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A few models from mathematical biology
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Diffusion equations and population dynamics

Two-dimensional diffusion equation (Fourier, 1822)

∂tn− dx∂xxn− dy∂yyn = 0

n is a pop. density diffusing in a 2D space of coordinates (x, y)
(Brownian motion at the microscopic level). If dx is a function of y, then
the longitudinal diffusion depends on the latitude (e.g.: colder
temperatures slow down individuals).

With y = θ and dx(θ) = θ

∂tn− θ∂xxn− dθ∂θθn = 0

n is a pop. density which is diffusing in a 1D space of coordinate x and
whose individuals are subjected to random mutations which affect their
mobility and whose effect, at the macroscopic level, is a diffusion in
phenotypical trait θ > 0 at rate dθ. At the microscopic level, the effect of
the mutations is a Brownian jump in the phenotypical space: local
mutations.
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Logistic growth and population dynamics

Malthusian growth (Malthus, 1798)

n′(t) = rn(t)

Exponential growth at rate r > 0, unbounded density: unrealistic model.

Logistic growth (Verhulst, 1838)

n′(t) = rn(t)− r

K
n(t)2 = rn(t)

(
1− n(t)

K

)
Incorporates a “friction” effect: at the microscopic level, when two
individuals collide, one of them dies with a certain probability. If
n(0) > 0, then n(t)→ K as t→ +∞: the parameter K > 0 is the
carrying capacity.
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Logistic growth with a phenotypical trait θ ∈
[
θ, θ
]

∂tn(t, θ) = rn(t, θ)

1−

∫ θ
θ
n (t, θ′) dθ′

K


∫ θ
θ
n (t, θ′) dθ′: total population at time t. When two individuals collide,

one of them dies with a certain probability independent of their traits θ
and θ′: non-local competition.
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Mutation–competition–diffusion model with local
mutations and logistic growth

Continuous trait model:

Cane toads equation with non-local competition
(Bénichou–Calvez–Meunier–Voituriez, 2012){

∂tn− θ∂xxn− α∂θθn = n (t, x, θ)
(
r −

∫ θ
θ
n (t, x, θ′) dθ′

)
∂θn (t, x, θ) = ∂θn

(
t, x, θ

)
= 0 for all (t, x) ∈ R2

n function of (t, x, θ), θ ∈
[
θ, θ
]
motility trait, α mutation rate, r growth

rate and
∫ θ
θ
n (t, x, θ′) dθ′ total population present at (t, x).
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Discrete trait model with N traits (θi)i∈[N ] = (θ + (i− 1)δθ)i∈[N ],

δθ = θ−θ
N−1 , and N corresponding phenotypes (ui)i∈[N ]:

∂tn− θ∂xxn = α∂θθn+ rn−

(∫ θ

θ

n (t, x, θ′) dθ′
)
n

becomes
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Discrete trait model with N traits (θi)i∈[N ] = (θ + (i− 1)δθ)i∈[N ],
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with MLap the discrete Neumann Laplacian and 1N,1 the vector full of
ones.
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Discrete trait model with N traits (θi)i∈[N ] = (θ + (i− 1)δθ)i∈[N ],

δθ = θ−θ
N−1 , and N corresponding phenotypes (ui)i∈[N ]:

L–V mutation-competition-diffusion system with step-wise mutations

∂tu− diagθ∂xxu =
( α

δθ2 MLap + rI
)

u− δθ
(
1TN,1u

)
u

with MLap the discrete Neumann Laplacian and 1N,1 the vector full of
ones.
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Mutation–competition–diffusion model with long-range
mutations and logistic growth

Continuous trait model:

Doubly non-local cane toads equation (Arnold–Desvillettes–Prévost,
2012)

∂tn− d (θ) ∂xxn = r (θ)n (t, x, θ) +
∫ θ

θ

n (t, x, θ′)K (θ, θ′) dθ′

− n (t, x, θ)
∫ θ

θ

n (t, x, θ′)C (θ, θ′) dθ′.
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Discrete trait model:

L–V mutation–competition–diffusion system with long-range mutations

∂tu−D∂xxu = Lu− (Cu) ◦ u,

with:
D = diag (d (θi))i∈[N ] ,

L = diag (r (θi))i∈[N ] + δθ (K (θi, θj))(i,j)∈[N ]2 ,

C = δθ (C (θi, θj))(i,j)∈[N ]2 ,

and ◦ the Hadamard product.
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An important remark on mutation–competition–diffusion
systems

Alternative derivation (e.g., Dockery–Hutson–Mischaikow–Pernarowski,
1998)
Consider the standard Lotka–Volterra competition–diffusion system and
add linear mutations.

