
Algèbre 4 et Méthodes numériques (L2 - 2025/2026)
Feuille de TD no 2 — Approximation des fonctions et de leurs intégrales.

Cette feuille est largement tirée des feuilles de TD proposées par Guillaume Legendre (jusqu’en 2024),
disponibles ici : https://www.ceremade.dauphine.fr/~legendre/enseignement/methnum/

2.1 Interpolation polynômiale
Exercice 1. Autres preuves de l’existence du polynôme interpolateur de Lagrange.

1. Pour x0, . . . , xn réels distincts, montrer que la matrice de van der Monde A =

1 x0 · · · xn
0

...
...

...
1 xn · · · xn

n


est inversible. En déduire l’existence de P ∈ Rn[X] tel que P (xi) = yi pour y0, . . . , yn arbitraires.

2. Pour x0, . . . , xn réels distincts, et y0, . . . , yn arbitraires si Q, R ∈ Rn−1[X] sont des polynômes tel
que Q(xi) = yi pour 0 ⩽ i < n et R(xi) = yi pour 0 < i ⩽ n, on définit P ∈ Rn[X] par

P (x) = (x − x0) R(x) − (x − xn) Q(x)
xn − x0

.

Montrer que P est le polynôme d’interpolation de Lagrange associé aux couples {(xi, yi)}0⩽i⩽n.

Exercice 2. Polynôme d’interpolation de Hermite
1. Pour x0, . . . , xn des réels distincts, construire un polynôme P dans R2n+1[X] tel que P (x0) = 1, et

que l’on ait P (xi) = 0 pour 0 < i ⩽ n et P ′(xi) = 0 pour 0 ⩽ i ⩽ n.
2. Construire également un polynôme Q ∈ R2n+1[X] tel que Q′(x0) = 1, Q′(xi) = 0 pour 0 < i ⩽ n

et Q(xi) = 0 pour 0 ⩽ i ⩽ n.
3. En déduire que pour y0, . . . , yn et z0, . . . , zn arbitraires, il existe un unique polynôme H ∈ R2n+1[X]

tel que H(xi) = yi et H ′(xi) = zi pour 0 ⩽ i ⩽ n.

2.2 Approximation des fonctions par interpolation
Exercice 3. Construire le polynôme d’interpolation de Lagrange de degré un, noté Π1f , d’une fonction
réelle f définie et continue sur l’intervalle [−1, 1], interpolée aux nœuds −1 et 1. Montrer que, si f est de
classe C2 sur [−1, 1], on a alors

∀x ∈ [−1, 1], |f(x) − Π1f(x)| ≤ M2
2 (1 − x2) ≤ M2

2 ,

où M2 = max
x∈[−1,1]

|f ′′(x)|. Donner un exemple de fonction pour laquelle cette inégalité est une égalité.

Exercice 4. Soit a un réel strictement positif. Écrire le polynôme d’interpolation de Lagrange de degré
un, noté Π1f , de la fonction f : x 7→ x3, interpolée aux nœuds 0 et a. Montrer que, pour tout x appartenant
à ]0, a[, il existe un réel c dans [0, a] tel que

f(x) − Π1f(x) = f ′′(c)
2 x(x − a),

et établir que c = 1
3(x + a).

Considérer ensuite la fonction f : x 7→ (2x − a)4 et montrer que, dans ce cas, il y a deux valeurs possibles
pour c. Les déterminer.
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Exercice 5. Polynômes de Tchebychev et meilleurs points d’interpolation.
On rappelle que si on sait que f est de classe Cn+1 sur [a, b], alors une estimation sur l’erreur d’interpolation
(aux points x0, . . . , xn) est donnée par

En(f) = sup
x∈[a,b]

|f(x) − Pn(f)(x)| ⩽ 1
(n + 1)! sup

x∈[a,b]
|f (n+1)(x)| sup

x∈[a,b]

∣∣∣ n∏
k=0

(x − xk)
∣∣∣.

