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A few models from mathematical biology
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Diffusion equations and population dynamics

Two-dimensional diffusion equation (Fourier, 1822)

On — dyOren — dyOyyn = 0

n is a pop. density diffusing in a 2D space of coordinates (x, y)
(Brownian motion at the microscopic level). If d, is a function of y, then
the longitudinal diffusion depends on the latitude (e.g.: colder
temperatures slow down individuals).




Introduction
0®0000000000000

Diffusion equations and population dynamics

Two-dimensional diffusion equation (Fourier, 1822)

On — dyOren — dyOyyn = 0

n is a pop. density diffusing in a 2D space of coordinates (x,y)
(Brownian motion at the microscopic level). If d, is a function of y, then
the longitudinal diffusion depends on the latitude (e.g.: colder
temperatures slow down individuals).

With y = 6 and d,(0) = 6

8tn — 933%71 — dgaggn =0

n is a pop. density which is diffusing in a 1D space of coordinate = and
whose individuals are subjected to random mutations which affect their
mobility and whose effect, at the macroscopic level, is a diffusion in
phenotypical trait 6 > 0 at rate dy. At the microscopic level, the effect of
the mutations is a Brownian jump in the phenotypical space: local
mutations.
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Logistic growth and population dynamics

Malthusian growth (Malthus, 1798)
n'(t) = rn(t)

Exponential growth at rate » > 0, unbounded density: unrealistic model.
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Logistic growth and population dynamics

Malthusian growth (Malthus, 1798)
n'(t) = rn(t)

Exponential growth at rate » > 0, unbounded density: unrealistic model.

| \

Logistic growth (Verhulst, 1838)
7 n(t)

n'(t) = rn(t) — ?n(t)2 = rn(t) (1 — K>
Incorporates a “friction” effect: at the microscopic level, when two
individuals collide, one of them dies with a certain probability. If

n(0) > 0, then n(t) — K as t — +oo: the parameter K > 0 is the
carrying capacity.
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Logistic growth with a phenotypical trait 6 € [Q, 5]

fe (t,0")do’
On(t,0) =rn(t,0) [ 1— —x
fe (t,0")do’: total population at time ¢. When two individuals collide,

one of them dies with a certain probability independent of their traits 6
and 0’: non-local competition.
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Mutation—competition—diffusion model with local

mutations and logistic growth

Continuous trait model:

Cane toads equation with non-local competition

(Bénichou—Calvez—Meunier—Voituriez, 2012)

Oyn — 00z.m — adggn = n (t,x, 0) (r — fe n(t,z,0") d0’>
don (t,x,0) = dpn (t,x,0) = 0 for all (¢,z) € R?
n function of (¢,z,0), 6 € [0, 6] motility trait, a mutation rate, r growth
rate and fg n (t,z,0") dd’ total population present at (¢, x).
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Discrete trait model with N traits (0;);c(y; = (€ + (2 = 1)60),¢(n):

00 = @, and IV corresponding phenotypes (u;);cnj:

0
On — 00,:n = adgen + rn — </ n(t,z,0) d9’> n
A

becomes
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Discrete trait model with N traits (0;);c(n; = (€ + (2 — 1)60),¢(n).

50 = %, and IV corresponding phenotypes (u;);cyj:

0
On — 00,:n = adgon + rn — </ n(t,z,0) d9’) n
0

becomes

ﬁtu
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Discrete trait model with N traits (0;);c(n; = (€ + (2 — 1)60),¢(n).

00 = %, and N corresponding phenotypes (“’i)ie[N]:

0
On — 00,:n = adgon + rn — </ n(t,z,0) d9’) n
0

becomes

Oyu — diagho,,u
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Discrete trait model with N traits (0;);c(n) = (€ + (i — 1)66),¢(n.
00 = %, and N corresponding phenotypes (u;);¢|ny:

0
On — 00,,n = adggn + 0 — </ n(t,z,0) d0'> n
9

becomes
«o

502 MLapu

Oyu — diagf0,,u =

with My, the discrete Neumann Laplacian
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Discrete trait model with N traits (0;);c(n) = (€ + (i — 1)66),¢(n.
00 = %, and N corresponding phenotypes (u;);¢|ny:

0
On — 00,,n = adggn + 0 — </ n(t,z,0) d0'> n
9

becomes
«

502 Mpgpu+ru

Oyu — diagf0,,u =

with My, the discrete Neumann Laplacian
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Discrete trait model with IV traits (6;),c ;) = (0 + (i — 1)06) ;¢ n7.

