X = [0, 1] : Fish stock (state variable); x(0) = x0 ∈ X .
I State dynamics:

x(t + 1) = (x(t)− u1(t)− . . .− un(t))α,

t = 0, 1, . . . ,
Reproduction rate : 0 < α < 1.
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Model

I Moratorium starts if x ≤ x (common knowledge)
I State dynamics

I Normal regime:

x(t + 1) = (x(t)− u1(t)− . . .− un(t))α, t = 0, 1, . . . ,

I Moratorium regime: If there exists T such that x(T − 1) > x
and x(T ) ≤ x , then the moratorium starts at T :

x(t + 1) = (x(t))α, t = T , . . . ,T + t ′ − 1,
t ′ = moratorium duration

Remark: In the absence of human activities, x∞ = 1, ∀ x0. We
take X = [0, 1], but the upper bound could be larger than one.
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Model

I Duration of the moratorium:

1. t ′ periods, i.e., moratorium periods are
T ,T + 1, . . . ,T + t ′ − 1. At time T + t ′, the system
switches to the normal regime.

2. Revert to normal regime when x reaches x > x .
I Moratorium lasts until period T + t ′ − 1 inclusively. Time
T + t ′ can be found given that x(T ) is known.

I x can be set, e.g., equal to x0.

I Direct relationship between t ′ and x .
I Regulator’s payoff represented by the moratorium policy.
I Time-based moratorium; South China Sea (May 1 to August 16).
I Biomass-based decision; Canadian cod moratorium.
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Model

I Player i maximizes

Ji (x0, u) =
∞

∑
t=0

ρtφi (t, x(t), u(t)), ρ ∈ (0, 1),

subject to state dynamics;

φi (·) =

{
ln(d̃ ui (t)) = ln d̃ + ln ui (t), normal regime,

0, moratorium regime,

where d̃ > 1 is a scaling parameter. Let d = ln d̃ .

Assumption 1: In a normal regime, ui (t) ∈ (e−d , 1] for all t.
d can be arbitrary large.
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Model

In a great fish war model, players use linear strategies
ui (t) = γix (t), with γi ∈ (0, 1).
Proposition
Let the players’strategies be linear in the stock, i.e.,
ui (t) = γix (t), with γi ∈ (0, 1), for any t > 0. If

γi >
1
edx

,

then Assumption 1 is satisfied.
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Model

Feedback information structure;

I ψi = ψi (t, x) : Player i’s strategy
I ψ(t, x) = (ψ1(t, x), . . . ,ψn(t, x)) : Profile of feedback
strategies at t

I ψ−i (t, x) = (ψ1(t, x), . . . ,ψi−1(t, x),ψi+1(t, x), . . . ,
ψn(t, x))

I φi (t, x(t), u(t)) ≡ 0 for any i ∈ N for all periods t in the
moratorium regime
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Model

Definition
A Nash equilibrium in a fish war game with moratorium is the
profile of feedback strategies
ψnc (t, x) = (ψnc1 (t, x), . . . ,ψncn (t, x)) if

Ji (x0,ψnc (·)) ≥ Ji (x0,ψi (·),ψnc−i (·)),

for any admissible feedback strategy ψi (·) of player i ∈ N.
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Model

Scenario 1. A moratorium is not needed, if x0 > x , and u(t) is
such that x(t) > x for all t = 1, 2, . . ., and
lim
t→∞

x(t) ≥ x .

Scenario 2. A moratorium is implemented if there exists a time T
at which x(t) > x for any t < T − 1 and x(T ) = x .
Then, at T the moratorium starts and lasts for t ′

periods. Next, the normal regime starts, and so on.

Moratorium could happen an infinite (but countable) number of
times and we apply the “same pattern of strategies,” the players’
behavior will be “periodical”.
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Always normal regime

I Conditions under which a moratorium is not needed.
I Class of linear-feedback strategies in the great fish war game.
I Player i’s strategy: harvest a positive share γi ∈ [0, 1] of the
stock x ,

ui (t) = γix(t), for all t ≥ 0.
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Always normal regime

Proposition
When the players’strategies are of the form γix(t),the trajectory
of the state variable is given by

x(t) = xαt

0

(
1− ∑

i∈N
γi

)[ α(1−αt )
1−α

]
,

and the steady-state value by

x∞ =

(
1− ∑

i∈N
γi

)[ α
1−α ]

.
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Always normal regime

I Find a feedback Nash equilibrium (FNE) such that x is never
reached.