L’objectif est de montrer que les points x0, . . . , xn appartenant à [−1, 1] et minimisant sup
x∈[−1,1]

∣∣∣ n∏
k=0

(x−xk)
∣∣∣

sont reliés aux racines d’un polynôme particulier. Pour x ∈ [−1, 1], on pose Tn(x) = cos(n arccos(x)).
1. Montrer que pour θ ∈ R, on a Tn(cos(θ)) = cos(nθ) et que l’on a pour tout x ∈ [−1, 1],

Tn+2(x) = 2x Tn+1(x) − Tn(x).

2. En déduire que pour tout n ∈ N, Tn+1 est un polynôme, de degré n+1, de coefficient dominant 2n et
dont les racines sont les nombres xk = cos

(
2k+1
2n+2π

)
, k = 0, . . . , n (Tn+1 est appelé le n+1e polynôme

de Tchebychev de première espèce).

3. On pose x′
k = cos

(
k

n+1π
)
, pour k = 0, . . . , n + 1. Montrer que les x′

k sont des extrema locaux de la
fonction x 7→ Tn+1(x) sur [−1, 1] et que Tn(x′

k) = (−1)k.
4. Montrer alors que si Q est un polynôme de degré n + 1, de coefficient dominant 2n, alors on

a supx∈[−1,1]|Q(x)| ⩾ 1.
Indication : raisonner par l’absurde et montrer que le polynôme Tn − Q est nul, en montrant l’exis-
tence de n + 1 racines.
En déduire que si x̃k sont des réels de [−1, 1], on a

sup
x∈[−1,1]

∣∣∣ n∏
k=0

(x − xk)
∣∣∣ ≤ sup

x∈[−1,1]

∣∣∣ n∏
k=0

(x − x̃k)
∣∣∣.

Exercice 6. Erreur d’approximation pour l’interpolation de Hermite
Soit f une fonction de classe C2n+2 sur [a, b] et x0 < · · · < xn des points de [a, b]. On suppose que l’on a
un polynôme P ∈ R2n+1[X] tel que P (xi) = f(xi) et P ′(xi) = f ′(xi) pour 0 ⩽ i ⩽ n.
Pour x un réel fixé dans [a, b] différent de tous les xi, on introduit la fonction w définie sur [a, b] par

w(t) = f(t) − P (t) −

n∏
i=0

(t − xi)2

n∏
i=0

(x − xi)2
(f(x) − P (x)) .

1. Montrer que w s’annule en tous les xi et en x. En déduire que w′ s’annule en n + 1 points différents
des xi.

2. Monter que w′(xi) = 0 pour 0 ⩽ i ⩽ n.
3. En déduire qu’il existe un réel ξ dans [a, b] tel que w(2n+2)(ξ) = 0.
4. Montrer qu’on a alors

f(x) − P (x) =

n∏
i=0

(x − xi)2

(2n + 2)! f (2n+2)(ξ).

5. En déduire que pour tout réel x dans [a, b],

|f(x) − P (x)| ≤

n∏
i=0

|x − xi|2

(2n + 2)! max
a≤ξ≤b

|f (2n+2)(ξ)|.
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2.3 Intégration numérique : formules de quadrature
Exercice 7. On considère la formule de quadrature sur l’intervalle [−1, 1] donnée par

∀f ∈ C0([−1, 1]), Iap(f) = α0 f

(
−1

2

)
+ α1 f(0) + α2 f

(1
2

)
.

1. Déterminer les poids α0, α1 et α2 de sorte que la formule soit exacte pour tout polynôme de degré
inférieur ou égal à deux.

2. Quel est le degré d’exactitude de la formule ainsi obtenue ?

Exercice 8. Quadrature de Gauss à deux points.
Étant donnés deux points x0 et x1 dans l’intervalle [−1, 1] tels que x0 < x1 et deux réels α0 et α1, on
considère la formule de quadrature suivante sur l’intervalle [−1, 1] :

∀f ∈ C0([−1, 1]), Iap(f) = α0 f(x0) + α1 f(x1).

Le but de cet exercice est de déterminer des valeurs pour les nœuds x0 et x1 et les poids α0 et α1 conduisant
à une formule de quadrature de degré d’exactitude le plus élevé possible.

