
MIDO - L3 Math. Appliquées 2023–2024

Statistical modelling

Examen final du 18 Janvier 2024
DURÉE 2H00 – DOCUMENTS ET CALCULATRICE NON

AUTORISÉS

French – English Lexicon

• i.i.d. : independent and identically distributed

• échantillon : sample

• fonction de répartition : cumulative distribution func-
tion

• fonction de densité : probability distribution function

• fonction génératrice des moments : moment-
generating function

• famille exponentielle : exponential family

• espace naturel des paramètres : natural parameter
space

• vraisemblance : likelihood

• statistique exhaustive : sufficient statistic

• statistique libre : ancillary statistic

• statistique complète : complete statistic

Exercise 1 ......
/

9

For the following statements, give the correct answer(s). Incorrect answers and missing justification re-
turn zero point while incomplete answers gain partial points.

1. Let (Xn)n∈N∗ be a sequence of independent discrete random variables such that

P[Xn = 0] =
n− 1

n
and P[Xn =

√
n] =

1

n
.

Then, when n goes to +∞,

(a) the sequence converges in L1 (convergence in
mean),

(b) the sequence converges in L2 (convergence in
quadratic mean),

(c) for any continuous function g, E[g(Xn)]
converges to 0,

(d) the sequence converges in distribution,

(e) the sequence does not converge at all.

(a, d) For any continuous and bounded function g, we have

E[g(Xn)] =
n− 1

n
g(0) +

1

n
g(

√
n).

Since g is bounded, the second term in the above sum converges to 0when n goes to +∞ and thus

E[g(Xn)] −→
n→+∞ g(0).

Then, (Xn) converges in distribution to 0. Moreover, if it converges in Lp, p ∈ N∗, it is necessarily to 0. We
have E[Xn] = 1/

√
n and E

[
X2n

]
= 1. Thus, Xn converges in L1 to 0, but not in L2.
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2. Consider the exponential family associated to the Bernoulli distribution with unknown parameter
p ∈ (0, 1). The moment generating function of natural statistic T(x) = x is given for t ∈ Θ ⊆ R by

(a) (1− p)
/
(1− p− t) (b) 1+ p(exp(t) − 1) (c) (1− p− t)

/
(1− p) (d) 1

/
[1+p(exp(t)− 1)]

(b) To get the canonical form we set θ = log(p) − log(1− p). The canonical form is then

f(x | θ) =
1

1+ exp(θ)
exp (θx) , θ ∈ R.

Then the moment generating function is defined for any t ∈ R by

M(t) =
1+ exp(θ+ t)
1+ exp(θ)

=
1+ exp[log(p) − log(1− p) + t]
1+ exp[log(p) − log(1− p)]

= 1+ p(exp(t) − 1).

3. Consider the density (with respect to the Lebesgue measure on R) parametrised by an unknown
(k, λ) ∈ N∗ × R∗

+ and defined by

f(x | k, λ) =
λkxk−1 exp(−λx)

(k− 1)!
1x≥0.

(a) It constitutes a minimal and canonical exponential family.

(b) It constitutes a minimal exponential family but is not in a canonical form.

(c) It constitutes an exponential family that is neither minimal nor canonical.

(d) None of the other answers.

(a) The density writes as

f(x | k, λ) =
λk

(k− 1)!

1

x
1x≥0 exp [k log(x) − λx] .

Then it constitutes a canonical exponential family with natural parameter (k, λ) and natural statistic T(x) =
(log(x),−x). Moreover for (α1, α2) ∈ R∗×R∗ and c ∈ R, the set {x ∈ R+ ; α1 log(x)−α2x−c = 0} contains at
most 2 elements (maximal number of intersections between an affine function and x 7→ log(x)) and hence
has measure zero (null set) for the Lebesgue measure. The family is minimal.

4. We run an experiment where we measure how much time n different customers spend on a specific
page of a website. Our observations x1, . . . , xn are stored in a vector x. We assume that the underlying sta-
tistical model is a Gamma distribution with parameter (α,β). Which one among the following R command
lines does return the first quartile of the sample?

