Cahiers du CEREMADE

Unité Mixte de Recherche du C.N.R.S. N°7534
 
Abstract : We present a logarithmic Sobolev inequality adapted to a log-concave measure. Assume that $\Phi$ is a symmetric convex function on $\dR$ satisfying $(1+\e)\Phi(x)\leq {x}\Phi'(x)\leq(2-\e)\Phi(x)$ for $x\geq0$ large enough and with $\e\in]0,1/2]$. We prove that the probability measure on $\dR$ $\mu_\Phi(dx)=e^{-\Phi(x)}/Z_\Phi dx$ satisfies a modified and adapted logarithmic Sobolev inequality : there exist three constant $A,B,D>0$ such that for all smooth $f>0$, \begin{equation*} \ent{\mu_\Phi}{f^2}\leq A\int H_{\Phi}\PAR{{\frac{f'}{f}}}f^2d\mu_\Phi, \text{ with } H_{\Phi}(x)=\left\{ \begin{array}{rl} \Phi^*\PAR{Bx} &\text{ if }\ABS{x}\geq D,\\ x^2 &\text{ if }\ABS{x}\leq D. \end{array} \right. \end{equation*} \end{abstract}
 
 
Modified logarithmic Sobolev inequalities in null curvature
GENTIL Ivan, GUILLIN Arnaud, MICLO L.
2005-17
24-03-2005
 
Université de PARIS - DAUPHINE
Place du Maréchal de Lattre De Tassigny - 75775 PARIS CEDEX 16 - FRANCE
Téléphone : +33 (0)1 44-05-49-23 - fax : +33 (0)1 44-05-45-99