
Algèbre 4 et Méthodes Numériques (L2 - 2025/2026)
Plan/résumé de cours et planning prévisionnel.

Amic Frouvelle

Le plan/résumé de ce cours sera mis à jour au fur et à mesure de l’avancement des séances. Il n’y aura
pas de polycopié de cours à proprement parler. Une référence très complète est le document de Guillaume
Legendre qui assurait ce cours les années passées : https://www.ceremade.dauphine.fr/~legendre/
enseignement/methnum/cours_ananum_dauphine.pdf.

Cependant, il se peut que certaines notations et approches données dans le cours diffèrent de cette
référence. Autant que faire se peut, j’essaierai de signaler dans ce document si des différences sont notables.
Ne pas hésiter à me demander de préciser des choses, qui pourront être intégrées dans ce document.

↓ Séance du 14/01 ↓

0 Introduction
Qu’est-ce que l’analyse numérique / calcul scientifique ?
— Objectif : faire des calculs numériques / comprendre le coût suivant la précision que l’on veut

atteindre.
— Distinction méthode théorique de calcul (différentes méthodes pour la même chose à calculer) / mise

en pratique avec du matériel (mémoire disponible, fréquence d’un processeur, parallélisation).
— Présentation de python / numpy / Jupyter qui seront utilisés en TP.

0.1 Les calculs en virgule flottante

Un lien à ce sujet, plutôt assez bien fait :
https://zestedesavoir.com/tutoriels/570/introduction-a-larithmetique-flottante/.
On peut également consulter la documentation de python sur ce sujet https://docs.python.org/3/

tutorial/floatingpoint.html.
— Nombre à virgule flottante : signe + exposant + chiffres significatifs (mantisse). On utilisera par

défaut (numpy) les « nombres à virgule flottante double précision » (float, 64bits).
— Standardisation IEEE 754. Cas des nombres spéciaux : 0, nombres proches de 0, ±∞, nan.
— Exemple de l’approximation de 0.1
— Opérations sur les float : exemple de l’addition, non associativité, propagation des erreurs, phéno-

mène d’annulation catastrophique.
— Notion d’erreur relative, erreur machine. Propagation des erreurs. Exemple de différentes méthodes

de calcul de somme (naïve, en classant par valeur absolue, Kahan) choix efficacité (coût) / précision.

0.2 Les différents types d’algorithmes

— Méthodes directes : un nombre fini d’étapes N pour faire un calcul (théoriquement exact s’il n’y
avait pas les erreurs d’arrondi). Exemple de différents coûts (calcul de déterminant naïvement, ou
en utilisant des simplifications, méthodes astucieuses de calcul de produits de grandes matrices,
résolution de systèmes linéaires). On cherche à minimiser ce nombre d’étapes pour le même résultat.
On peut également s’intéresser à la propagation des erreurs / incertitudes.

— Méthodes directes avec précision dépendant d’un paramètre influençant le temps / coût de calcul :
approximation d’une fonction par des fonctions polynomiales par morceaux, approximation d’une
intégrale en utilisant plusieurs évaluations de la fonction. On cherche alors à trouver le compromis
coût / précision.

— On peut également vouloir tirer parti du matériel, par exemple effectuer certains de ces calculs en
même temps : la parallélisation. Ce sujet ne sera pas traité dans ce cours (mais parfois évoqué).
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— Méthodes itératives : on cherche à obtenir une approximation de la solution à un problème en pro-
cédant par étapes, en utilisant le résultat de l’étape précédente (ou de plusieurs étapes précédentes)
pour espérer obtenir une meilleure approximation à chaque fois. Cas où typiquement on ne peut
pas paralléliser les étapes (mais si chaque étape est un calcul lourd qui peut se paralléliser, on peut
avoir des méthodes plus efficaces).

— Exemples de méthodes itératives qui seront vues dans ce cours : résolution d’équations réelles non-
linéaires, approximation de fonctions et d’intégrales, résolution de systèmes linéaires, approximation
de valeurs propres / vecteurs propres.