Step-wise and long-range mutations are particular cases.
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Transport equations and population dynamics

One-dimensional transport equation

∂tn+ ∂an = 0

If the initial condition is n0(a), solution of the form n(t, a) = n0(a− t):
transport at speed 1 of the initial condition.
n is a pop. density subjected to aging, a is the age variable.
E.g.: n0(a) = 1[0,1] means that at t = 0 there are no individuals of age
a < 0 or a > 1 whereas individuals of age a ∈ [0, 1] are uniformly
distributed; at time t, there are no individuals of age a < t or a > t+ 1
whereas individuals of age a ∈ [t, t+ 1] are uniformly distributed.
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With linear births and deaths and no immortal individuals
∂tn+ ∂an = −m (a)n

n (t, 0) =
∫ A
Am

n (t, a′)K (a′) da′ for all t > 0
n (t, A) = 0 for all t > 0

a ∈ [0, A], Am ≥ 0 maturation age, A > Am maximal age, m mortality
rate, K birth rate.
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Age-structured model with diffusion in space and
overcrowding effect

Continuous age model:

Non-linear age-structured equation (Gurtin–MacCamy, 1977)


∂tn+ ∂an− d (a) ∂xxn = −

(
m (a) +

∫ A
0 n (t, x, a′)C (a, a′) da′

)
n

n (t, x, 0) =
∫ A
Am

n (t, x, a′)K (a′) da′ for all (t, x) ∈ R2

n (t, x,A) = 0 for all (t, x) ∈ R2

n function of (t, x, a), a ∈ [0, A] age variable, Am ≥ 0 maturation age,
A > Am maximal age, d diffusion rate, m mortality rate, C competition
kernel and K birth rate.
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Discrete age model:

Non-linear age-structured system

∂tu−D∂xxu = Lu− (Cu) ◦ u

with
D = diag (d (ai))i∈[N ] ,

L = Lmortality + Lbirth + Laging,

C = δa (C (ai, aj))(i,j)∈[N ]2 .



Introduction The scalar KPP equation The non-cooperative KPP system

Detail of L:
jm = min {j ∈ [N ] | aj ≥ Am} ,

Lmortality = −diag
(
m (ai)i∈[N ]

)
,

Lbirth = δa


0 . . . 0 K (ajm) . . . K (aN )
0 . . . 0
...

...
0 . . . 0

 ,

Laging = 1
δa



0 0 . . . . . . 0

1 −1
. . .

...

0
. . . . . . . . .

...
...

. . . . . . . . . 0
0 . . . 0 1 −1


.
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Structural similarities of all these examples

Common factors

Parabolic systems;

Weakly coupled (coupling only in the 0th order term);

Nonlinear, non-cooperative;

But linearization at 0 cooperative and fully coupled (irreducible 0th
order term L);

C positive.
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General system
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Non-cooperative KPP system

General system

∂tu−D∂xxu = Lu−Cu ◦ u.

Unknown:
u : R2 → RN

(t, x) 7→ (ui (t, x))i∈[N ]
.

Fixed parameters:
D = diagd with d positive, L essentially nonnegative and irreducible, C
positive.
Stationary problem:

−Du′′ = Lu−Cu ◦ u.

Nonnegativity, positivity, etc., of matrices are understood
component-wise.
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The crucial observation

Structure of the right-hand side
Lu−Cu ◦ u is a form of multidimensional logistic growth!

Reminder: the (scalar) logistic growth is given by

ru−K−1u2.
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Problems of interest

Explicit solutions?

Well-posedness (a priori estimates)?

Positivity?

Extinction–persistence dichotomy? In the persistence case,

Particular (e.g., traveling, ) entire solutions?

Spreading properties?

