Calcul différentiel. Contrôle continu du 7 mai 2018.

Université Paris-Dauphine – 2^e année de licence MIDO.

Nom:	Prénom :	Groupe de TD :
Commentaires:		Correcteur :
(Barè	me approximatif et provisoire, par page	: 4 / 5 / 6 / 5)
	toutes les fonctions f de \mathbb{R}^2 dans \mathbb{R} au rous réels $x, y, \frac{\partial f}{\partial x}(x, y) = 2x + y$ et $\frac{\partial}{\partial y}(x, y) = 2x + y$	
Supposons que l'on ait de	eux telles fonctions f et \widetilde{f} . Montrer que g	$f = f - \tilde{f}$ est une fonction constante
Trouver une telle fonctio	n f et conclure.	
Existe-t-il des fonctions y et $\frac{\partial f}{\partial y}(x,y) = x^2 + y^2$?	admettant des dérivées partielles en tou	ut point, de la forme $\frac{\partial f}{\partial x}(x,y) = 3x_0^2$

On considère l'ensemble A de \mathbb{R}^2 correspondant à la zone grisée sur le schéma ci-dessous (son contour faisant partie de A). Décrire l'ensemble A comme l'ensemble des ypoints (x,y) satisfaisant trois inégalités de la forme $-1 \leqslant \ldots \leqslant 1$. En déduire l'expression d'une norme N(x, y) telle que A soit la boule unité de N (justifier brièvement que l'expression obtenue définit bien une norme). AOn considère la norme euclidienne $\|\cdot\|$ sur $\mathbb{R}^2:\|(x,y)\|=\sqrt{x^2+y^2}$. Illustrer à l'aide d'un dessin sur la figure que pour tout $(x,y)\in\mathbb{R}^2$, on a $\frac{1}{\sqrt{2}}\|(x,y)\|\leqslant N(x,y)\leqslant\sqrt{2}\|(x,y)\|$ (en précisant bien quelle partie du dessin prouve chaque inégalité). L'application N est-elle différentiable en tout point de $\mathbb{R}^2 \setminus \{(0,0)\}$?

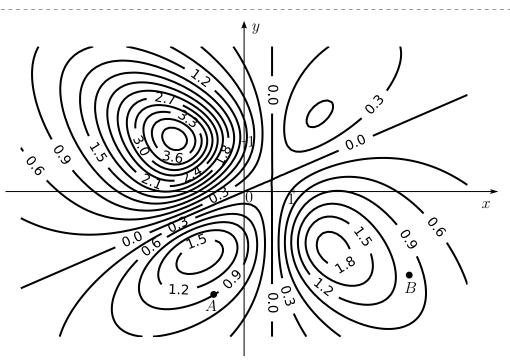
On considère la fonction $f: \mathbb{R}^2 \to \mathbb{R}$ donnée par l'expression $f(x,y) = \left| \frac{3(2x-1)(x-2y)}{5+x^4+y^4} \right|$.

La fonction f est-elle différentiable sur \mathbb{R}^2 ?

Montrer que f est différentiable aux points (1,0) et (0,1) et calculer la valeur de ∇f en ces points.

On a tracé sur le schéma ci-contre les lignes de niveau de la fonction f: sur chaque ligne de niveau est indiquée la valeur prise par la fonction.

Représenter le gradient de f aux points (1,0) et (0,1), grâce au calcul précédent. Puis représenter le gradient de f aux points A et B de la figure en justifiant en quelques mots le choix de la direction, du sens et de la norme des vecteurs représentés.



On rappelle qu'un point de maximum (resp. minimum) local de f est par définition un point (x_0, y_0) tel qu'il existe $\varepsilon > 0$ pour lequel pour tout (x, y) dans la boule de centre (x_0, y_0) et de rayon ε , on a $f(x, y) \leq f(x_0, y_0)$ (resp. $\geq f(x_0, y_0)$). Indiquer sur la figure où sont les points de maximum local et de minimum local, en justifiant pourquoi (attention aux pièges).

On munit $M_n(\mathbb{R})$ de la norme $\ \cdot\ $, donnée par $\ A\ = \max_{1 \leq i,j \leq n} a_{i,j} $, si A est la matrice de coefficients $a_{i,j}$. On s'intéresse à la différentiabilité de $\Phi: M_n(\mathbb{R}) \to \mathbb{R}$ définie par $\Phi(A) = \sin(\operatorname{Tr}(A^3))$.		
Justifier brièvement que $\ \cdot\ $ est une norme, et montrer que si A et B sont des matrices $n \times n$, on a $\ AB\ \le n\ A\ \ B\ $.		
Montrer que l'application $\Psi: A \mapsto A^3$ est différentiable de $M_n(\mathbb{R})$ dans $M_n(\mathbb{R})$ et donner l'expression de $d\Psi(A)(H)$ pour A et H dans $M_n(\mathbb{R})$.		
En déduire que Φ est différentiable en tout point de $M_n(\mathbb{R})$ et donner l'expression de $d\Phi(A)(H)$ pour A et H dans $M_n(\mathbb{R})$. Essayer de simplifier au maximum.		