— En général, on ne sait pas a priori le nombre d’étapes nécessaires pour obtenir la précision voulue.
Critères d’arrêt, notions de vitesse de convergence d’une méthode itérative. Ordre de convergence.

0.3 Quelques ordres de grandeur en analyse numérique / calcul scientifique

— 10−16 : l’erreur machine pour les float (double précision). On ne peut pas imaginer avoir une préci-
sion relative plus fine que cela, et en pratique les erreurs provenant des méthodes d’approximation
n’atteignent que rarement cette précision.

— 108 − 109 : le nombre d’opérations « élémentaires » que l’on peut faire par seconde. On ne s’attend
pas à ce que les calculs à effectuer en TP dans le cadre de ce cours dépassent quelques secondes.

— 107−108 : le nombre d’entrées d’un tableau que l’on peut prendre sans que l’espace mémoire devienne
un souci dans nos codes. On s’attend également à ne pas avoir besoin de beaucoup d’espace mémoire
pour les calculs que l’on effectuera en TP.

— 100−1000 : le nombre de points à afficher sur un graphique pour visualiser une fonction suffisamment
régulière. Il ne sert à rien de tracer trop de points, le calcul des graphiques avec matplotlib peut se
révéler lent.

— 10 : le nombre d’heures par semaine à consacrer à ce cours ;-)

↓ Séance du 19/01 ↓

1 Méthodes d’approximation de solutions d’équations (réelles) non-
linéaires

1.1 Ordre de convergence des suites numériques

— Convergence linéaire, taux de convergence linéaire, ordre de convergence (définitions étendues).
Interprétation en terme de nombres de chiffres significatifs corrects.

— Critère pour la convergence linéaire connaissant la limite : |xn+1 − x∞| ⩽ α|xn − x∞|, α ∈ [0, 1[ (à
partir d’un certain rang).

— Critère pour la convergence à l’ordre au moins r : à partir d’un certain rang n0, |xn+1 − x∞| ⩽
C|xn − x∞|r (avec petitesse initiale : C|xn0 − x∞|r−1 < 1).

— Critères sur les différences d’itérées (incréments) : |xn+1 − xn| ⩽ α|xn − xn−1| (à partir d’un certain
rang, avec α ∈ [0, 1[), ou pour la convergence à l’ordre au moins r : à partir d’un certain rang n0,
|xn+1 − xn| ⩽ C|xn − xn−1|r (avec petitesse initiale C|xn0 − xn0−1|r−1 < 1).

↓ Séance du 26/01 ↓

1.2 Méthode d’encadrement : dichotomie

— Robustesse : convergence globale.
— vitesse de convergence linéaire à taux 1

2 .

1.3 Méthodes de point fixe : suites récurrentes

— Théorème de Brouwer pour g continue de [a, b] dans [a, b] : équivalent au théorème des valeurs
intermédiaires pour la fonction f : x 7→ g(x) − x.

— Plus généralement : pour trouver un zéro de f , utiliser une méthode de point fixe pour x 7→ x +
α(x)f(x) avec α ̸= 0. Le choix de α peut déterminer les propriétés de convergence.

— Théorème du point fixe de Picard (sur [a, b]), si g est k-contractante, avec estimations |xn − x∗| ⩽
kn|x0 − x∗| et |xn − x∗| ⩽ k

k−1 |xn − xn−1|.
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— Critère pour montrer qu’une application est contractante : lorsqu’on a une borne uniforme sur [a, b]
de la dérivée.

— Critère local de convergence sous/super/linéaire : lorsque la fonction g est de classe Cp+1 et que (xn)
converge vers x∗, point fixe de g pour lequel g′(x∗) = · · · = g(p)(x∗) = 0 : alors convergence à l’ordre
au moins p + 1.

1.4 La méthode de Newton

— Présentation de la méthode, xn+1 = xn − f(xn)
f ′(xn) . C’est une méthode de point fixe (penser α(x) =

−1
f ′(x)).