(a) rgamma(0.25, 1, 2)

(b) pgamma(0.25, 1, 2)

(c) dgamma(0.25, 1, 2)

(d) qgamma(0.25, 1, 2)

(e) quantile(0.25, 1, 2)

(f) quantile(x, 0.25)

(f) In order to get the empirical quantiles of a sample we use the function quantile. The first argument
is the sample, followed by the order of the quantiles we are interested in.
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5. Let X be a random variable with density, parametrised by λ ∈ R∗
+, with respect to the composition of

the counting measure on N and the Lebesgue measure on R∗
+ :

fX(x) =

{
λx exp(−λ)
2(x!) , if x ∈ N,

λ
2 exp(−λx), otherwise.

The likelihood for the sample (1, 1, 2, 2, 2, x1, . . . , xn), with x1, . . . , xn /∈ N is

(a)
λn

2n+5
exp

−λ
n∑
i=1

xi



(b)
λn+8

2n+8
exp

−λ
 n∑
i=1

xi + 5



(c)
λ8 exp(−5λ)

2n+8

(d)
λn+3

2n+6
exp

−λ
 n∑
i=1

xi + 2


(b) The likelihood is given by

[
λ

2
exp(−λ)

]2 [
λ2 exp(−λ)

4

]3 n∏
i=1

λ

2
exp(−λxi) =

λn+8

2n+8
exp

−λ
 n∑
i=1

xi + 5

 .
6. Consider X distributed according to the Binomial distribution B(n, p), n ∈ N∗ known and p ∈ (0, 1)
unknown. If we denote θ the parameter of the canonical form of this exponential family, I(p) and I(θ) the
Fisher information contained in X for p and θ respectively, we have

(a) I(p) = n
/
[p(1− p)]

(b) I(p) = 1
/
[p(1− p)]

(c) I(θ) = ne−θ
(
1+ eθ

)2
(d) I(θ) = neθ

/ (
1+ eθ

)2

(a, d) The density f(· | n, p) of the Binomial distribution is twice differentiable with respect to p on (0, 1)
and

d
dp
f(x | n, p) =

x

p
−
n− x

1− p
and

d2

dp2
f(x | n, p) = −

x

p2
−

n− x

(1− p)2
.

Using that Ep[X] = np, we then have

I(p) = −Ep

[
d2

dp2
f(X | n, p)

]
=
np

p2
−
n− np

(1− p)2
=

n

p(1− p)
.

The parameter of the canonical form is θ = log(p)− log(1−p), that is p = exp(θ)/[1+ exp(θ)] := ψ(θ). We
then have

I(θ) =

(
d

dθ
ψ(θ

)2
I(p) =

exp(2θ)
[1+ exp(θ)]4

n[1+ exp(θ)]2

exp(θ)
=

n exp(θ)
[1+ exp(θ)]2

.
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7. Consider a regular and minimal exponential family with natural statistic T(·) and density f(· | θ),
θ ∈ Θ ⊆ R. For X1, . . . , Xn i.i.d. random variables distributed according to f(· | θ), we set S =

∑n
i=1 T(Xi).

(a) Any bijective transform of S is sufficient for θ.
(b) S is minimal sufficient for θ.

(c) Any sufficient statistic for θ that is a function of
S is minimal sufficient for θ.

(d) None of the other answers.

(a, b, c) S is a sufficient statistic for θ. Thus any bijective transform of S is sufficient for θ. For a minimal
representation, S is minimal sufficient. Thus S is a function of any other sufficient statistic. Therefore any
sufficient statistic R that is a function of S is also a function of any other sufficient statistic. Hence R is also
minimal sufficient.

8. Let X1, . . . , Xn be i.i.d. random variables distributed according to the Normal distribution N (µ, 1) and
denote

Xn =
1

n

n∑
i=1

Xi, X(1) = min(X1, . . . , Xn) and X(n) = max(X1, . . . , Xn).

(a) X(n) - X(1) is independent of Xn.

(b)
(
X(1), X(n)

)
is not a complete statistic.

(c)
(
X(1), X(n)

)
is a sufficient statistic for µ.

(d)
(
X1 − Xn, . . . , Xn − Xn

)
is independent of Xn.

(e) None of the other answers.

(a, b, d) X(n) - X(1) and (X1 − Xn, . . . , Xn − Xn) are ancillary statistic. Moreover Xn is a complete and
sufficient statistic for µ (result on natural statistic associated to an exeponential family). It follows from
Basu’s theorem that both X(n) - X(1) and (X1 − Xn, . . . , Xn − Xn) are independent from Xn.

