Algebre 4 et Méthodes numériques (L2 - 2025/2026)
Feuille de TD n°3 — Méthodes de résolution directe de systemes
linéaires.

Cette feuille est treés largement extraite des feuilles de TD proposées par Guillaume Legendre (jusqu’en
2024), disponibles ici : https://www.ceremade.dauphine.fr/~legendre/enseignement/methnum/

1 Rappels sur la méthode d’élimination de Gauss

Exercice 1. Résoudre par la méthode d’élimination de Gauss, en donnant I'expression de toutes les
matrices et de tous les seconds membres intermédiaires, le systéme linéaire s’écrivant matriciellement Ax =
b, avec

2 -1 4 0 8
4 -1 5 1 16
A= 2 2 2 3| b= 3
0 3 -9 4 3
Répondre a la méme question avec
5 2 1 1
A=]5 -6 2| etb=]2
-4 2 1 3

Exercice 2. On considere le systeme linéaire s’écrivant matriciellement AX = B, avec

10 6 2 6
80 -2 -2 =)
A=l 9 1 3| P75
21 -3 10 4

1. Est-il possible d’utiliser la méthode d’élimination de Gauss sans échange pour la résolution de ce
systeme 7

2. Trouver des matrices de permutation P et @ telles que I'on puisse réaliser ’élimination sur la matrice
PAQ. Comment est transformé le systéme linéaire initial ?

Exercice 3. Soit la matrice

2100
0410
U_0031
0 001

Calculer son inverse en résolvant le systeme matriciel UX = I, dans lequel X désigne une matrice carrée
d’ordre 4, par la méthode d’élimination de Gauss—Jordan.

Exercice 4. Donner une formulation matricielle (c’est-a-dire en termes d’un produit de matrices de
transformations élémentaires) de la réduction a la forme échelonnée de la matrice rectangulaire

DO = = =
NN O~
O = Ot W
W~ N O
W w N o
o = O N

par la méthode d’élimination de Gauss.


https://www.ceremade.dauphine.fr/~legendre/enseignement/methnum/

Exercice 5. On considére le systeéme linéaire s’écrivant matriciellement Ax = b avec

SN O N
= O
o N = DN

1. En utilisant la méthode d’élimination de Gauss—Jordan, mettre le systéme sous une forme échelonnée
réduite équivalente.

2. Préciser le rang et la dimension du noyau de la matrice obtenue et en déduire ceux de A.
3. Déterminer des bases de 'image et du noyau de la matrice A.

4. Quelle(s) condition(s) doit vérifier le vecteur colonne b pour que le systéme possede une solution ?

2 Meéthodes de factorisation pour la résolution de systemes linéaires

Exercice 6. On considére le systéme linéaire s’écrivant matriciellement Axz = b avec

2 —1 4 0 5
4 -1 5 1 9
A=15 5 5 gletb=],
0 3 -9 4 )

1. Calculer la factorisation LU de la matrice A.
2. Résoudre le systeme linéaire en utilisant la factorisation trouvée a la question précédente.

3. Calculer le déterminant de la matrice A.

Exercice 7. Calculer la factorisation LU de la matrice A dans les cas suivants

0 0

. 3. A=

_ O N =

1
4
2

Q@ & 2 9

a
b
c
c

QL O o2

1 a
4 5 b
4 0 b
0 0 b
en précisant a chaque étape de la factorisation les matrices intervenant dans le procédé.

Exercice 8. ¢ (factorisation LU d’une matrice bande).

On dit qu’une matrice est une matrice bande si elle n’admet que des éléments non nuls sur un « certain
nombre » de diagonales autour de la diagonale principale. Plus précisément, une matrice A de My, ,(R) de
largeur de bande valant 2p + 1 est telle qu'il existe un entier naturel p tel que a;; = 0 pour |i — j| > p.
Montrer que la factorisation LU préserve la structure des matrices bandes au sens suivant : soit A une
matrice carrée d’ordre n admettant une factorisation LU, alors

a;j =0 pour |i —j| >p= 1l;; =0 pouri—j>p etuy; =0 pourj—i>p.