— Interprétation graphique : approximation de f par sa tangente en xn. La tangent au graphe coupe
l’axe des abscisses en xn+1.

— Convergence locale seulement, au moins quadratique au voisinage d’un zéro simple : si f est C2,
si f(x∗) = 0 et f ′(x∗) ̸= 0, alors il existe δ > 0 tel que si |x0 − x∗| ⩽ δ, alors la suite (xn) est bien
définie pour tout n, et converge vers x∗ à l’ordre au moins 2.

— Avantages/inconvénients, nécessité de connaître la dérivée exemple de cas où il n’y a pas convergence.

1.5 La méthode de la sécante, autres variantes

— Présentation de la méthode, xn+1 = xn − xn−xn−1
f(xn)−f(xn−1) f(xn). Interprétation comme approximation

de la méthode de Newton en remplaçant f ′(xn) par le taux de variation f(xn)−f(xn−1)
xn−xn−1

.
— Interprétations graphique : la « sécante » (passant par les points du graphe de f d’abscisses xn et

xn−1) coupe l’abscisse en xn−1.
— Attention, ce n’est plus une méthode de point fixe. Néanmoins (admis), sous les mêmes hypothèses

que pour la méthode de Newton, il existe δ > 0 tels que si x0, x1 sont distincts dans [x∗ − δ, x∗ + δ],
alors la suite est bien définie pour tout n (en posant éventuellement xn = xn0 pour tout n ⩾ n0 si
lors d’une étape on a f(xn0) = 0), et elle converge vers x∗ à l’ordre au moins φ = 1+

√
5

2 .
— Intérêt de méthode sans dérivée, nombre d’évaluations de fonction par itération, notion d’ordre de

convergence effectif : pour Newton, on « multiplie le nombre de décimales correctes » par 2 avec deux
évaluations de fonctions, pour la sécante, on le multiplie par ≈ 1.618 avec une seule évaluation. Si
les coûts pour calculer f et f ′ sont importants (par rapport aux additions, soustractions divisions),
alors la sécante peut devenir plus efficace.

1.6 Critères d’arrêt de méthodes itératives

— Critère sur les différences des itérées (les incréments), ou critère sur la valeur de la fonction f que
l’on cherche à rendre nulle (le « résidu »).

— Exemple de cas (pour les deux types de critères) où on ne s’arrête pas assez tôt pour assurer
que |xn − x∗| ⩽ ε, ou inversement où on aurait pu s’arrêter plus tôt.

↓ Séance du 02/02 ↓

2 Approximation des fonctions et de leurs intégrales

2.1 Interpolation polynômiale

— Pour x0, . . . , xn réels distincts, y0, . . . , yn réels, existence et unicité d’un polynôme P d’interpolation
dans Rn[x] tel que P (xi) = yi pour tout i.

— Démonstration par construction via les polynômes de Lagrange Li,(x0,...,xn) (que l’on note simple-
ment Li si on a fixé les points sans ambiguïté), qui correspondent au cas où yi = 1 et yj = 0 si
i ̸= j :

Li(x) =
∏
j ̸=i

x − xj

xi − xj
.

On a alors P (x) =
∑

i yjLi(x).

3



2.2 Approximation des fonctions par interpolation

— Interpolation polynômiale d’une fonction. Erreur d’approximation.
— Estimation de l’erreur : si f est de classe Cn+1, Pn est le polynôme d’interpolation de Lagrange aux

points x0, . . . , xn, alors pour tout x il existe ξ entre les abscisses x0, . . . , xn et x tel que

f(x) − Pn(x) = f (n+1)(ξ)
(n + 1)!

n∏
i=0

(x − xi).

— En particulier si tous les points xi sont dans un intervalle [a, b]

sup
x∈[a,b]

|f(x) − Pn(x)| ⩽ 1
(n + 1)! sup

x∈[a,b]
|f (n+1)(x)| sup

x∈[a,b]

n∏
i=0

|x − xi| ⩽
(b − a)n+1

(n + 1)! sup
x∈[a,b]

|f (n+1)(x)|.