I Vi (x) : Value function of player i
I FNE strategies are derived by solving the following
Hamilton-Jacobi-Bellman (HJB) equation:

Vi (x) = max
ui≥0

(
d + ln ui + ρVi

(
(x − ∑

i∈N
ui )α

))
.

47



Always normal regime

Proposition
The unique symmetric FNE is given by

γnci =
1− αρ

n(1− αρ) + αρ
, ∀i ∈ N,

and the value function by

V nci (x) = A
nc
i ln x + B

nc
i , ∀i ∈ N,

Anci =
1

1− ρα
,

Bnci =
ρα ln(1− nγnci ) + (1− ρα)(d + lnγnci )

(1− ρα)(1− ρ)
.
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Always normal regime

I A moratorium is not needed, if x0 > x , and u(t) is such that
x(t) > x for all t = 1, 2, . . ., and lim

t→∞
x(t) ≥ x .

Proposition
When symmetric players adopt the unique FNE harvesting
strategies, the moratorium is never applied if

n ≤ αρ(1− x 1−α
α )

(1− αρ)x
1−α

α

, Z

where x is the moratorium level.

I Z is defined and nonnegative for any x ∈ (0, 1]
I Z is decreasing in x and α; increasing in ρ (patience helps).
I If x = 1, then n ≤ 0.
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Normal and moratorium regimes

I If n > Z , then a moratorium will be imposed
I Suppose the regulator wants to bring back the stock to x0
(could be any other value).

Moratorium starts at t = T , when x(T ) = x , and lasts for t ′

periods (from t = T till t = T + t ′ − 1 inclusively), where t ′ is
obtained by solving

x(T + t ′) = x0,

x(t + 1) = (x(t))α, t = T , . . . ,T + t ′ − 1.
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Normal and moratorium regimes

Lemma
Given x0 and x, the duration of the moratorium is given by

t ′ =
ln
[
ln x0
ln x

]
ln α

.

I If time t ′ /∈N, then set t ′ := dt ′e.
If x = θx0, where θ ∈ (0, 1), then

t ′ = −
ln
[
1+ ln θ

ln x0

]
ln α

,
∂t ′

∂θ
< 0.
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Normal and moratorium regimes

Sequence of events:

I At t = 0, . . . ,T − 1, player i harvests u∗i (t), i ∈ N. At T ,
x(T ) = x , and a moratorium is implemented in periods
t = T , . . . ,T + t ′ − 1; players get zero payoffs.

I At t = T + t ′, the stock level is back to the desired level x0,
and the players can again harvest.
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Normal and moratorium regimes

Player i’s payoff when a moratorium is firstly applied at t = T

JTi (x0, u) =
T−1
∑
t=0

ρt (d + ln ui (t, x(t))) + ρT+t
′
JTi (x0, u), (1)

from which we get

JTi (x0, u) =
1

1− ρT+t ′

T−1
∑
t=0

ρt (d + ln ui (t, x(t))),

with x(T + t ′) = x0, and with-harvest dynamics for t = [0,T − 1]
and no-harvest dynamics for t = [T , . . . ,T + t ′ − 1]. Player i ∈ N
maximizes (1) with respect to ui ≥ 0 and T ≥ 0.
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Normal and moratorium regimes

Proposition
The symmetric NE in closed-loop strategies in a T-stage game,
with x(0) = x0 and x(T ) = x, is given as a unique solution of
Bellman equation:

Vi (t, x(t)) = d + max
ui (t ,x (t))∈[0,x (t)]

{
ln ui (t, x(t))

+ ρVi
(
t + 1,

(
x(t)− ui (t, x(t))− ∑

j∈N ,j 6=i
uj (t, x(t))

