Cahiers du CEREMADE

Unité Mixte de Recherche du C.N.R.S. N°7534
 
Abstract : We study the asymptotic behaviour of nonnegative solutions to:$u_t=\Delta_p u^m$ using an entropy estimate based on a sub-family of the Gagliardo-Nirenberg inequalities -- or, in the limit case $m=(p-1)^{-1}$, on a logarithmic Sobolev inequality in $W^{1,p}$ -- for which optimal functions are known.
 
 
NONLINEAR DIFFUSIONS AND OPTIMAL CONSTANTS IN SOBOLEV TYPE INEQUALITIES : ASYMPTOTIC BEHAVIOUR OF EQUATIONS INVOLVING THE p-LAPLACIAN
DEL PINO Manuel, DOLBEAULT Jean
2001-26
04-10-2001
 
Université de PARIS - DAUPHINE
Place du Maréchal de Lattre De Tassigny - 75775 PARIS CEDEX 16 - FRANCE
Téléphone : +33 (0)1 44-05-49-23 - fax : +33 (0)1 44-05-45-99