— Autre exemple d’estimation, si les points sont équirépartis : ∥f − Pn∥∞ ⩽ 1
n+1∥f (n+1)∥

(
b−a

n

)n+1
.

— Contre-exemple de Runge : sur [−5, 5], pour f(x) = 1
1+x2 , avec des points d’interpolation régu-

lièrement espacés, supx∈[a,b] |f(x) − Pn(x)| explose lorsque n → ∞. Discussions sur les points de
Tchebychev (cf. TD).

— Approximation par morceaux : pour n, d dans N, on approxime f par un polynôme de degré d
sur chacun des n sous-intervalles [ai, bi] avec a0 = a, ai+1 = bi pour 1 ⩽ i < n − 1, et bn−1 = b.
L’erreur d’approximation, à d fixé (si par exemple les points sont équirépartis sur chacun des sous-
intervalles et que ceux-ci sont tous de même longueur b−a

n ), est donc dominée par une expression de
la forme C

nd+1 (lorsqu’on a une borne sur f (d+1)).

↓ Séance du 9/02 ↓

2.3 Intégration numérique : formules de quadrature

— Généralités sur les formules de quadrature interpolatoires.
— Degré d’exactitude.
— Changement de variable pour se ramener à des intégrales sur [−1, 1]. Il suffit par exemple de s’intéres-

ser à l’exactitude de la formule pour les polynômes xi sur [−1, 1] pour obtenir le degré d’exactitude.
— Formules de Newton-Cotes simples, ouvertes ou fermées, et calcul de leur degré d’exactitude.
— Présentation détaillée de la méthode du point milieu, de la méthode du trapèze et de la méthode

de Simpson :

Ia,b(f) =


(b − a)f(a+b

2 ), degré d’exactitude 1
b−a

2
(
f(a) + f(b)

)
, degré d’exactitude 3

b−a
6

(
f(a) + 4f(a+b

2 ) + f(b)
)

degré d’exactitude 3.

— Inconvénient des formules de degré élevé (en plus de la difficulté du calcul) : certains coefficients
sont négatifs, pouvant entraîner des annulations catastrophiques, et de l’instabilité numérique.

— Formules composées.
— Estimation d’erreurs.
— Évocation rapide d’autres méthodes : Gauss-Legendre, accélération de convergence.

↓ Séance du 16/02 ↓

3 Méthodes directes de résolution des systèmes linéaires

3.1 Résolution des systèmes linéaires par pivot de Gauss

— Résolution des systèmes triangulaires. Coût en nombre d’opérations : n2.
— Mise sous forme échelonnée d’une matrice, d’un système linéaire : Ax = b ⇔ MAx = Mb (l’objectif

est de construire MA triangulaire, sans forcément expliciter la matrice M).
— Méthode d’élimination de Gauss sans échange (pivot de Gauss). Exemples de pivots nuls, où la

méthode échoue. Nombre d’opérations : environ n3

3 multiplications, n3

3 soustractions, et n2

2 divisions.
— Méthode d’élimination avec échange. Stratégies de choix de pivot, exemple du pivot « partiel » : on

choisit la ligne où le pivot est le plus grand en valeur absolue.
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↓ Séance du 23/02 ↓

3.2 Interprétation matricielle : factorisation LU

— Interprétation matricielle du pivot de Gauss sans échange : la factorisation LU.
— Transformations élémentaires (à gauche) pour les opérations sur les lignes.
— Matrices de permutation. Factorisation PA = LU .
— Théorème d’existence de factorisation LU par les sous-matrices principales.

↓ Séance du 16/03 ↓

3.3 Autres factorisations : Cholesky, QR

— Rappel du critère de Sylvester pour les matrices symétriques définies positives.
— Existence et unicité de la factorisation de Cholesky : A = BB⊤ avec B triangulaire inférieure à

coefficients diagonaux strictement positifs.
— Coût : de l’ordre de n2

6 multiplications, n2

6 soustractions, n2

2 divisions, n extractions de racines
carrées.