)α
)}
,

with

terminal condition Vi (T − 1, x(T − 1)) = d + ln

(
x(T − 1)− x 1α

n

)
,

such that u(T − 1, x(T − 1)) =
x(T − 1)− x 1α

n
.
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Normal and moratorium regimes

I Diffi cult to write down a solution to the Bellman equation in
an explicit form

I Approximation

ui (t, x(t)) =
x(t)− x1/αT−t

n+
T−t−1

∑
k=1

(αρ)k
,

Works well for low α or/and large n.
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Normal and moratorium regimes

Finding T

Step 1: Set T = 1. Using previous Proposition, find any
player’s equilibrium payoff

V (x0,T ) =
T−1
∑
t=0

ρt (d + ln ui (t, x(t)))

Next, compute J1i (x0, u) using

JTi (x0, u) =
1

1− ρT+t ′

T−1
∑
t=0

ρt (d + ln ui (t, x(t))),

(2)
for a given moratorium duration t ′.

Step 2: Set T := T + 1 and do Step 1 for a given
moratorium duration t ′.

Step 3: Find max
T>0

JTi (x0, u).
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Does cooperation allow to avoid moratorium?

Proposition
The cooperative strategy in the game without moratorium is given
by u∗i (x) = γ∗i x, where

γ∗i =
1− αρ

n
, for any i ∈ N.

Steady-state stock:
x∗∞ = (αρ)

α
1−α ,

and x∗∞ > x
nc
∞ , where x

nc
∞ is the steady state stock value in Nash

equilibrium.
Noncooperative harvest

γnci =
1− αρ

n− αρ (n− 1) , ∀i ∈ N.
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Does cooperation allow to avoid moratorium?

A moratorium is never implemented if

n ≤ αρ(1− x 1−α
α )

(1− αρ)x
1−α

α

, Z . (3)

1. x < xnc∞ < x∗∞ hold true under (3). Never a moratorium in
both coop and noncoop games. (3) is ⇔

ρ >
nx

1−α
α

α(1+ (n− 1)x 1−α
α )

, Y .

2. xnc∞ ≤ x < x∗∞ satisfied if x
1−α

α

α < ρ ≤ Y . Moratorium under
noncoop, but no if players cooperate.

3. xnc∞ < x∗∞ ≤ x satisfied if ρ ≤ x
1−α

α

α . Noncoop and coop
strategy profiles do not allow to avoid the moratorium regime.
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How to avoid moratorium regimes

I Can players agree on harvesting levels that result in avoiding a
moratorium throughout the entire duration of the game?

I Assuming ui (x) = γix , we seek a γci , for all i ∈ N, such that
the steady state computed with

x∞ = (1− ∑
i∈N

γi )
[ α
1−α ]. (4)

satisfies the condition x∞ = x .
I If it exists, the constructed harvesting profile
(uc1 (x), . . . , ucn (x)) will be referred to as coordinated profile.
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How to avoid moratorium regimes

Proposition
For i ∈ N, the coordinated strategy is given by uci (x) = γci x,
where

γci =
1
n

(
1− x 1−α

α

)
,

and the corresponding fish stock by

xc (t) = xαt

0 x
1−αt , t = 1, 2, . . . ,

with initial stock xc (0) = x0.

Note that limt→∞ xc (t) = x .
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How to avoid moratorium regimes

Proposition

Let inequality n ≤ αρ(1−x 1−α
α )

(1−αρ)x
1−α

α
, Z be not satisfied. The

coordinated profile uci (x) = γci x, and γci =
1
n

(
1− x 1−α

α

)
, i ∈ N,

is the NE in the game with moratorium if Jci ≥ J ′i ,where Jci is the
coordinated payoff, and

J ′i =max
T

{ 1− ρT

(1− ρ)(1− ρT+t ′)

(
d + lnγ′i +

1
1− αT

ln x − αT

1− αT
ln x0

)
(5)

+
1− (αρ)T

(1− αT )(1− αρ)(1− ρT+t ′)
ln
(
x0
x

)}
,

and γ′i =
1
n
+
n− 1
n

x
1−α

α −
(
x

xαT
0

) 1−α
α(1−αT )

. (6)
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Example

I 3-player game
I x0 = 0.7
I x = 0.2
I ρ = 0.9
I α = 0.95
I d = 6.
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(a) The fish stock trajectories with the Nash
and cooperative equilibrium (green — x0,
black — x∗(t), blue — xnc(t), red — x)
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(b) The fish stock trajectories with
moratorium-free strategy profile (green —
x0, blue — xmf (t), red — x).