Exercice 9. (factorisation LU d’une matrice tridiagonale — algorithme de Thomas)
Soit n un entier naturel strictement plus grand que 2 et

une matrice tridiagonale d’ordre n, et inversible.



1. Montrer que si A admet une factorisation LU alors les matrices L et U sont de la forme

1 0 B (5% C1 0 0
lg 0 :
L=1{y ol et U = 0
: .. .. .0 Cr1
o ... 0 I, 1 0O ... ... 0 Unp,

2. Montrer que les coefficients u;, 1 <i <n, et [;, 2 < j < n, satisfont les relations

d; .
up =ay, b=, i =ai — licio, 2<i<n.

3. Obtenir les formules découlant de I'utilisation de cette factorisation pour la résolution du systeme
linéaire s’écrivant matriciellement Az = b, la matrice colonne b de M, 1(R) étant donnée.

4. Déterminer le nombre d’opérations nécessaires pour la résolution de ce systeme.

Exercice 10. (factorisation LU d’une matrice a diagonale strictement dominante)
Soit m un entier naturel supérieur & 2 et A une matrice carrée d’ordre n a diagonale strictement
dominante par lignes, c’est-a-dire vérifiant les conditions

n
\aii| > Z ]aij], 1 <1< n.
J=1,j#i
Le but de cet exercice est de montrer qu'une telle matrice est inversible et admet une factorisation LU.

1. Montrer, en raisonnant par ’absurde, qu’une matrice carrée d’ordre n a diagonale strictement do-
minante par lignes est inversible.

2. Soit A une matrice carrée d’ordre n inversible. Montrer que A admet une factorisation LU si et
seulement si AT admet une factorisation LU.

3. Soit A une matrice carrée d’ordre n, que l’on suppose pouvoir partitionner en blocs de la maniere

suivante : .
A a | W 7
V| A

ou a = aq; est un réel non nul, V et W sont des matrice colonnes de Mn_Ll(R) et A; est une
matrice d’ordre n — 1. En effectuant des produits par blocs, vérifier que

(1 ]of 1o’ a| W7 B 1+
A_<1VIH_1><OB><OLL_1 ,avecB—Al—gVW,

a

ou 0 désigne la matrice colonne nulle de M,,_; 1 (R).
4. Montrer alors que la matrice A admet une factorisation LU si c’est le cas pour le bloc B.
5. Dans cette question, on suppose que la matrice A est a diagonale strictement dominante par colonnes.

(a) En utilisant la décomposition et les notations précédentes, montrer successivement que

n—1
N7 il <lal = |vjl, 1< <n—1,
i=1,i#j
n—1
S (A < (A1) = lwl, 1< <n—1,
i=1,i#j
n—1 n—1 ’w| n—1
> gl < 3 l(Ayl+ o 30 ful, 1<j<n—1L.
i=L,i#] i=1,i#j Py

En déduire que la matrice B est a diagonale strictement dominante par colonnes.
(b) En raisonnant par récurrence, montrer que A admet alors une factorisation LU.
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6. En supposant a présent que la matrice A est a diagonale strictement dominante par lignes, déduire
des questions précédentes qu’elle admet une factorisation LU.

7. On considére la matrice A dans les trois cas suivants :

4 1 1 1 1 2 3 0 4 1 1

1 4 1 1 0O -1 0 4 1 4 1 1
(a) A= (b)) A= (o) A=

1 1 4 1 o 0 2 3 -1 1 0 0

1 11 4 0O 0 01 3 -3 0 0

Déterminer, en justifiant tres simplement la réponse, dans quel(s) cas A admet une factorisation
LU et, le cas échéant, calculer sa factorisation en précisant a chaque étape les opérations effectuées
sur les lignes de la matrice.

