
Algèbre 4 et Méthodes numériques (L2 - 2025/2026)
Feuille de TD no 1 — Introduction, résolution approchée d’équations.

Cette feuille est en partie inspirée des feuilles de TD proposées par Guillaume Legendre (jusqu’en 2024),
disponibles ici : https://www.ceremade.dauphine.fr/~legendre/enseignement/methnum/

0 Calculs en nombres à virgule flottante, erreurs d’arrondi.
Exercice 1. Erreurs absolues, erreurs relatives.
Si le résultat théorique d’un calcul est r(̸= 0) et que l’approximation donnée par le calcul numérique est r̂,
on appelle erreur absolue la différence r̂ − r et erreur relative le rapport δ = r̂−r

r .
Pour des « floats » (nombres à virgule flottante double précision), on note u = 2−53 l’erreur machine. C’est
l’erreur relative maximale d’arrondi : si x et y sont des floats, l’arrondi renvoyé lors du calcul de x + y est
un float noté A(x + y), qui vérifie A(x + y) = (x + y)(1 + δ+) où l’erreur relative δ+ (qui dépend de x et
de y) appartient à [−u, u].
De même pour la soustraction, la multiplication, la division (si y ̸= 0) et la racine carrée (si x ⩾ 0) :

A(x − y) = (x − y)(1 + δ−), A(x · y) = (x · y)(1 + δ×), A(x
y ) = x

y (1 + δ÷), A(
√

x) =
√

x(1 + δ√),

où les erreurs relatives δ−, δ×, δ÷ et δ√ sont toutes dans [−u, u].
On cherche à évaluer les deux racines du polynôme X2 − 2 · 2026X + 1, qui sont x± = 2026 ±

√
20262 − 1.

1. Quel est l’arrondi renvoyé lors du calcul de x+ et de x− (on considèrera que le calcul de l’en-
tier 20262 − 1 est exact) ? Donner les erreurs absolues correspondantes.

2. Donner l’ordre de grandeur de l’erreur relative dans les deux cas. Y a-t-il une manière plus précise
d’évaluer numériquement x− ?

Exercice 2. Approximation de la dérivée par différence finie.
On se donne une fonction f dont on veut approximer la dérivée en x par le taux de variation f(x+h)−f(x)

h

pour un certain h > 0. On dispose d’une approximation f̂ de f avec une précision relative u ≪ 1 : pour
tout y, |f̂(y) − f(y)| ⩽ |f(y)|u.
On néglige les erreurs d’arrondi lors des calculs de somme, de différence et de division par h (les calculs qui
suivent peuvent être adaptés en tenant compte de ces erreurs, mais deviennent plus lourds) : on s’intéresse
donc au taux de variation approché r̂ = f̂(x+h)−f̂(x)

h .
1. On suppose que l’on se place sur un intervalle [a, b] où f est de classe C2, et où f et f ′′ sont du

même ordre de grandeur : ∥f ′′∥∞ ⩽ C∥f∥∞, où C est une constante « de l’ordre de grandeur de 1 ».
Montrer que si x et x + h sont dans [a, b], ona :

∣∣∣ f̂(x + h) − f̂(x)
h

− f ′(x)
∣∣∣ ⩽ [2u

h
+ Ch

2
]
∥f∥∞.

Comment se comporte le h qui minimise le terme de droite de cette inégalité par rapport à u ?
Donner alors l’ordre de grandeur de l’erreur finale entre la dérivée au point x et l’approximation par
différence finie en utilisant f̂ .

2. Mêmes questions avec la formule de la différence finie centrée. On suppose cette fois-ci que f est de
classe C3 et que f (3) est du même ordre de grandeur que f : ∥f (3)∥∞ ⩽ C∥f∥∞. Démontrer que
si x + h et x − h sont dans [a, b], alors :

∣∣∣ f̂(x + h) − f̂(x − h)
2h

− f ′(x)
∣∣∣ ⩽ [u

h
+ Ch2

6
]
∥f∥∞.

