Curriculum vitae

Bounemoura Abed

Chargé de recherche CNRS
CEREMADE

bounemouraping@ceremade.dauphinepong.fr

Biographie

https://sites.google.com/site/abedbou/home

Dernières publications

Articles

Bounemoura A., Fayad B., Niederman L. (2020), Super-exponential stability for generic real-analytic elliptic equilibrium points, Advances in Mathematics, vol. 366

Bounemoura A. (2020), Positive measure of KAM tori for finitely differentiable Hamiltonians, Journal de l'école Polytechnique. Mathématiques, vol. 7, p. 1113-1132

Bounemoura A. (2019), Some remarks on the optimality of the Bruno-Rüssmann condition, Bulletin de la Société mathématique de France, vol. 147, n°2, p. 341-353

Bounemoura A., Fayad B., Niederman L. (2019), Nekhoroshev estimates for steep real-analytic elliptic equilibrium points, Nonlinearity, vol. 33, n°1

Bounemoura A., Féjoz J. (2019), KAM, α -Gevrey regularity and the α -Bruno-Rüssmann condition, Annali della Scuola Normale Superiore di Pisa, vol. 19, n°4, p. 1225-1279

Bounemoura A. (2017), Some instability properties of resonant invariant tori in Hamiltonian systems, Mathematical Research Letters, vol. 24, n°1, p. 21-35

Bounemoura A., Fayad B., Niederman L. (2017), Superexponential Stability of Quasi-Periodic Motion in Hamiltonian Systems, Communications in Mathematical Physics, vol. 350, n°1, p. 361–386

Bounemoura A. (2016), Nekhoroshev’s estimates for quasi-periodic time-dependent perturbations, Commentarii Mathematici Helvetici, vol. 91, n°4, p. 653-703

Bounemoura A. (2016), Non-degenerate Liouville tori are KAM stable, Advances in Mathematics, vol. 292, p. 42-51

Bounemoura A. (2016), Ergodization time for linear flows on tori via geometry of numbers, Archiv der Mathematik, vol. 106, n°2, p. 129-133

Bounemoura A. (2016), Non-degenerate Liouville tori are KAM stable, Advances in Mathematics, vol. 292, p. 42-51

Bounemoura A. (2016), Generic perturbations of linear integrable Hamiltonian systems, Regular and Chaotic Dynamics, vol. 21, n°6, p. 665-681

Bounemoura A., Kaloshin V. (2016), A note on micro-instability for Hamiltonian systems close to integrable, Proceedings of the American Mathematical Society, vol. 144, p. 1553-1560

Bounemoura A. (2014), A KAM Theorem through Dirichlet's Box and Khintchine's Transference Principles, Moscow Mathematical Journal, vol. 14, n°4, p. 697-709

Bounemoura A., Kaloshim V. (2014), Generic Fast Diffusion for a Class of Non-Convex Hamiltonians with Two Degrees of Freedom, Moscow Mathematical Journal, vol. 14, n°2, p. 181-203

Bounemoura A., Fischler S. (2014), The classical KAM theorem for Hamiltonian systems via rational approximations, Regular and Chaotic Dynamics, vol. 19, n°2, p. 251-265

Bounemoura A., Fischler S. (2013), A Diophantine duality applied to the KAM and Nekhoroshev theorems, Mathematische Zeitschrift, vol. 275, n°3-4, p. 1135-1167

Bounemoura A. (2013), Normal forms, stability and splitting of invariant manifolds I. Gevrey Hamiltonians, Regular and Chaotic Dynamics, vol. 18, n°3, p. 237-260

Bounemoura A. (2013), Normal forms, stability and splitting of invariant manifolds II. Finitely differentiable Hamiltonians, Regular and Chaotic Dynamics, vol. 18, n°3, p. 261-276

Berger P., Bounemoura A. (2013), A geometrical proof of the persistence of normally hyperbolic submanifolds, Dynamical Systems, vol. 28, n°4, p. 567-581

Bounemoura A. (2012), Optimal Stability and Instability for Near-Linear Hamiltonians, Annales Henri Poincaré, vol. 13, n°4, p. 857-868

Bounemoura A., Pennamen E. (2012), Instability for a priori unstable Hamiltonian systems: A dynamical approach, Discrete and Continuous Dynamical Systems, vol. 32, n°3, p. 753-793

Ouvrages

Bounemoura A., Féjoz J. (2021), Hamiltonian perturbation theory for ultra-differentiable functions, Paris: Memoirs of the American Mathematical Society, 89 p.

Prépublications / Cahiers de recherche

Bounemoura A. (2020), Optimal linearization of vector fields on the torus in non-analytic Gevrey classes, Cahier de recherche CEREMADE, Université Paris Dauphine-PSL, 30 p.

Bounemoura A. (2018), Some remarks on the optimality of the Bruno-Rüssmann condition, Paris, Cahier de recherche CEREMADE, Université Paris Dauphine-PSL, 12 p.

Bounemoura A., Fayad B., Niederman L. (2015), Double exponential stability for generic real-analytic elliptic equilibrium points, Paris, Cahier de recherche CEREMADE, Université Paris Dauphine-PSL, 51 p.

Retour à la liste