1. Construire les polynômes de Lagrange l0 et l1 associés aux points x0 et x1.
2. Déterminer les poids α0 et α1 tels que la formule soit exacte pour ces deux polynômes. En déduire

qu’elle est exacte pour tout polynôme de degré inférieur ou égal à un.
3. Déterminer une relation entre les nœuds x0 et x1 pour que la formule soit exacte pour tout polynôme

de degré inférieur ou égal à deux.
4. Répondre à la même question pour tout polynôme de degré inférieur ou égal à trois.
5. Montrer que le degré d’exactitude de la formule de quadrature est au plus égal à trois.

Indication : on pourra utiliser le polynôme ω(x) = ((x − x0)(x − x1))2.
6. En déduire la formule de quadrature à deux nœuds sur l’intervalle [−1, 1] et de degré d’exactitude

égal à trois.

Exercice 9. Formule du point milieu composée avec ajout de la dérivée.
Si f est une fonction de classe C1 sur [a, b], on pose

Ia,b(f) = (b − a)f(a + b

2 ) + (b − a)2

24 (f ′(b) − f ′(a)).

1. Montrer que pour tout P ∈ R3[x], on a I−1,1(P ) =
∫ 1

−1 P (x)dx.
2. Si f est de classe C4 sur [−1, 1], avec f(0) = f ′(0) = f ′′(0) = f ′′′(0) = 0, montrer que

∣∣∣ ∫ 1

−1
f(x)dx − I−1,1(f)

∣∣∣ ⩽ ( 2
5! + 2 · 22

24 · 3!
)

sup
ξ∈[−1,1]

|f (4)(ξ)| = 23
180∥f (4)∥∞,[−1,1].

3. En déduire que pour f de classe C4 sur [a, b], on a

∣∣∣ ∫ b

a
f(x)dx − Ia,b(f)

∣∣∣ ⩽ 23(b − a)5

5760 ∥f (4)∥∞,[a,b].

4. En déduire, en posant h = (b−a)
m et ak = a + kh pour k ∈ [[0, m]], la formule d’estimation d’erreur

pour la formule composée

∣∣∣ ∫ b

a
f(x)dx −

m−1∑
k=0

Iak,ak+1(f)
∣∣∣ ⩽ 23(b − a)

5760 ∥f (4)∥∞,[a,b] h4.

5. Si on a accès au calcul de la dérivée de f , quel est l’intérêt d’une telle formule composée ? Comparer
en terme de coût de calcul et de précision avec les formules de point milieu et de Simpson.
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Exercice 10. Erreur pour la formule de quadrature de Simpson.
Soit [a, b] un intervalle fermé, borné et non vide de R et f une application de [a, b] dans R. La formule de
Simpson est une formule de quadrature interpolatoire pour laquelle une approximation de l’intégrale de la
fonction f entre a et b est obtenue en remplaçant f par son polynôme d’interpolation de Lagrange de degré
deux aux nœuds x0 = a, x1 = a+b

2 et x2 = b, noté Π2f .

1. Définir et expliciter le polynôme d’interpolation Π2f , puis déterminer

I2(f) =
∫ b

a
Π2f(x) dx =

2∑
i=0

αi f(xi).

2. On introduit l’erreur de quadrature E2(f) =
∫ b

a
(f(x) − Π2f(x)) dx. On va montrer, en supposant

que f est de classe C4, que l’on a

E2(f) = −(b − a)5

2880 f (4)(c), avec c appartenant à ]a, b[.

Pour t appartenant à [−1, 1], on pose F (t) = f
(

a+b
2 + b−a

2 t
)

et

G(t) =
∫ t

−t
F (u) du − t

3 [F (−t) + 4F (0) + F (t)] .

(a) Montrer que E2(f) = 1
2(b − a)G(1).

(b) Soit H(t) = G(t) − t5 G(1). Montrer qu’il existe un réel ζ dans ] − 1, 1[ tel que H ′′′(ζ) = 0.
(c) Montrer qu’il existe un réel ξ dans ] − ζ, ζ[ tel que

H ′′′(ζ) = −2ζ2

3
[
F (4)(ξ) + 90G(1)

]
,

et, par suite, que

G(1) = − 1
90F (4)(ξ) = −(b − a)4

1440 f (4)(c),

avec c dans ]a, b[.
3. Quel est le degré d’exactitude de cette formule de quadrature ?
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