Figure 1: The game with α = 0.95, ρ = 0.9.
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Figure 2: Blue: profit of a deviating player JT
i as a function of T ; red: profit in the

moratorium-free strategy profile Jmf
i , α = 0.95, ρ = 0.9.
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(a) The fish stock trajectories with the Nash
and cooperative equilibrium (green — x0,
black — x∗(t), blue — xnc(t), red — x)
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(b) The fish stock trajectories with
moratorium-free strategy profile (green —
x0, blue — xmf (t), red — x)

Figure 3: The game with α = 0.8, ρ = 0.8.
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Figure 4: Blue: profit of a deviating player JT
i as a function of T ; red: profit in the

moratorium-free strategy profile Jmf
i , α = 0.8, ρ = 0.8.
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Extensions

I Fishery with multiple species biologically interacting with each
other.

I Other objectives for the central planner.
I Asymmetric players.
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Research paper

A Fair and Time-Consistent Sharing of the Joint Exploitation
Payoff of a Fishery

Ilyass Dahmouni, Baris Vardar, Georges Zaccour
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How to sustain cooperation in a fishery?

I Introduction
I Model
I Coocooperative and cooperative solutions
I A fair and time-consistent allocation
I Conclusion
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How to sustain cooperation in a fishery?

I Open access (competition) leads to harvesting at levels that
are higher than the resource’s rate of reproduction, which may
cause its depletion (Hardin (1968))

I Mechanisms to prevent such a tragedy
I Cooperation (joint optimization): Sumaila (2002), Kaitala and
Lindroos (2004), Lindroos et al. (2005), Trisak (2005), Munro (2006),

Sumaila and Armstrong (2006), Kronbak and Lindroos (2007),

Pintassilgo and Lindroos (2008), Mazalov and Rettieva (2010) and

Breton et al. (2019).

I A main issue here is how to build and sustain over time a
cooperative agreement
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How to sustain cooperation in a fishery?

1. What are the harvesting policies under a noncooperative and
cooperative mode of play?

2. How to share the total dividend of cooperation among the
players?

3. How to insure that the cooperative agreement, established at
the game’s initial date, remains in force as time goes by?

67



Model

I n symmetric players exploiting a fishery over an infinite time
horizon.

I ei (t): fishing effort at time t.
I Linear production function (harvest): qi (ei (t)) = aei (t)
I Cost of effort: gi (ei ) = be2i
I Stock of fish: x
I Stock of pollution: Z
I Environmental damage: Di (Z ) =

φ
2Z

2

I a , b and φ are positive parameters.
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Model: Stock dynamics

I Resource

ẋ (t) = F (x(t),Z (t))−
n

∑
i=1
qi (ei (t)), S(0) = S0 > 0,

I Pollution

Ż (t) =
n

∑
i=1

ωei (t)− kZ (t), Z (0) = Z 0 ≥ 0,
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Model: Growth function

I Literature: F (x ,Z )→ F (x)
I F (x) : concave; max at x = x̄ ,where x̄ is the carrying capacity,
beyond which the resource growth rate is negative and

I F (x̄) : max sustainable yield of the resource
I Benchekroun (2003)

F (x ,Z ) =

{
δx − λZ , for x ≤ x̄

2 ,

δ (x̄ − x)− λZ , for S > x̄
2 ,

λ > 0 : parameter capturing the negative externality of
pollution
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Model

I Optimization problem

max Ji =
∫ ∞

0
e−ρt

(
aei (t)− be2i (t)−

φ

2
Z 2 (t)

)
dt,

subject to state dynamics

I V Ni (x ,Z ) and V
C (x ,Z ) are noncoop and coop value

function, resp.
I Effort

a− 2beNi = a
∂V Ni (x ,Z )

∂x
−ω

∂V Ni (x ,Z )
∂Z

a− 2beCi = a
∂V C (x ,Z )

∂x
−ω

∂V C (x ,Z )
∂Z

I Instantaneous revenue = opportunity cost of a unit of
harvesting effort
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Model

For j ∈ {N,C}
Region of no economic activity Rj0 :

e ji (x ,Z ) = 0 and a ≤ a∂V ji (x ,Z )
∂S

−ω
∂V ji (x ,Z )

∂Z
.