Exercice 11. (existence et unicité de la factorisation de Cholesky)
Soit n un entier naturel non nul. On rappelle qu'une matrice réelle A symétrique d’ordre n est dite
définie positive si elle est telle que

VX € Mp1(R), XTAX >0, et X' AX =0= X =0y, ,(m)-

Par ailleurs, on dit qu'une matrice A réelle symétrique d’ordre n admet une factorisation de Cholesky s’il
existe une matrice triangulaire inférieure inversible B a diagonale strictement positive telle que

A=BB'.

1. Montrer que si la matrice réelle A est symétrique définie positive alors A est inversible.

2. Montrer que si la matrice réelle A admet une factorisation de Cholesky alors A est une matrice
symétrique définie positive.

3. Montrer que si la matrice réelle A admet une factorisation de Cholesky alors A admet une factorisa-

tion LDLT. En déduire que si A admet une factorisation de Cholesky, cette factorisation est unique
des lors que les coefficients diagonaux de B sont strictement positifs.

Dans toute la suite, on suppose que A est une matrice symétrique d’ordre n définie positive.

4. Dans cette question, on veut prouver que A admet une factorisation de Cholesky par un raisonnement
par récurrence.

(a) Pour n strictement plus grand que 1, écrire la matrice A sous la forme

A A,V
VT an )’
ot V est une matrice colonne de My, 1(R), an, est un réel et A,_; est une matrice symétrique
d’ordre n — 1. Montrer que la matrice A, _1 est définie positive.

(b) On suppose que A,,_1 admet une décomposition de Cholesky, c’est-a-dire qu’il existe une matrice
triangulaire inférieure a diagonale strictement positive B,_1 telle que A,_1 = By_1Bn_1 .
Montrer que 'on peut déterminer de maniere unique M de M, 1(R) et b de R, b > 0, tels que

B,1 0
et A= BB'.

(¢) En déduire que A admet une factorisation de Cholesky.
5. Ecrire I'algorithme permettant de calculer les coefficients de la matrice B.

6. Comparer le nombre d’opérations nécessaires a la résolution d’un systéme linéaire & matrice sy-
métrique définie positive par la méthode de Cholesky avec celui de la méthode d’élimination de
Gauss.

7. Application : déterminer la factorisation de Cholesky des matrices suivantes :

1 0 3 2 1 2 3 4 1 -1 3 1

04 2 O 2 5 1 10 -1 5 -7 —4
(a) A= . (b) A= (o) A=

3 2 11 7 3 1 35 5 3 -7 14 4

2 0 7 21 4 10 5 45 1 —4 4 8
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Exercice 12. On considére la matrice

N

Il
N = M
—_ W
W = N

d’un systeme linéaire, avec € un réel.
1. Déterminer pour quelles valeurs du parameétre € la matrice A est symétrique définie positive.

2. On suppose tout d’abord que € = 0. On veut résoudre le systéme matriciel Ax = b par une méthode
directe. Quelle factorisation de la matrice A peut-on envisager dans ce cas?

3. On suppose maintenant que € = 2.
(a) Vérifier que la matrice A est définie positive et en calculer la factorisation de Cholesky.

T
(b) En supposant que b = (1 1 1) , résoudre le systeme linéaire en utilisant la factorisation
calculée a la question précédente.

Exercice 13. (factorisation QR)
Soit n un entier naturel non nul et A une matrice réelle d’ordre n inversible.

1. Montrer qu’il existe une matrice R triangulaire supérieure a diagonale strictement positive telle que
ATA=R'R.

2. En déduire qu’il existe une matrice orthogonale @, c’est-a-dire vérifiant Q'Q = QQ ' = I,, telle
que
A= QR.
3. Montrer que cette décomposition est unique.
4. On note (A;)1<j<n les colonnes de la matrice A, (Q;)i<j<n celles de @ et on pose R = (75)1<i j<n-
(a) Montrer que A; = Zgzl ri;jQi, J=1,...,n.

(b) En déduire qu’obtenir la factorisation QR de A équivaut a construire une base orthonormale de
M, 1(R) a partir de la famille {A;}1<j<p.
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