— Décomposition QR, lien avec les bases orthogonales (procédé de Gram-Schmidt).

↓ Séance du 23/03 ↓

4 Méthodes itératives de résolution des systèmes linéaires

4.1 Généralités sur les méthodes linéaire stationnaires

— Rappels sur les normes matricielles (une norme telle que ∥AB∥ ⩽ ∥A∥∥B∥ pour toutes matrices
A,B). Exemple des normes subordonnées.

— Méthode itérative : de la forme x(k+1) = Bx(k) + c (dans ce chapitre on utilise si possible la notation
(·) pour les itérations, la notation en indice étant réservée aux coordonnées d’un vecteur).

— Lorsque A est inversible, avoir un point fixe de la fonction g : x 7→ Bx + c est équivalent à résoudre
Ax = b lorsque In − B est inversible et c = (In − B)A−1b.

— On note alors M = A(In − B)−1 et N = M − A, de sorte que l’itération de point fixe s’écrit sous la
forme Mx(k+1) = Nx(k) + b.

— Définitions : erreur e(k) = x(k) − x∗ (où x∗ est la solution de Ax = b), résidu r(k) = b − Ax(k).
Convergence d’une méthode itérative.

— Théorème de convergence : la méthode est convergente (pour toute initialisation) si et seulement si
ρ(B) < 1 où ρ(B) est le rayon spectral de B, c’est à dire le plus grand module de valeur propre
(éventuellement complexe) de B.

— Théorème sur le rayon spectral et les puissances : Ak → 0 ⇔ ∀v, Akv → 0 ⇔ ρ(A) < 1. Preuve par
la décomposition en blocs de Jordan.

— Formule de Gelfand : ρ(A) ⩽ ∥A∥, ρ(A) = limk→∞ ∥Ak∥
1
k (pour n’importe quelle norme matricielle).

↓ Séance du 30/03 ↓
— Théorème sur la vitesse de convergence : on a un taux de convergence linéaire de ρ(B)+ε pour tout

ε > 0 (avec des constantes qui ne dépendent pas de l’initialisation), mais on ne peut pas espérer
mieux que ρ(B) (pour certaines initialisations, on a effectivement une convergence qui ne peut pas
être plus rapide que ρ(B)k).

— Remarques sur la mise en œuvre pratique : critères d’arrêt, méthodes efficaces comparativement aux
méthodes directes en terme de coût, seulement si le nombre d’itérations est petit devant n.

— Théorème de Householder-John : si A = M − N est symétrique, M inversible et telle que M⊤ + N
(forcément symétrique) est définie positive, alors ρ(M−1N) < 1 si et seulement si A est définie
positive. En pratique : si A est symétrique définie positive et que l’on arrive à la décomposer en
A = M − N avec M inversible et M⊤ + N définie positive, alors on a convergence de la méthode
itérative.
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↓ Séance du ? ?/04 (lundi 6/04 est férié) ↓

4.2 Les méthodes de Jacobi, Gauss–Seidel et Richardson (stationnaire)

— Présentation des méthodes et de leurs variantes (JOR, SOR) sous forme de tableau avec valeurs de
M et N dans tous les cas.

— Démonstration du théorème de Householder-John.
— Critères de convergence pour les matrices à diagonale strictement dominantes, et pour les matrices

symétriques.

↓ Séance du 13/04 ↓

5 Calcul numériques de valeurs propres et de vecteurs propres
Cours sans rentrer dans les détails de preuves (certaines seront faites en TD), pour comprendre le genre

d’algorithme pouvant être utilisé pour calculer des valeurs propres et vecteurs propres.
— Description de la méthode de la puissance.
— Exemple de procédé de déflation pour obtenir d’autres valeurs propres.
— Méthode de la puissance inverse (utilité d’une décomposition préalable).
— Autres méthodes : algorithme QR, etc.

Séance du 04/05 : rattrappage du retard immanquablement pris dans les séances précédentes !
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