00 = *1, and N corresponding phenotypes (ul)lemz

7
On — 00,,n = abggn + 0 — </ n(t,z,0") d0'> n
9

becomes

oyu — diagh0,u = M_papu +ru — 66 (1%,111) u

@
562
with M4, the discrete Neumann Laplacian and 1, the vector full of
ones.
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Discrete trait model with IV traits (6;);c;n = (0 4 (i — 1)00),¢n7.

00 = *, and NN corresponding phenotypes (ui)z‘e[N]:

L-V mutation-competition-diffusion system with step-wise mutations

Oyu — diagf0,,u = Mrzqp + rI) u— 60 (lN 1u)

(592

with M., the discrete Neumann Laplacian and 1y, the vector full of
ones.
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Mutation—competition—diffusion model with long-range

mutations and logistic growth

Continuous trait model:

Doubly non-local cane toads equation (Arnold—Desvillettes—Prévost,

2012)

2
On —d (0) Oz =1 (0)n(t,z,0) + / n(t,z,0) K (0,0")do
0

0
—n(t,x,@)/ n(t,z,0)C (6,0) 0.
6
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Discrete trait model:

L-V mutation—competition—diffusion system with long-range mutations

Oyu — DJ,,u = Lu — (Cu) o u,

with:
D = diag (d (6:));e(n »

L = diag (7 (6:));e(n) + 60 (K (0i,05)) ; iy (w2 -
C =66 (C(0:,65)) ; jyevy? »

and o the Hadamard product.
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An important remark on mutation—competition—diffusion

systems

Alternative derivation (e.g., Dockery—Hutson—Mischaikow—Pernarowski,
1998)

Consider the standard Lotka—Volterra competition—diffusion system and
add linear mutations.

Step-wise and long-range mutations are particular cases.
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Transport equations and population dynamics

One-dimensional transport equation
3tn + (%n =0

If the initial condition is ng(a), solution of the form n(t,a) = ng(a — t):
transport at speed 1 of the initial condition.

n is a pop. density subjected to aging, a is the age variable.

E.g.: no(a) = 1jg,1) means that at £ = 0 there are no individuals of age
a < 0 or a > 1 whereas individuals of age a € [0, 1] are uniformly
distributed; at time ¢, there are no individuals of age a <t ora >t +1
whereas individuals of age a € [t,t + 1] are uniformly distributed.
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With linear births and deaths and no immortal individuals

on + 0yn =—m(a)n
n(t,0) = [y n(t,a)K (a')da’ for all t >0
n(t,A) =0 for all t > 0

a € [0, 4], A, > 0 maturation age, A > A,, maximal age, m mortality
rate, K birth rate.
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Age-structured model with diffusion in space and

overcrowding effect

Continuous age model:

Non-linear age-structured equation (Gurtin-MacCamy, 1977)

5m+3anfd(a)8mn:f< +f0 n(t,xz,a’) C’(a,a’)da’)n

n(t,x,O):fﬁmn(t,x,a)K( "Yda' for all (t,z) € R?
n(t,x, A) = 0 for all (t,z) € R?

n function of (¢, x,a), a € [0, A] age variable, A,, > 0 maturation age,
A > A, maximal age, d diffusion rate, m mortality rate, C' competition
kernel and K birth rate.
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Discrete age model:

Opu — DJ,,u=Lu— (Cu)ou
with
D = diag (d (ai));eqn -
I = Wiy A Wasaon 1 Lagings
C =6a(C (ai,a;))

