Algebre 4 et Méthodes numériques (L2 - 2025/2026)
Feuille de TD n°1 — Introduction, résolution approchée d’équations.

Cette feuille est en partie inspirée des feuilles de TD proposées par Guillaume Legendre (jusqu’en 2024),
disponibles ici : https://www.ceremade.dauphine.fr/~legendre/enseignement/methnum/

0 Calculs en nombres a virgule flottante, erreurs d’arrondi.

Exercice 1. Erreurs absolues, erreurs relatives.

Si le résultat théorique d’un calcul est r(# 0) et que approximation donnée par le calcul numérique est 7,
on appelle erreur absolue la différence # — r et erreur relative le rapport 6 = %

Pour des « floats » (nombres & virgule flottante double précision), on note v = 2773 Perreur machine. C’est
I’erreur relative maximale d’arrondi : si z et y sont des floats, ’arrondi renvoyé lors du calcul de x + y est
un float noté A(z + y), qui vérifie A(z + y) = (x + y)(1 + d4) ou erreur relative d4 (qui dépend de x et
de y) appartient & [—u, u.

De méme pour la soustraction, la multiplication, la division (si y # 0) et la racine carrée (si z > 0) :

Al@—y)=(@—y)A+0-), Al-y)=(z-y)1+0x), AF)=71+0:), AWVz)=Va(l+d)),

ou les erreurs relatives §_, §x,d- et § / sont toutes dans [—u, u].
On cherche & évaluer les deux racines du polynéme X2 — 2-2026X + 1, qui sont 4+ = 2026 & /20262 — 1.

1. Quel est larrondi renvoyé lors du calcul de x4 et de x_ (on considérera que le calcul de 'en-
tier 20262 — 1 est exact) ? Donner les erreurs absolues correspondantes.

2. Donner 'ordre de grandeur de 'erreur relative dans les deux cas. Y a-t-il une maniére plus précise
d’évaluer numériquement x_ ?

Exercice 2. Approximation de la dérivée par différence finie.
On se donne une fonction f dont on veut approximer la dérivée en x par le taux de variation w

pour un certain A > 0. On dispose d’une approximation f de f avec une précision relative u < 1 : pour
tout y, [f(y) — f(W)] < |f(y)|u.

On néglige les erreurs d’arrondi lors des calculs de somme, de différence et de division par h (les calculs qui
suivent peuvent étre adaptés en tenant compte de ces erreurs, mais deviennent plus lourds) : on s’intéresse

donc au taux de variation approché 7 = w

1. On suppose que l'on se place sur un intervalle [a,b] ot f est de classe C2, et ou f et f” sont du
méme ordre de grandeur : || f”||oc < C||f]loo, 01t C est une constante « de Pordre de grandeur de 1 ».
Montrer que si z et x 4+ h sont dans [a, b], ona :

@) < [+ s

’f(ﬂerh) — f(@)
h

Comment se comporte le h qui minimise le terme de droite de cette inégalité par rapport a u?
Donner alors 'ordre de grandeur de I'erreur finale entre la dérivée au point x et I’approximation par
différence finie en utilisant f.

2. Mémes questions avec la formule de la différence finie centrée. On suppose cette fois-ci que f est de
classe C3 et que f©) est du méme ordre de grandeur que f : [|f®) e < C|f]loo- Démontrer que
si x + h et x — h sont dans [a, b], alors :

@) < [E+ e

‘f(x+h)—f($—h)
2h

Quel est cette fois le bon choix de h par rapport a u? Comment se comporte ’erreur finale en
fonction de u ?


https://www.ceremade.dauphine.fr/~legendre/enseignement/methnum/

Exercice 3. Accumulation des erreurs d’arrondis, algorithme de Kahan.

On note u = 2753 'erreur machine pour les « floats » (nombres & virgule flottante double précision) :
Parrondi renvoyé lors du calcul de = + y est un float noté A(z + y), qui vérifie A(x +y) = (x + y)(1 + d4)
ou lerreur relative d4 (qui dépend de x et de y) appartient a [—u, u].

On se donne une suite (a,),>o de floats, avec a,, > 0 pour tout n, et on veut calculer numériquement la
somme Sy = ZiV:*Ol ay en les additionnant un a un : on pose §p =0 et 8,41 = A(8, + a,) pour n > 0.

1. Montrer que 'on a [§y — sn| < ((1+u)Y — 1)sy. En déduire que si Nu < 1, erreur relative est au
plus de 'ordre de Nu : on a §y = sy(1+6) avec |§] < (e — 1) Nu.