Quel est cette fois le bon choix de h par rapport à u ? Comment se comporte l’erreur finale en
fonction de u ?
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Exercice 3. Accumulation des erreurs d’arrondis, algorithme de Kahan.
On note u = 2−53 l’erreur machine pour les « floats » (nombres à virgule flottante double précision) :
l’arrondi renvoyé lors du calcul de x + y est un float noté A(x + y), qui vérifie A(x + y) = (x + y)(1 + δ+)
où l’erreur relative δ+ (qui dépend de x et de y) appartient à [−u, u].
On se donne une suite (an)n⩾0 de floats, avec an > 0 pour tout n, et on veut calculer numériquement la
somme sN =

∑N−1
k=0 ak en les additionnant un à un : on pose ŝ0 = 0 et ŝn+1 = A(ŝn + an) pour n ⩾ 0.

1. Montrer que l’on a |ŝN − sN | ⩽
(
(1 + u)N − 1

)
sN . En déduire que si Nu ⩽ 1, l’erreur relative est au

plus de l’ordre de Nu : on a ŝN = sN (1 + δ) avec |δ| ⩽ (e − 1)Nu.
2. Le float le plus petit après 1 est 1 + 2−52 = 1 + 2u. Si a est un float avec 0 ⩽ a < u, le float le plus

proche de 1 + a est donc 1, de sorte que l’on a A(1 + a) = 1. Utiliser ceci pour construire une suite
(an) pour laquelle l’erreur relative entre ŝN et sN est au moins de l’ordre de Nu (tant que Nu ⩽ 1).

3. * L’algorithme de sommation de Kahan consiste à effectuer un peu plus de calculs pour garder en
mémoire une compensation ĉn : on pose ĉ0 = 0, puis à chaque étape, on ajoute ân = A(an − ĉn) au
lieu d’ajouter an. On pose donc ŝn+1 = A(ŝn + ân). Et on pose ĉn+1 = A(A(ŝn+1 − ŝn) − ân). Que
se passerait-il si les calculs étaient exacts ? Expliquer comment cet algorithme permet de corriger le
problème de la question précédente.

1 Approximation de solutions d’équations scalaires non-linéaires
Exercice 4. Ordre de convergence des suites.

1. On pose x0 = 1 et pour tout n ∈ N, xn+1 = xn
1+x2

n
.

Montrer que la suite (xn) converge vers 0, mais ne converge pas linéairement.
Indication : considérer 1

x2
n+1

− 1
x2

n
.

2. On pose x0 = 1 et pour tout n ∈ N,

xn+1 = xn

(
1 − xn

2
)

+ 1.

Montrer que la suite (xn) converge linéairement.
Indication : montrer d’abord que xn ∈ [1, 3

2 ] pour tout n ∈ N.
Que peut-on dire sur le taux de convergence linéaire ?

3. On pose x0 = 1 et pour tout n ∈ N,
xn+1 = xn

2 + 1
xn

.

Montrer que la suite (xn) converge avec un ordre supérieur ou égal à 2.
Indication : montrer d’abord que pour tout n ∈ N, on a (xn+1 − xn)2 = x2

n+1 − 2.
4. * On pose x0 = 2, x1 = 1 et pour tout n ∈ N∗,

xn+1 = xnxn−1 + 2
xn + xn−1

.

Montrer que la suite (xn) converge avec un ordre supérieur ou égal au nombre d’or φ = 1
2(1 +

√
5).

Indications : montrer que xn ∈ [1, 2] pour tout n ; en posant yn = xn+1 − xn et zn = xn+1 + xn,
montrer que (yn+2+yn+1)zn+1 = yn+1zn = −yn(yn+yn−1) pour n ⩾ 1 ; enfin que |yn+1| ⩽ |yn||yn−1|.