Region of scarce resource Rjx :

e ji (x ,Z ) > 0, a > a
∂V ji (x ,Z )

∂x
−ω

∂V ji (x ,Z )
∂Z

and
∂V ji (x ,Z )

∂x
> 0.

Region of abundant resource RjA :

e ji (x ,Z ) > 0, a > a
∂V ji (x ,Z )

∂x
−ω

∂V ji (x ,Z )
∂Z

and
∂V ji (x ,Z )

∂x
= 0.
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Solutions

Proposition
For i = 1, . . . , n, the unique symmetric feedback-Nash
equilibriumharvesting-effort is given by

eN (x ,Z ) =
1
2b

(
a+ θN + ηNx + ζNZ

)
,

where θN , ηN , and ζN are constants.

Proposition
The unique optimal harvesting-effort policy eC (x ,Z ), ∀i is given by

eC (x ,Z ) =
1
2b
(a+ θC + ηC x + ζCZ ),

where θC , ηC , and ζC are constants.
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Fair sharing

Individual rationality:
J∗i ≥ JNi , i = 1, . . . , n.

Collective rationality:

JC =
n

∑
i=1
J∗i .

Egalitarian sharing:

D = JC −
n

∑
i=1
JNi = V

C (x0,Z 0)− n

∑
i=1
V Ni

(
x0,Z 0

)
,

Player i obtains

J∗i = J
N
i +

D
n
, i = 1, . . . , n.
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Time consistency

Definition
At any intermediate instant of time, no player finds it individually
rational to abandon the agreement and switch to the
noncooperative strategies.

Algorithm

Step 1: Compute the total payoff to be shared by the players.

Step 2: Determine the individual payoffs in the absence of an
agreement.

Step 3: Share the total cooperative payoff.

Step 4: Define a time-consistent solution.
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Time consistency: Imputation distribution procedure

Definition
A vector β(t) = (β1(t), ..., βn(t)) of time functions is an IDP if,
for all i = 1, ...., n, it satisfies

J∗i
(
S0,Z 0

)
=
∫ ∞

0
e−ρtβi (t)dt.

I An IDP decomposes over time the imputation that player i is
entitled to receive under the agreement.

I There is an infinite number of time functions that satisfy the
above equality.

I Time consistent IDP.
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Time consistency: Imputation distribution procedure

Definition
The IDP β(t) is time consistent, if

J∗i
(
S0,Z 0

)
=
∫ τ

0
e−ρtβi (t)dt +e

−rτJ∗i
(
SC (τ),ZC (τ)

)
,

where J∗i
(
SC (τ),ZC (τ)

)
is player i’s payoff-to-go in the subgame

starting at time τ, along the cooperative state trajectory.

I Time-consistent IDP

βi (t) =
1
4b

(
a2 − 2bφ

(
ZC (t)

)2
−
(

θC + ηC xC (t) + ζCZC (t)
)2)

,
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Numerical Illustration

Welfare function parameters : a = 4, b = 10, φ = 0.1,

Resource dynamics parameters : x0 = 10, δ = 0.1, λ = 0.1,

Pollution dynamics parameters : Z 0 = 0.1, ω = 0.5, k = 0.12,

Other parameters : ρ = 0.002, n = 2.

Steady-state values:

xN∞ = 10, 2135, xC∞ = 11, 9889, Z
N
∞ = 1, 0655, ZC∞ = 1, 2528,
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Extensions

I Explore other regions (model with extinction)
I Asymmetric players
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General conclusion

I Dynamic games offer a nice paradigm for CPRs
I How to move from simple (cartoon) models to large-scale
models?

I Empirical estimation
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