2. Le float le plus petit aprés 1 est 1 4+ 2752 = 1 + 2u. Si a est un float avec 0 < a < u, le float le plus
proche de 1+ a est donc 1, de sorte que I'on a A(1 + a) = 1. Utiliser ceci pour construire une suite

(an) pour laquelle I'erreur relative entre §y et sy est au moins de l'ordre de Nu (tant que Nu < 1).

3. * L’algorithme de sommation de Kahan consiste & effectuer un peu plus de calculs pour garder en
mémoire une compensation ¢, : on pose ¢y = 0, puis a chaque étape, on ajoute a,, = A(a, — é,) au
lieu d’ajouter a,. On pose donc 8,11 = A(8,, + ay). Et on pose é,+1 = A(A(8p4+1 — 8n) — Gn). Que
se passerait-il si les calculs étaient exacts ? Expliquer comment cet algorithme permet de corriger le
probléme de la question précédente.

1 Approximation de solutions d’équations scalaires non-linéaires

Exercice 4. Ordre de convergence des suites.

1. On pose g =1 et pour tout n € N, x4 = ﬁ
Montrer que la suite (z,,) converge vers 0, mais ne converge pas linéairement.
Indication : considérer xilﬂ — é
2. On pose xg = 1 et pour tout n € N,
T+l = iL'n(l — %) + 1.

Montrer que la suite (z,,) converge linéairement.
Indication : montrer d’abord que z,, € [1, %] pour tout n € N.

Que peut-on dire sur le taux de convergence linéaire ?

3. On pose xg = 1 et pour tout n € N,
Tn, n 1
T = — 4+ —.
n+1 9 T

Montrer que la suite (z,,) converge avec un ordre supérieur ou égal a 2.
Indication : montrer d’abord que pour tout n € N, on a (zp41 — 2)? = 22| — 2.

4. * On pose xg = 2, v1 = 1 et pour tout n € N*,

TnXp—1+ 2

Tnt+l1 = .
Tpn + Tn-1

Montrer que la suite (z,,) converge avec un ordre supérieur ou égal au nombre d’or ¢ = (1 +/5).
Indications : montrer que x,, € [1,2] pour tout n; en posant y, = Tpt1 — Tp €t 2 = Tpy1 + Tn,
montrer que (Yn+2+Yn+1)2n+1 = Ynt+12n = —Yn(Yn+Yn—1) pour n > 1; enfin que |ypn41| < |Ynllyn-1]-

Exercice 5. Problemes de convergence pour la méthode de Newton.

1. On effectue la méthode de Newton pour trouver un zéro de x — x2. Montrer que la suite des itérées
converge vers ['unique zéro, mais ne converge pas quadratiquement.

ef—e *

e en effectuant la

2. On note (z,) la suite obtenue pour trouver un zéro de x +— tanh(z) =
méthode de Newton.
(a) Exprimer |z,41| en fonction de |z, | (on pourra montrer que x4 et x, sont de signes opposés).

—2a

(b) Montrer qu’il existe un unique « > 0 vérifiant emf —a=o.

(c) Montrer que si |zg| > «, alors |z,| — +00. Si |xg| < a, quel est 'ordre de convergence ?



Exercice 6. Convergence globale de la méthode de Newton.

Soit f : [a,b] — R de classe C? telle que f’(x) > 0 et f”(x) > 0 pour tout x dans [a,b]. On suppose que
f admet un zéro z, dans [a,b]. On choisit z¢ € [a,b] tel que f(xg) = 0 et on veut montrer que la suite
(zn)n>0 construite par la méthode de Newton converge vers .

1. Montrer le résultat dans le cas ou f(zg) = 0.

2. Utiliser un argument de monotonie pour montrer le résultat dans le cas f(xg) > 0, et faire un dessin
illustratif.

3. En considérant la fonction z — f(a+b—=z), montrer que le résultat reste vrai si on suppose cette fois-
ci f'(x) < 0 pour tout x dans [a, b]. Si on suppose maintenant que f”(z) < 0 pour tout x dans [a, b],
quelle condition sur zg permet d’assurer la convergence globale de la méthode de Newton ?

Exercice 7. Etude de convergence de la méthode de point fize.
Soit [a, b] un intervalle non vide de R et g une application continue de [a, b] dans lui-méme.

1. Montrer que g possede au moins un point fixe £ dans Uintervalle [a, b].

2. On suppose & présent que la fonction g est C' sur I = [ —h, £+h] pour un h > 0, et que (uniquement
dans cette question), |¢'(£)| < 1. On va montrer que la suite définie par

VkeN, 1 = g(ap)

converge vers £ des que l'initialisation zg est suffisamment proche de &. On dit alors que & est un
point fixe attractif de g.

