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Subdivided population – Islandmodel
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The choice of life-cycle matters

Constant population size (N), so between two time steps,#
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The choice of life-cycle matters

Constant population size (N), so between two time steps,#
RIP

= # .

Wright-Fisher Moran Birth-Death Moran Death-Birth

N
RIP

& N 1
RIP

& 1 1
RIP

& 1

/

In homogeneously structured populations,
with effects of social interactions on fecundity.

Ohtsuki et al. 2006; Taylor, Day & Wild 2007; Taylor, Lillicrap, Cownden 2010 5
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A common feature of models

What is the effect of population viscosity
on the evolution of altruism when parent-
offspring strategy transmission is imperfect?
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Fidelity of parent-offspring transmission

Causes of imperfect strategy transmission

◮ Mutation

◮ Partial heritability

◮ Cultural transmission (vertical)

In the model

Parent Offspring
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µB

µ = µA + µB

ν =
µB

µA + µB

1−
µ

A
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µ ν

1− ν
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Notation

1 if site i occupied by at time t (1 ≤ i ≤ N)

0 if site i occupied by at time t (1 ≤ i ≤ N)
X(t); Xi(t) =

=
∑

=

.

E[ ]
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Notation

1 if site i occupied by at time t (1 ≤ i ≤ N)

0 if site i occupied by at time t (1 ≤ i ≤ N)
X(t); Xi(t) =

Proportion of altruists in the population:

X =
1

N

N∑

i=1

Xi.

Wewant to compute E[X],
the expected proportion of altruists in the population.
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Social interactions

Phenotype

φi = δXi,

and we assume that δ ≪ 1. (Selection is weak.)

δ

= + δ

(

∑

∈D \ −
−

)
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Social interactions

Phenotype

φi = δXi,

and we assume that δ ≪ 1. (Selection is weak.)

Social interactions affect fecundity

At the first order in δ,

Proportion of altruists
among the other deme-mates

The cost is only paid
by altruists

fi = 1 + δ

(

b
∑

j∈Di\i
Xj
n−1

− c Xi

)

.
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Calculations

Notation

Bi = Bi(X, δ): expected # of offspring of individual i;

Di = Di(X, δ): probability that i dies.

◮ +

E[ ( + )| ( )] =
∑

=

[ ( − µ) + ( − ) + µν]

◮ ξ

=
∑

∈Ω






∑

=

( − µ)− ) +
∑

=

µν




 ξ( , δ, µ)

10



Calculations

Notation

Bi = Bi(X, δ): expected # of offspring of individual i;

Di = Di(X, δ): probability that i dies.

◮ Expected proportion of altruists at t + 1 in the proportion of altruists, conditional
on the state of the population at time t:

E[X(t + 1)|X(t)] =
1

N

N∑

i=1

[Bi(1− µ)Xi + (1− Di)Xi + Biµν]

◮ ξ

=
∑

∈Ω






∑

=

( − µ)− ) +
∑

=

µν




 ξ( , δ, µ)

10



Calculations

Notation

Bi = Bi(X, δ): expected # of offspring of individual i;

Di = Di(X, δ): probability that i dies.

◮ Expected proportion of altruists at t + 1 in the proportion of altruists, conditional
on the state of the population at time t:

E[X(t + 1)|X(t)] =
1

N

N∑

i=1

[Bi(1− µ)Xi + (1− Di)Xi + Biµν]

◮ Take expectation and let t → ∞; consider stationary distribution ξ

0 =
1

N

∑

X∈Ω






N∑

i=1

Bi(1− µ)− Di)
︸ ︷︷ ︸

Wi

Xi +
N∑

i=1

Biµν




 ξ(X, δ, µ)

10



Calculations

Notation

Bi = Bi(X, δ): expected # of offspring of individual i;

Di = Di(X, δ): probability that i dies.

◮ Expected proportion of altruists at t + 1 in the proportion of altruists, conditional
on the state of the population at time t:

E[X(t + 1)|X(t)] =
1

N

N∑

i=1

[Bi(1− µ)Xi + (1− Di)Xi + Biµν]

◮ Take expectation and let t → ∞; consider stationary distribution ξ

0 =
1

N

∑

X∈Ω






N∑

i=1

Bi(1− µ)− Di)
︸ ︷︷ ︸

Wi

Xi +
N∑

i=1

Biµν




 ξ(X, δ, µ)

10



Calculations (2)

◮ Selection is weak (δ ≪ 1) and reproductive values are all equal:

0 =
δ

N

N∑

i=1

[
∑

X∈Ω

∂Wi

∂δ
Xiξ(X, 0, µ)−

∑

X∈Ω

µB∗Xi
∂ξ

∂δ

]

+ O(δ2),

δµ ∗∂E[ ]

∂δ
=

δ ∑

=

E

[
∂

∂δ

]

+ (δ ).

◮

∂

∂δ
=
∑

=

∂

∂φ

∂φ

∂δ
=
∑

=

∂

∂φ
.

◮

δµ ∗∂E[ ]

∂δ
=

δ ∑

=

∑

=

∂

∂φ
E [ ] + (δ ).
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Calculations (3)

◮ In a subdivided population,

∂Wi

∂φi
+ (n− 1)

∂Wi

∂φin
+ (N− n)

∂Wi

∂φout
= 0,

◮

δµ ∗∂E[ ]

∂δ
=

δ ∑

=

∂

∂φ

−C

+( − )
∂

∂φ

B

−

−
( − ) + (δ ).

◮

∂

∂φ
=
∑

=

∂

∂

∂

∂φ

∂

∂φ
= − ;

∂

∂φ
=

−
;

∂

∂φ
= .

Rousset & Billiard (2000) 12
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Expected state of pairs of sites and identity by descent

At neutrality (i.e., in the absence of selection, δ = 0),

,

= ν +( − ) ν
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Pij

Expected state
of the i, j pair

= Probability that the two
individuals are altruists

= Qij ν

Probability that the individuals at
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(no mutation since
their common ancestor)
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Expected state of pairs of sites and identity by descent

At neutrality (i.e., in the absence of selection, δ = 0),

Pij

Expected state
of the i, j pair

= Probability that the two
individuals are altruists

= Qij ν +(1− Qij) ν2

Probability that the individuals at sites
i and j are not identical by descent

Probability that both sites
are occupied by an altruist

14



Expected state of pairs of sites and identity by descent

At neutrality (i.e., in the absence of selection, δ = 0),

Pij

Expected state
of the i, j pair

= Probability that the two
individuals are altruists

= Qij ν +(1− Qij) ν2

Qin, Qout
14



Expected frequency of altruists in the population
Equation for Moran Death-Birth and Wright-Fisher

−C

B

E[X] = ν + δ ν(1− ν)
1− µ

µ
(1− Qout) ×

−c

(

− (b− c)

(
(1−m)2

n
+

m2

n (Nd − 1)

)

+
Qin − Qout

1− Qout

[

b − (b− c) (n− 1)

(
(1−m)2

n
+

m2

n (Nd − 1)

) ] )



Expected frequency of altruists in the population
Equation for Moran Death-Birth and Wright-Fisher
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How does relatedness R change with the emigration probabilitym?
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How to explain this result? (Moran Death-Birth)
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Is the result robust?
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Heterogeneous deme sizes (n = 4 as before, but 2 ≤ n ≤ 5)
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Political implications
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Take-Home Messages

◮ Under weak selection, it is possible to compute the expected frequency of
social individuals, for any life-cycle, any regular population structure, any
mutation probability. (D., 2017, JTB)

◮ E[ ] > ν B > C

◮ E[ ]
µ >

◮
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