(4,4)€[N]?
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Detail of L:
jm:min{jE[N] | ajZAm}a
Lmortality = _diag (m (ai)zE[N]) ’
0 ... 0 K(aj,) ... Klan)
0 - 0
Lbirth =da : : ’
0 0
0 0 0
) 1 -1
Laging = Sa 0
: 0
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Structural similarities of all these examples

Common factors

@ Parabolic systems;
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order term L);
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Structural similarities of all these examples

Common factors

@ Parabolic systems;

Weakly coupled (coupling only in the Oth order term);
@ Nonlinear, non-cooperative;

@ But linearization at 0 cooperative and fully coupled (irreducible Oth
order term L);

C positive.
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Non-cooperative KPP system

General system

ou—D0,u=Lu— Cuou.

Unknown:
u: R2 RN

-
(t’x) = (ui(tvx))ie[N]'

Fixed parameters:

D = diagd with d positive, L essentially nonnegative and irreducible, C
positive.

Stationary problem:

—Du” =Lu— Cuou.

Nonnegativity, positivity, etc., of matrices are understood
component-wise.
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The crucial observation

Structure of the right-hand side

Lu — Cuou is a form of multidimensional logistic growth!

Reminder: the (scalar) logistic growth is given by

ru— K1,
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@ Explicit solutions?
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@ Well-posedness (a priori estimates)?
@ Positivity?

@ Extinction—persistence dichotomy? In the persistence case, globaty

attractivesteady-state? stable-uniquesteady-state? unique steady

state?



Introduction
000®0

Problems of interest
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@ Well-posedness (a priori estimates)?
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@ Extinction—persistence dichotomy? In the persistence case, globaty
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@ Particular (e.g., traveling, periodic) entire solutions?
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@ Spreading properties?
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@ Asymptotic regimes (e.g., weak mutations, small densities)
providing more informations?
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@ Well-posedness (a priori estimates)?
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@ Extinction—persistence dichotomy? In the persistence case, globaty

attractivesteady-state? stableuniquesteady-state? uniquesteady

state? ... at least existence of steady states?
o Particular (e.g., traveling, periedie) entire solutions?
@ Spreading properties?

@ Asymptotic regimes (e.g., weak mutations, small densities)
providing more informations?
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In homogeneous media:
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d1 = ds, weak mutations and a particular competitive regime; weak
mutation limit);
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competitive regime and in the weak mutation limit);

@ Hei-Wu, 2005 (steady states for N = 2 and large mutations);

o Alfaro—Griette, 2016 (steady states and pulsating fronts in
space-periodic media for N = 2 and d; = d).



The scalar KPP equation
°

The scalar KPP equation




The scalar KPP equation
[ I}

Definition




The scalar KPP equation

oe

The Fisher—KPP equation

Fisher, Kolmogorov—Petrovski—Piskunov (1937)
Opu — dAyu = f(u) for all (t,z) € R x R"

with

e f/(0) >0,

o f'(0)u > f(u) for all u >0,

@ existence of M > 0 such that f(u) < 0 for all u > M.

Prototype: f(u) = ru(l — u) with » > 0.
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Well-known results

In order to fix the ideas, f(u) = ru(l — u).

Upper and lower bound

Provided the initial condition ug satisfies 0 < ug < 1, then so does the
associated solution w for all ¢ > 0.

Stability of the steady states

u = 0 is unstable, u = 1 is stable.

In various senses, here focusing on generalized principal eigenvalues
(Berestycki—Nirenberg—Varadhan, 1994).

Persistence property

Asymptotically in time and locally uniformly in space, any nonnegative
nonzero solution u converges to 1.
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Well-known results: traveling waves

In order to fix the ideas, z € R.

Traveling waves

For any speed ¢ > ¢* = 2+/dr, there exists a unique, up to translation,
profile ¢. € €* (R) such that:

@ u: (t,x) — ¢.(x — ct) is a positive entire solution;
@ ¢.(—00) =1,
@ ¢.(+00) =0.