X(n) - X(1) is an ancillary statistic that is not constant almost surely and such that Eµ
[
X(n) − X(1)

]
= c <∞

is independent of µ. Thus, for the function ϕ : (x, y) 7→ y− x− c, we have

Eµ
[
ϕ

(
X(1), X(n)

)]
= 0, ∀µ ∈ R.

But Pµ
[
ϕ

(
X(1), X(n)

)
= 0

]
= Pµ

[
X(n) − X(1) = c

]
̸= 1 since X(n) - X(1) is not constant almost surely. There-

fore
(
X(1), X(n)

)
is not a complete statistic.

Exercise 2 ......
/

15

We first consider a sample (X1, . . . , Xn), made of n > 2 i.i.d. random variables distributed according to
the Normal distribution N (µ, 1) with its mean parameter µ being unknown.

1. Express the likelihood function on µ attached with this model. Derive the maximum likelihood estima-
tor of µ, µ̂(x1, . . . , xn), show that it is convergent, asymptotically Normal, and that it meets the Cramèr-Rao
lower bound.

This Normal model is a special case of an exponential family distribution, hence the result from the course
slides applies, namely that there exists a single maximum likelihood estimator that is solution to S(x) =
Eθ[S(X)] when using the course slides notations and the natural parameterisation, In the Normal case, this
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leads to µ̂(x1, . . . , xn) = x̄n for which the CLT applies, obviously

√
n(X̄n − µ)

d
−→ N (0, 1)

In that case, the Fisher information is constant and equal to n for n observations, which is also the inverse
of the variance of the MLE.

2. In this question, we assume that αn of the observations in the above sample (X1, . . . , Xn), are missing
at random, with 0 < α < 1 and αn ∈ N. That is, αn of the indices 1, . . . , n are chosen at random and the
corresponding xi’s are removed from the sample before its observation.

Express the likelihood function associated with the new observed sample, denoted as y1, . . . , yn−αn. Derive
the associated maximum likelihood estimator of µ, µ̃(y1, . . . , yn−αn), and show that it is convergent and
asymptotically Normal.

The random removal of some of the xi’s does not modify the distribution of the remaining variables, which
are still iid Normal. Hence the result of Question 1 applies to this subvector with n replaced by (1− α)n.

3. GivenX1, . . . , Xn iid with density f and cdf F, show that the distribution of the pair (Z1, Z2) = (X(i), X(j))
with 1 ≤ i < j ≤ n has density

n!

(i− 1)!(j− i− 1)!(n− j)!
F(z1)

i−1f(z1)[F(z2) − F(z1)]
j−1−if(z2)[1− F(z2)]

n−j Iz1≤z2

where X(i) denotes the ith order statistic associated with the sample, that is, the value of the ith term in the
ordered sample. The vector of order statistics (X(1), . . . , X(n)) is thus such that

X(1) ≤ X(2) ≤ · · · ≤ X(n).

The classical results are available and well-explained on Wikipedia.

4. Extend the above derivation of the density to the case of a k- order statistic, W = (X(i1), . . . , X(ik))
when 1 ≤ i1 < · · · < ik ≤ n and deduce that the density of Y = (X(n−i+1), . . . , X(n)) is given by

n!

(i− 1)!
F(yi)

i−1
n∏
j=i

f(yj) Iyi≤···≤yn .

n!

(i− 1)!
F(yi)

i−1
n∏
j=i

f(yj) Iyi≤···≤yn
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5. Starting from the Normal sample (X1, . . . , Xn) described in Question 1, we now remove the αn
smallest observations from that sample, with 0 < α < 1 and αn ∈ N. This means that now only
(Y1, . . . , Yn−αn) = (X(αn+1), . . . , X(n)) is observed.
Show that the associated likelihood is

n!

(αn)!
Φ(x(αn+1) − µ)

αn
n∏

i=αn+1

ϕ(x(i) − µ)

where Φ and ϕ are the standard Normal cdf and pdf, respectively.
Does this likelihood remain associated with an exponential family? If it does, provide the minimal repre-
sentation and derive the corresponding maximum likelihood estimator of µ, µ̆(Y1, . . . , Yn−αn). Else, explain
the main difficulty in computing this maximum likelihood estimator.

