Cahiers du CEREMADE

Unité Mixte de Recherche du C.N.R.S. N°7534
 
Abstract : We present here complete mathematical proofs of the results annouced in cond-mat/0509688. We introduce a model whose thermal conductivity diverges in dimension 1 and 2, while it remains fnite in dimension 3. We consider a system of harmonic oscillators perturbed by a stochastic dynamics conserving momentum and energy. We compute the fnite-size thermal conductivity via Green-Kubo formula. In the limit as the size N of the system goes to in infinity, conductivity diverges like N in dimension 1 and like lnN in dimension 2. Conductivity remains finite if d ?3 or if a pinning (on site potential) is present.
 
 
THERMAL CONDUCTIVITY FOR A MOMENTUM CONSERVING MODEL
BASILE Giada, BERNARDIN Cédric, OLLA Stéfano
2006-3
31-01-2006
 
Université de PARIS - DAUPHINE
Place du Maréchal de Lattre De Tassigny - 75775 PARIS CEDEX 16 - FRANCE
Téléphone : +33 (0)1 44-05-49-23 - fax : +33 (0)1 44-05-45-99