¢ is decreasing and satisfies:

—d¢l! — c¢l. —rop. (1 — ¢.) =0 in R.

Furthermore, for all ¢ € [0, ¢*), there exists no such profile.

c* is the minimal wave speed.
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Well-known results: traveling waves

In order to fix the ideas, z € R.

Traveling waves

For any speed ¢ > ¢* = 2+/dr, there exists a unique, up to translation,
profile ¢. € €* (R) such that:

@ u: (t,x) — ¢.(x — ct) is a positive entire solution;
@ ¢.(—00) =1,
@ ¢.(+00) =0.

¢ is decreasing and satisfies:

—d¢l! — c¢l. —rop. (1 — ¢.) =0 in R.

Furthermore, for all ¢ € [0, ¢*), there exists no such profile.

c* is the minimal wave speed.
Strong connection with the linearized equation

_d(b/c/ - Cqb/c - r¢c =0.
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u(t+1,x)

u(t, z)

Figure: Traveling wave for the scalar KPP equation
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Well-known results: spreading speed

Spreading speed

Let zp € R and v € %,(R, [0, 1]) be nonnegative nonzero.
Then ¢* coincides with the spreading speed associated with the Cauchy
problem with the “front-like initial condition” ug(z) = H(z¢ — z)v(z).

In the following sense:

lim  sup wu(t,x+ct)=0forall ce€ (c*,+00) and all y € R,
P20 ze(y,o0)

lim  inf w(t,xz+ct)=1forall c€[0,c)and all R > 0.
t—+o0 z€[—R,R]
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Well-known results: spreading speed

Spreading speed

Let 29 € R and v € 6,(R, [0,1]) be nonnegative nonzero.
Then ¢* coincides with the spreading speed associated with the Cauchy
problem with the “front-like initial condition” uo(z) = H(zo — z)v(x).

In the following sense:

lim  sup wu(t,x+ct)=0forall ce€ (c*,+00) and all y € R,
P20 ze(y,o0)

lim  inf w(t,xz+ct)=1forall c€[0,c)and all R > 0.
t—+o0 z€[—R,R]

Much more precise results exist (convergence to the critical traveling
wave, Bramson shift, etc.).
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My results (on arXiv, accepted for publication in Nonlinearity)
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Strong positivity

For all nonnegative classical solutions u of the Cauchy problem, if
2 — u (0, z) is nonnegative nonzero, then u is positive in (0, +00) x R.
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Strong positivity

For all nonnegative classical solutions u of the Cauchy problem, if
2 — u (0, z) is nonnegative nonzero, then u is positive in (0, +00) x R.
Consequently, all stationary nonnegative nonzero classical solutions are
positive.
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Absorbing set and upper estimates

Theorem

There exists a positive and continuous function g, component-wise
nondecreasing, such that all nonnegative classical solutions u of the
Cauchy problem satisfy

u(t,z) < (gi (sup U (O,m))) for all (¢,2) € [0,4+00) x R
z€R i€[N]

and furthermore, if z — u (0, x) is bounded, then

<lim sup sup u; (¢, a:)) <g(0).
1€[N]

t—+4o00 zER
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Absorbing set and upper estimates

Theorem

There exists a positive and continuous function g, component-wise
nondecreasing, such that all nonnegative classical solutions u of the
Cauchy problem satisfy

u(t,z) < (gi (sup U (O,x)>) for all (¢,2) € [0,4+00) x R
z€R i€[N]

and furthermore, if z — u (0, x) is bounded, then

<lim sup sup u; (¢, a:)) <g(0).
t—+oo zeR i€[N]

Consequently, all stationary bounded nonnegative classical solutions u
satisfy

u<g(0).
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Persistence or extinction dichotomy

@ Assume App (L) < 0. Then all bounded nonnegative classical
solutions of the Cauchy problem converge asymptotically in time
and uniformly in space to 0. If Apr (L) < 0, the convergence is
exponential.
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Persistence or extinction dichotomy

@ Assume App (L) < 0. Then all bounded nonnegative classical
solutions of the Cauchy problem converge asymptotically in time
and uniformly in space to 0. If Apr (L) < 0, the convergence is
exponential.