Exercice 5. Problèmes de convergence pour la méthode de Newton.
1. On effectue la méthode de Newton pour trouver un zéro de x 7→ x3. Montrer que la suite des itérées

converge vers l’unique zéro, mais ne converge pas quadratiquement.
2. On note (xn) la suite obtenue pour trouver un zéro de x 7→ tanh(x) = ex−e−x

ex+e−x en effectuant la
méthode de Newton.
(a) Exprimer |xn+1| en fonction de |xn| (on pourra montrer que xn+1 et xn sont de signes opposés).
(b) Montrer qu’il existe un unique α > 0 vérifiant e2α−e−2α

4 − α = α.
(c) Montrer que si |x0| > α, alors |xn| → +∞. Si |x0| < α, quel est l’ordre de convergence ?
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Exercice 6. Convergence globale de la méthode de Newton.
Soit f : [a, b] → R de classe C2 telle que f ′(x) > 0 et f ′′(x) ⩾ 0 pour tout x dans [a, b]. On suppose que
f admet un zéro x∗ dans [a, b]. On choisit x0 ∈ [a, b] tel que f(x0) ⩾ 0 et on veut montrer que la suite
(xn)n⩾0 construite par la méthode de Newton converge vers x∗.

1. Montrer le résultat dans le cas où f(x0) = 0.
2. Utiliser un argument de monotonie pour montrer le résultat dans le cas f(x0) > 0, et faire un dessin

illustratif.
3. En considérant la fonction x 7→ f(a+b−x), montrer que le résultat reste vrai si on suppose cette fois-

ci f ′(x) < 0 pour tout x dans [a, b]. Si on suppose maintenant que f ′′(x) ⩽ 0 pour tout x dans [a, b],
quelle condition sur x0 permet d’assurer la convergence globale de la méthode de Newton ?

Exercice 7. Étude de convergence de la méthode de point fixe.
Soit [a, b] un intervalle non vide de R et g une application continue de [a, b] dans lui-même.

1. Montrer que g possède au moins un point fixe ξ dans l’intervalle [a, b].
2. On suppose à présent que la fonction g est C1 sur I = [ξ−h, ξ+h] pour un h > 0, et que (uniquement

dans cette question), |g′(ξ)| < 1. On va montrer que la suite définie par

∀k ∈ N, xk+1 = g(xk)

converge vers ξ dès que l’initialisation x0 est suffisamment proche de ξ. On dit alors que ξ est un
point fixe attractif de g.
(a) Montrer qu’il existe 0 < δ ≤ h tel que

∀x ∈ Iδ = [ξ − δ, ξ + δ], |g′(x) − g′(ξ)| ≤ 1
2

(
1 − |g′(ξ)|

)
.

(b) En déduire qu’il existe une constante 0 < L < 1 telle que, pour tout réel x dans Iδ, |g′(x)| ≤ L.
(c) En déduire que si xk appartient à Iδ, alors

|xk+1 − ξ| ≤ L |xk − ξ|,

et que, si x0 appartient à Iδ, alors

∀k ∈ N, xk ∈ Iδ et |xk − ξ| ≤ Lk |x0 − ξ|.

(d) En conclure que la suite (xk)k∈N converge vers ξ.
3. On suppose dans cette question que |g′(ξ)| > 1. Montrer que la suite (xk)k∈N ne converge pas vers ξ,

sauf s’il existe k0 tel que xk0 = ξ (dans ce cas la suite est stationnaire). On pourra pour cela prouver,
en s’inspirant des étapes de la question précédente, qu’il existe un réel δ > 0 tel que, si x0 appartient
à Iδ \ {ξ}, il existe un rang k pour lequel xk n’appartient pas à Iδ. On dit alors que ξ est un point
fixe répulsif de g.

4. Application. Étudier les méthodes de point fixe associées aux fonctions suivantes :

g1(x) = ln(1 + x) + 1
5 , g2(x) = 1

2(x2 + c), avec 0 ≤ c < 1, et g3(x) = − ln(x).