?
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Literature
In homogeneous media:

Barles–Evans–Souganidis, 1990 (viscosity approach);
Elliott–Cornell, 2012 (numerics and conjectures for N = 2) (review:
Cosner, 2014);
Griette–Raoul, 2016 (steady states and traveling waves for N = 2,
d1 = d2, weak mutations and a particular competitive regime; weak
mutation limit);
Moris–Börger–Crooks, 2017 (steady states, traveling waves and
anomalous speeds for N = 2, d1 < d2, weak mutations and another
particular competitive regime; weak mutation limit).

In heterogeneous media:
Dockery et al., 1998 (steady states for another particular
competitive regime and in the weak mutation limit);
Hei–Wu, 2005 (steady states for N = 2 and large mutations);
Alfaro–Griette, 2016 (steady states and pulsating fronts in
space-periodic media for N = 2 and d1 = d2).
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The scalar KPP equation
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Definition
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The Fisher–KPP equation

Fisher, Kolmogorov–Petrovski–Piskunov (1937)

∂tu− d∆xu = f(u) for all (t, x) ∈ R× Rn

with

f ′(0) > 0,

f ′(0)u ≥ f(u) for all u ≥ 0,

existence of M > 0 such that f(u) < 0 for all u ≥M .

Prototype: f(u) = ru(1− u) with r > 0.
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Well-known results

In order to fix the ideas, f(u) = ru(1− u).

Upper and lower bound
Provided the initial condition u0 satisfies 0 ≤ u0 ≤ 1, then so does the
associated solution u for all t > 0.

Stability of the steady states
u = 0 is unstable, u = 1 is stable.

In various senses, here focusing on generalized principal eigenvalues
(Berestycki–Nirenberg–Varadhan, 1994).

Persistence property
Asymptotically in time and locally uniformly in space, any nonnegative
nonzero solution u converges to 1.
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Well-known results: traveling waves
In order to fix the ideas, x ∈ R.
Traveling waves

For any speed c ≥ c? = 2
√
dr, there exists a unique, up to translation,

profile φc ∈ C 2 (R) such that:

u : (t, x) 7→ φc(x− ct) is a positive entire solution;

φc(−∞) = 1;

φc(+∞) = 0.

φc is decreasing and satisfies:

−dφ′′c − cφ′c − rφc (1− φc) = 0 in R.

Furthermore, for all c ∈ [0, c?), there exists no such profile.

c? is the minimal wave speed.

Strong connection with the linearized equation
−dφ′′c − cφ′c − rφc = 0.
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u(t, x) u(t+ 1, x)

c

x

u

1

0

Figure: Traveling wave for the scalar KPP equation
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Well-known results: spreading speed

Spreading speed
Let x0 ∈ R and v ∈ Cb(R, [0, 1]) be nonnegative nonzero.
Then c? coincides with the spreading speed associated with the Cauchy
problem with the “front-like initial condition” u0(x) = H(x0 − x)v(x).

In the following sense:

lim
t→+∞

sup
x∈(y,+∞)

u (t, x+ ct) = 0 for all c ∈ (c?,+∞) and all y ∈ R,

lim
t→+∞

inf
x∈[−R,R]

u (t, x+ ct) = 1 for all c ∈ [0, c?) and all R > 0.

Remark
Much more precise results exist (convergence to the critical traveling
wave, Bramson shift, etc.).
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My results (on arXiv, accepted for publication in Nonlinearity)
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Strong positivity

Theorem
For all nonnegative classical solutions u of the Cauchy problem, if
x 7→ u (0, x) is nonnegative nonzero, then u is positive in (0,+∞)× R.

Consequently, all stationary nonnegative nonzero classical solutions are
positive.
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Absorbing set and upper estimates

Theorem
There exists a positive and continuous function g, component-wise
nondecreasing, such that all nonnegative classical solutions u of the
Cauchy problem satisfy

u (t, x) ≤
(
gi

(
sup
x∈R

ui (0, x)
))

i∈[N ]
for all (t, x) ∈ [0,+∞)× R

and furthermore, if x 7→ u (0, x) is bounded, then(
lim sup
t→+∞

sup
x∈R

ui (t, x)
)
i∈[N ]

≤ g (0) .