@ Conversely, assume Apg (L) > 0. Then there exists v > 0 such that
all bounded positive classical solutions u of the Cauchy problem
satisfy, for all bounded intervals I C R,

(hm inf inf u; (¢, x)) >vlyg.
i€[N]

t——4o0 el

Consequently, all stationary bounded nonnegative classical solutions

are valued in
N
[T
=1
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Existence of steady states

Assume App (L) > 0. Then there exists a constant positive solution.
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Traveling waves

A traveling wave solution is a profile—speed pair
(p,c) € €% (R,RY) x [0,400) which satisfies:

Q u: (t,x) — p(z — ct) is a bounded positive classical entire solution;

£——o0

Q (hm inf p; (f)) is positive;
i€[N]

Q lim p(§)=0.

£—+4o0
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Traveling waves

A traveling wave solution is a profile—speed pair
(p,c) € €% (R,RY) x [0,400) which satisfies:

Q u: (t,x) — p(z — ct) is a bounded positive classical entire solution;

£——o0

Q (hm inf p; (f)) is positive;
i€[N]

Q lim p(§)=0.

£—+4o0

The traveling wave satisfies:

—Dp’ —cp’=Lp—-CpopinR.
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Assume App (L) > 0.

© There exists ¢* > 0 such that there exists a traveling wave solution
with speed c if and only if ¢ > c¢*.
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Assume App (L) > 0.

© There exists ¢* > 0 such that there exists a traveling wave solution
with speed c if and only if ¢ > c¢*.

@ All profiles p satisfy

£——o0

p<&() and (Iminfpi(©) >vive
1€[N]
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Theorem

Assume App (L) > 0.

© There exists ¢* > 0 such that there exists a traveling wave solution
with speed c if and only if ¢ > c¢*.

@ All profiles p satisfy

£——o0

p<&() and (Iminfpi(©) >vive
1€[N]

@ All profiles are component-wise decreasing in a neighborhood of
+00.

Furthermore,

and this minimum is uniquely attained.
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max g;(0)
icld
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Spreading speed

Assume App (L) > 0.

Let zp € R and v € 6, (R,RN) be nonnegative nonzero.

Then ¢* coincides with the spreading speed associated with the Cauchy
problem with the “front-like initial condition” uo(z) = H(zo — z)v(x).

In the following sense:

lim  sup w; (¢, + ct) =0 for all ¢ € (¢*,400) and y € R,
t—+oo z€(y,+00) i€[N]
(hm inf inf w; (t,z+ ct)) is positive for all ¢ € [0,¢*) and R > 0.
t—+o0 ze[—R,R] i€[N]
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What about the proofs?

Main difficulty: non-cooperativity (lack of maximum principle).

@ Positivity and a priori estimates are obtained standardly.
@ Steady states are constructed with an easy fixed point argument.

@ The extinction property is obtained by comparison with the
linearized system. The persistence property has an interesting proof
using both a comparison with another linear system and a Harnack
inequality, due to Foldes—Polacik (2009), for linear weakly and fully
coupled parabolic systems.

@ Traveling waves for ¢ > ¢* are constructed with a refined super- and
sub-solution method, due to Berestycki-Nadin—Perthame—Ryzhik
(2009). The linearization of the system at the edge of the front
yields the minimality of ¢* and the monotonicity.

@ Spreading properties are obtained by comparison with the linearized
system and by repeating the persistence proof after a change of
variables.
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Open questions and perspectives

@ The very big, very bad problem: the wake of the front. No hope for
a general result. Results established in very particular cases:

o weak selection: sufficiently close to D =1, Cu = (bTu)lNJ;
e two-component system with weak mutations;

@ Heterogeneous spacetime.
@ Continuous limit N — 400 (requires entirely new estimates).

@ Application to a model for the co-evolution of altruism and
dispersal.
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The end

Thank you for your attention!

Figure: A cane toad
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