From Question 3, the joint density of (X(αn+1), . . . , X(n)) is indeed given by

n!

αn!
F(x(αn+1))

αn
n∏

i=αn+1

f(x(i))

by taking i = αn. Therefore in the Normal case the likelihood function involves the Normal cdf, that is,

Φ(x(αn+1) − µ)
αn

a feature that takes the distribution outside exponential families and makes computing the maximum like-
lihood more involved. It is not possible to find a closed-form expression since the score function involves
both exponential and linear terms in µ.

6. Show that the likelihood associated with the sample X1, . . . , Xn in Question 1 is the same as the likeli-
hood associated with the sample X(1), . . . , X(n). What does this imply on the statistic (X(1), . . . , X(n))?

As shown in class the full order statistic is a sufficient statistic for any iid model.

7. Show that the marginal conditional distribution of X(i) (1 ≤ i ≤ αn) conditional on (X(αn+1), . . . , X(n))
only depends on X(αn+1) and prove that it is a Normal distribution restricted to the interval (−∞, X(αn+1)).

Starting from the joint density of (X1, . . . , X(n)),

n!
n∏
i=1

f(x(i)) Ix(1)≤···≤x(n)

it is proportional to
αn∏
i=1

f(x(i)) Ix(1)≤···≤x(αn+1)

when fixing (Xαn+1, . . . , X(n)). Hence, it only depends on x(αn+1) and by recursive integration over
the other variates one can deduce that the marginal conditional density in X(i) is proportional to
f(x(i)) Ix(i)≤x(αn+1)

which is the Normal distribution restricted to the interval (−∞, X(αn+1)).
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8. Still based on the iid sample from Question 1, consider the random vectors

X = (X(1), . . . , X(n)), Z = (X(1), . . . , X(αn)), Y = (X(αn+1), . . . , X(n))

Denote the likelihood functions associated with X and Y as Lc(µ|X) and Lo(µ|Y), respectively. Define

logkµ(Z|Y) = logLc(µ|X) − logLo(µ|Y) (1)

and show that kµ(z|y) is a probability density in z for all values of y. In the Normal setting of Question 1,
what is the exact expression of kµ(z|y)?

This is simply the decomposition of the density of X as the product of the (marginal) density of Y times the
conditional density of Z given Y . The marginal density of Y was produced earlier. As for the conditional
density of the αn lowest order statistics Z given the (n− αn) largest order statistics Y ,

kµ(z|y) = (αn)!Φ(y1 − µ)
−αn

αn∏
i=1

φ(zi − µ)Iz1≤···≤zαn≤y1

9. Show that, for an arbitrary value µ0 ∈ R,

logLo(µ|Y) = Eµ0 [logLc(µ|X) − logkµ(Z|Y)
∣∣Y ] ∀µ ∈ R (2)

where the expectation on the right hand side is taken for the conditional distributions of X and Z, respec-
tively, given Y , when the parameter value is µ0, i.e., when associated with iid Xi ∼ N (µ0, 1) (1 ≤ i ≤ n).

Since the left hand side of
logLo(µ|Y) = logLc(µ|X) − logkµ(Z|Y)

derived from (1) only depends on Y , the same is true with its right hand side. The right hand side does
not depend on Z, which means that it can be integrated in X(Z) and Z conditional on Y, whatever the
conditional distribution used for the integration.

10. Show that Eµ0 [logLc(µ|X)|Y = (y1, . . . , yn−αn)] can be written as

−n/2 log(2π) − αn/2

∫y1
−∞(x− µ)2

e−(x−µ0)2/2

√
2πΦ(y1 − µ0)

dx− 1/2

n−αn∑
i=1

(yi − µ)
2

where Φ(x) is the standard Normal cdf.

Since

logLc(µ|X) = −n/2 log(2π) − 1/2

n∑
i=1

(X(i) − µ)
2

and
n∑
i=1

(X(i) − µ)
2 =

αn∑
i=1

(X(i) − µ)
2 +

n∑
i=αn

(X(i) − µ)
2

︸ ︷︷ ︸∑n−αn
i=1 (Yi−µ)2

the second sum term is fixed when Y is fixed and the first sum term is made of iid terms by Question 6,
since all X(i) are conditionaly Normal N (µ0, 1) truncated to (−∞, y1).

