Cahiers du CEREMADE

Unité Mixte de Recherche du C.N.R.S. N°7534
Abstract : We consider a space-homogeneous gas of {\it inelastic hard spheres}, with a {\it diffusive term} representing a random background forcing (in the framework of so-called {\em constant normal restitution coefficients} $\alpha \in [0,1]$ for the inelasticity). In the physical regime of a small inelasticity (that is $\alpha \in [\alpha_*,1)$ for some constructive $\alpha_* \in [0,1)$) we prove uniqueness of the stationary solution for given values of the restitution coefficient $\alpha \in [\alpha_*,1)$, the mass and the momentum, and we give various results on the linear stability and nonlinear stability of this stationary solution.
Stability, convergence to the steady state and elastic limit for the Boltzmann equation for diffusively excited granular media
Université de PARIS - DAUPHINE
Place du Maréchal de Lattre De Tassigny - 75775 PARIS CEDEX 16 - FRANCE
Téléphone : +33 (0)1 44-05-49-23 - fax : +33 (0)1 44-05-45-99