Exercice 8. On souhaite calculer le zéro de la fonction f(x) = x3 − 2 par une méthode de point fixe
utilisant, pour ω ∈ R donné, la fonction

g(x) =
(

1 − ω

3

)
x + (1 − ω) x3 + 2ω

3 x2 + 2(ω − 1).

1. Pour quelle(s) valeur(s) de ω le zéro de la fonction f est-il un point fixe de la méthode ?
2. Pour quelle(s) valeur(s) de ω l’ordre de convergence de la méthode est strictement supérieur à un ?
3. Existe-t-il une valeur de ω telle que l’ordre de la méthode est strictement supérieur à deux ?
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Exercice 9. Méthode de Steffensen. Soit f une fonction de R dans R de classe C2 possédant un zéro
simple ξ. On cherche à approcher ξ par la méthode de Steffensen, une méthode de point fixe de la forme

∀k ∈ N, xk+1 = xk − (f(xk))2

f(xk + f(xk)) − f(xk) ,

l’initialisation x(0) étant donnée.
L’objectif de cet exercice est de prouver que, si la suite (xk)k∈N est bien définie et converge vers ξ, alors
cette convergence est au moins quadratique.

1. En effectuant un développement de Taylor–Lagrange de f(xk + f(xk)) à l’ordre deux autour du
point xk, montrer qu’il existe un réel θk strictement compris entre xk et xk + f(xk) tel que

∀k ∈ N, xk+1 − ξ = xk − ξ − f(xk)
f ′(xk) + 1

2 f ′′(θk)f(xk)
.

2. En effectuant un développement de Taylor–Lagrange approprié, montrer ensuite qu’il existe un réel
ηk strictement compris entre xk et ξ tel que

∀k ∈ N, f(xk) = f ′(xk) (xk − ξ) − 1
2 f ′′(ηk) (xk − ξ)2

et en déduire que

∀k ∈ N, xk+1 − ξ = 1
2

f(xk)f ′′(θk)(xk − ξ) + f ′′(ηk)(xk − ξ)2

f ′(xk) + 1
2f ′′(θk)f(xk)

.

3. Par un développement de Taylor–Lagrange approprié, montrer enfin qu’il existe un réel ζk compris
entre xk et ξ tel que

∀k ∈ N, f(xk) = f ′(ζk) (xk − ξ),

et en déduire que

∀k ∈ N, xk+1 − ξ = 1
2(xk − ξ)2 f ′′(θk)f ′(ζk) + f ′′(ηk)

f ′(xk) + 1
2f ′′(θk)f(xk)

.

4. En déduire que, si la suite (xk)k∈N converge vers ξ, alors on a

lim
k→+∞

|xk+1 − ξ|
|xk − ξ|2

= µ,

avec µ un réel que l’on explicitera.
5. Expliquer pourquoi la méthode de Steffensen peut être considérée comme une variante de la méthode

de Newton–Raphson. Quel est son avantage par rapport à cette dernière méthode ?

Exercice 10. Procédé ∆2 d’Aitken. La méthode d’accélération de convergence d’Aitken consiste, à partir
d’une suite x = (xn), à créer la suite Ax = (un) définie par

un = Ax = xn − (xn+1 − xn)2

xn+2 − 2xn+1 + xn
= xn −

(
(∆x)n

)2

(∆(∆x))n
,

où ∆ est l’opérateur qui à une suite associe ses différences successives : (∆x)n = xn+1 − xn.

1. Montrer que si a, b ∈ R alors A(ax + b) = aA(x) + b.
2. Montrer que si |xn − αn| ⩽ Cβn avec C > 0 et 0 < β < |α| < 1, alors à partir d’un certain rang un

est toujours bien définie et un = O(βn).
3. En déduire que si xn = ℓ + Kαn + O(βn) avec K ∈ R∗, alors un = ℓ + O(βn) : la suite produite

converge également vers ℓ et plus rapidement.
4. Lorsque xn+1 = g(xn) avec g(x) = x+f(x), que vaut un ? Faire le lien avec l’exercice sur la méthode

de Steffensen.
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