Consequently, all stationary bounded nonnegative classical solutions u
satisfy

u ≤ g (0) .
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Persistence or extinction dichotomy

Theorem
1 Assume λPF (L) ≤ 0. Then all bounded nonnegative classical

solutions of the Cauchy problem converge asymptotically in time
and uniformly in space to 0. If λPF (L) < 0, the convergence is
exponential.

2 Conversely, assume λPF (L) > 0. Then there exists ν > 0 such that
all bounded positive classical solutions u of the Cauchy problem
satisfy, for all bounded intervals I ⊂ R,(

lim inf
t→+∞

inf
x∈I

ui (t, x)
)
i∈[N ]

≥ ν1N,1.

Consequently, all stationary bounded nonnegative classical solutions
are valued in

N∏
i=1

[ν, gi (0)] .
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Existence of steady states

Theorem
Assume λPF (L) > 0. Then there exists a constant positive solution.
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Traveling waves

Definition
A traveling wave solution is a profile–speed pair
(p, c) ∈ C 2 (R,RN)× [0,+∞) which satisfies:

1 u : (t, x) 7→ p (x− ct) is a bounded positive classical entire solution;

2

(
lim inf
ξ→−∞

pi (ξ)
)
i∈[N ]

is positive;

3 lim
ξ→+∞

p (ξ) = 0.

The traveling wave satisfies:

−Dp′′ − cp′ = Lp−Cp ◦ p in R.
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Theorem
Assume λPF (L) > 0.

1 There exists c? > 0 such that there exists a traveling wave solution
with speed c if and only if c ≥ c?.

2 All profiles p satisfy

p ≤ g (0) and
(

lim inf
ξ→−∞

pi (ξ)
)
i∈[N ]

≥ ν1N,1.

3 All profiles are component-wise decreasing in a neighborhood of
+∞.

Furthermore,

c? = min
µ>0

λPF
(
µ2D + L

)
µ

and this minimum is uniquely attained.
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pi

ξ0

ν

max
i∈[4]

gi(0)

Figure: Profile of traveling wave for the KPP system (N = 4)
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Spreading speed

Theorem
Assume λPF (L) > 0.
Let x0 ∈ R and v ∈ Cb

(
R,RN

)
be nonnegative nonzero.

Then c? coincides with the spreading speed associated with the Cauchy
problem with the “front-like initial condition” u0(x) = H(x0 − x)v(x).

In the following sense:(
lim

t→+∞
sup

x∈(y,+∞)
ui (t, x+ ct)

)
i∈[N ]

= 0 for all c ∈ (c?,+∞) and y ∈ R,

(
lim inf
t→+∞

inf
x∈[−R,R]

ui (t, x+ ct)
)
i∈[N ]

is positive for all c ∈ [0, c?) and R > 0.
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What about the proofs?
Main difficulty: non-cooperativity (lack of maximum principle).

Positivity and a priori estimates are obtained standardly.

Steady states are constructed with an easy fixed point argument.

The extinction property is obtained by comparison with the
linearized system. The persistence property has an interesting proof
using both a comparison with another linear system and a Harnack
inequality, due to Foldes–Polacik (2009), for linear weakly and fully
coupled parabolic systems.

Traveling waves for c ≥ c? are constructed with a refined super- and
sub-solution method, due to Berestycki–Nadin–Perthame–Ryzhik
(2009). The linearization of the system at the edge of the front
yields the minimality of c? and the monotonicity.

Spreading properties are obtained by comparison with the linearized
system and by repeating the persistence proof after a change of
variables.
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Open questions and perspectives

The very big, very bad problem: the wake of the front. No hope for
a general result. Results established in very particular cases:

weak selection: sufficiently close to D = I, Cu = (bTu)1N,1;
two-component system with weak mutations;

Heterogeneous spacetime.

Continuous limit N → +∞ (requires entirely new estimates).

Application to a model for the co-evolution of altruism and
dispersal.
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The end

Thank you for your attention!

Figure: A cane toad


	Introduction
	A few models from mathematical biology
	General system

	The scalar KPP equation
	Definition
	Well-known results

	The non-cooperative KPP system
	My results (on arXiv, accepted for publication in Nonlinearity)