(a) Montrer qu’il existe 0 < § < h tel que
1
Vo e ls = [€=0,6+0], |¢'(@) =g (O < 5 (1= 1)) -

(b) En déduire qu’il existe une constante 0 < L < 1 telle que, pour tout réel = dans Iy, |¢'(z)| < L.
(¢) En déduire que si 3 appartient a Ij, alors

[Tg1 — & < Lz — €,
et que, si xg appartient a Ig, alors

Vk eN, xp, € I et |y, — &| < LF|ag — €.

(d) En conclure que la suite (xg)gen converge vers &.

3. On suppose dans cette question que |g’(§)| > 1. Montrer que la suite (2} )gen ne converge pas vers &,
sauf 81l existe ko tel que zy, = € (dans ce cas la suite est stationnaire). On pourra pour cela prouver,
en s’inspirant des étapes de la question précédente, qu’il existe un réel 6 > 0 tel que, si xy appartient
a Is \ {¢}, il existe un rang k pour lequel zj n’appartient pas a Is. On dit alors que £ est un point
fixe répulsif de g.

4. Application. Etudier les méthodes de point fixe associées aux fonctions suivantes :
1 1
g1(z) =In(1+z) + 5 g2(z) = E(x +c¢), avec 0 < c < 1, et g3(z) = —In(z).

Exercice 8. On souhaite calculer le zéro de la fonction f(x) = 23 — 2 par une méthode de point fixe
utilisant, pour w € R donné, la fonction

g(z) = <1—§>x—|—(1—w)x3+32;:2—|—2(w—1).

1. Pour quelle(s) valeur(s) de w le zéro de la fonction f est-il un point fixe de la méthode ?
2. Pour quelle(s) valeur(s) de w l'ordre de convergence de la méthode est strictement supérieur a un?

3. Existe-t-il une valeur de w telle que 'ordre de la méthode est strictement supérieur a deux?



Exercice 9. Méthode de Steffensen. Soit f une fonction de R dans R de classe C? possédant un zéro
simple £. On cherche a approcher ¢ par la méthode de Steffensen, une méthode de point fixe de la forme

(f(z1))”
flak + fxr) = flax)

Vk GN, Lk+1 = Tk —

Iinitialisation z(g) étant donnée.
L’objectif de cet exercice est de prouver que, si la suite (zx)ren est bien définie et converge vers ¢, alors
cette convergence est au moins quadratique.

1. En effectuant un développement de Taylor-Lagrange de f(zx + f(zx)) & 'ordre deux autour du
point xy, montrer qu’il existe un réel @, strictement compris entre x et xx + f(zx) tel que

f(zk)

Vk €N —{=m—&— '
SN ke = E =k = ST 0 )

2. En effectuant un développement de Taylor-Lagrange approprié, montrer ensuite qu’il existe un réel
7y, strictement compris entre x; et £ tel que

Vk eN, f(xp) = f'(zp) (x) — &) — % £ (k) (g — €)?

et en déduire que

VkeN, zpp — &= 1 f(@r) f" (k) @k — &) + " (k) (zk — 5)2.

2 f(@y) + 517 (0k) f (1)

3. Par un développement de Taylor—Lagrange approprié, montrer enfin qu’il existe un réel (; compris
entre zj et £ tel que

Vk €N, f(zg) = f'(C) (@ — &),

et en déduire que

o f"(Ok) f'(Cr) + f" ()
S(an) + 57(00) f (xr)

4. En déduire que, si la suite (zy)ren converge vers &, alors on a

1
VkeN, zp1 — €= 5(%—5)

k—+oo |z) — &|? ’

avec i un réel que 'on explicitera.

5. Expliquer pourquoi la méthode de Steffensen peut étre considérée comme une variante de la méthode
de Newton—Raphson. Quel est son avantage par rapport a cette derniere méthode ?

Exercice 10. Procédé A? d’Aitken. La méthode d’accélération de convergence d’Aitken consiste, & partir
d’une suite z = (z,,), & créer la suite Az = (u,,) définie par

(ﬂfn—i-l - xn)Q ((Ax)n)Q

Up = Ax = xp — =Ty — s
" " Tpyo — 2Tyl + Ty " (A(A2)),

ot A est 'opérateur qui & une suite associe ses différences successives : (Ax), = Tp41 — Tp.

1. Montrer que si a,b € R alors A(az + b) = aA(z) + b.

2. Montrer que si |z, — a"| < CB™ avec C' >0 et 0 < 8 < |a| < 1, alors a partir d'un certain rang wu,
est toujours bien définie et u, = O(5").

3. En déduire que si z,, = £ + Ka™ + O(5") avec K € R*, alors u,, = £+ O(S") : la suite produite
converge également vers ¢ et plus rapidement.

4. Lorsque zp11 = g(xy,) avec g(x) = x4+ f(x), que vaut uy,, 7 Faire le lien avec 'exercice sur la méthode
de Steffensen.
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