Cahiers du CEREMADE

Unité Mixte de Recherche du C.N.R.S. N°7534
Abstract : The goal of this paper is to give a non-local sufficient condition for generalized Poincaré inequalities, which extends the well-known Bakry-Emery condition. Such generalized Poincaré inequalities have been introduced by W. Beckner in the gaussian case and provide, along the Ornstein-Uhlenbeck flow, the exponential decay of some generalized entropies which interpolate between the $L^2$ norm and the usual entropy. Our criterion improves on results which, for instance, can be deduced from the Bakry-Emery criterion and Holley-Stroock type perturbation results. In a second step, we apply the same strategy to non-linear equations of porous media type. This provides new interpolation inequalities and decay estimates for the solutions of the evolution problem. The criterion is again a non-local condition based on the positivity of the lowest eigenvalue of a Schrödinger operator. In both cases, we relate the Fisher information with its time derivative. Since the resulting criterion is non-local, it is better adapted to potentials with, for instance, a non-quadratic growth at infinity, or to unbounded perturbations of the potential.
On the Bakry-Emery criterion for linear diffusions and weighted porous media equations
Université de PARIS - DAUPHINE
Place du Maréchal de Lattre De Tassigny - 75775 PARIS CEDEX 16 - FRANCE
Téléphone : +33 (0)1 44-05-49-23 - fax : +33 (0)1 44-05-45-99