Cahiers du CEREMADE

Unité Mixte de Recherche du C.N.R.S. N°7534
 
Abstract : In this paper we establish a Liouville type theorem for fully nonlinear elliptic equations related to a conjecture of De Giorgi in R2. We prove that if the level lines of a solution have bounded curvature, then these level lines are straight lines. As a consequence, the solution is one-dimensional. The method also provides a result on free boundary problems of Serrin type.
 
 
ON A LIOUVILLE TYPE THEOREM FOR ISOTROPIC HOMOGENEOUS FULLY NONLINEAR ELLIPTIC EQUATIONS IN DIMENSION TWO
DOLBEAULT Jean, MONNEAU Regis
2002-22
11-06-2002
 
Université de PARIS - DAUPHINE
Place du Maréchal de Lattre De Tassigny - 75775 PARIS CEDEX 16 - FRANCE
Téléphone : +33 (0)1 44-05-49-23 - fax : +33 (0)1 44-05-45-99