7



11. Show that ∫y1
−∞ x

e−(x−µ0)2/2

√
2πΦ(y1 − µ0)

dx = µ0 −
e−(y1−µ

0)2/2

√
2πΦ(y1 − µ0)

and deduce that the argument of

max
µ

Eµ0 [logLc(µ|X)|Y = (y1, . . . , yn−αn)]

is

µ1 =
αn

n

{
µ0 −

e−(y1−µ
0)2/2

√
2πΦ(y1 − µ0)

}
+
1

n

n−αn∑
i=1

yi (3)

The integral can be solved by observing that

xe−(x−µ0)2/2 = −
d

dx
e−(x−µ0)2/2 + µ0e−(x−µ0)2/2

By further taking the derivative in µ of the expression in Question 9,

µ1 =
αn

n
E[X(1)|Y1 = y1] +

1

n

n−αn∑
i=1

yi

12. (Bonus question) Show that, when µ1 is defined in (3)

Lo(µ1|Y) ≥ Lo(µ0|Y)

by using Jensen inequality.

This is the argument behind the EM algorithm, as explained in the slides of the course.

Exercise 3 ......
/

6

1. We consider a sample (X1, . . . , Xn), made of n i.i.d random variables distributed according to a
Laplace distribution Laplace (θ, b) with θ ∈ R unknown and b ∈ R∗

+ fixed. The objective is to construct an
estimator of θ.

The density of a Laplace (θ, b) against the Lebesgue measure on R is defined as

f (x | θ) =
1

2b
exp

(
−
|x− θ|

b

)
, for x ∈ R.

For this density, E [X1] = θ and V [X1] = 2b
2.

Derive the Fisher information of θ using the following formula IX1
(θ) = Eθ

[(
∂ log f(X1 | θ)

∂θ

)2)
.

Given that ∂ log(f(x | θ))
∂θ = 1

b1x−θ>0 +
1
b1x−θ<0, IX1

(θ) = 1
b2
E

[
1X−θ̸=0

]
= 1

b2
.

2. Give the expression of the log-likelihood ln (θ) of the n-sample.

ln (θ) = −n log (2b) −
∑n
i=1|xi − θ|.
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3. Consider the case when n is even (i.e., n = 2k for k ∈ N). Explain or illustrate with a drawing why a
MLE of θ is θ̂MLE = X(n

2 )
.

4. Let 0 < α < 1. For n even and large enough, give two confidence intervals of asymptotic level 1 − α,
one based on the estimator X̄n and the other on θ̂MLE.

The sequence(X1, . . . , Xn) is a i.i.d sample of finite variance. The CLT states :

√
n

(
X̄n − θ

) L
−→
n

N
(
0, 2b2

)
.

We deduce the confidence interval of level 1−α : IC1 (α) =

[
X̄n −

q1−α
2
(
√
2b)

√
n

, X̄n +
q1−α

2
(
√
2b)

√
n

]
where q1−α

2

is the quantile of level 1− α
2 of the law N (0, 1).

From the asymptotic normality of the MLE,
√
n

(
θ̂MLE − θ

) L
−→
n

N
(
0, IX1

(θ)−1
)

≡ N
(
0, b2

)
.

We deduce a second confidence interval for θ, IC2 (α) =
[
θ̂MLE −

q1−α
2
b

√
n
, θ̂MLE +

q1−α
2
b

√
n

]
.

5. For n large enough and even, which confidence interval would you prefer and why?

The confidence interval based on θ̂MLE is smaller thus one should select IC2.

6. Write an R code to compute the MLE given a n-sample x = (x1, . . . , xn).

compute_theta = function(x){
x_sort = sort(x)
return(x_sort[n/2])
}

7. Using parametric bootstrap with B = 1000 bootstrap samples and the MLE as estimate of θ, write an
R code to compute a 66% empirical bootstrap confidence interval. (The entries alpha, b and n are known
and already defined in the R environment.)

theta_hat = compute_theta(x)
B = 1000
theta_star = rep(0, B)
for (i in seq_len(B)) {
theta_star[i] = compute_theta(rlaplace(n, theta_hat, b))
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}
#lower bound
alpha = 1 - 0.66
b_low = 2*theta_hat - quantile(theta_star, 1 - alpha/2)
#upper bound
b_up = 2*theta_hat - quantile(theta_star, alpha/2)
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