Cahiers du CEREMADE

Unité Mixte de Recherche du C.N.R.S. N°7534
 
Abstract : We develop in this paper an improvement of the method given by S. Bobkov and M. Ledoux. Using the Pr├ękopa-Leindler inequality, we prove a modified logarithmic Sobolev inequality adapted for all measures on $R^n$, with a strictly convex and super-linear potential. This inequality implies modified logarithmic Sobolev inequality for all uniform strictly convex potential as well as the Euclidean logarithmic Sobolev inequality.
 
 
From Pr├ękopa-Leindler inequality to modified logarithmic Sobolev inequality
GENTIL Ivan
2006-6
07-02-2006
 
Université de PARIS - DAUPHINE
Place du Maréchal de Lattre De Tassigny - 75775 PARIS CEDEX 16 - FRANCE
Téléphone : +33 (0)1 44-05-49-23 - fax : +33 (0)1 44-05-45-99