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Abstract

We consider a randomly twisted hypercube on N vertices and study a simple or lazy random
walk on this graph. We show that for both walks the mixing time is of order logN , and the
model does not exhibit cutoff. We also establish that both walks have cover time of order
N logN and we show that the chromatic number of the graph diverges.

1 Introduction

In this paper we consider the mixing properties of a random walk on a twisted hypercube, which is
a random generalisation of a Boolean hypercube, defined as follows.
Definition 1.1. We recursively define the random graphs G(n) for n ≥ 0 as follows. Let G(0) be a
graph consisting of a single vertex, and for n ≥ 1 let G(n) be obtained by considering two independent
copies G(n−1,1) and G(n−1,2) of G(n−1) and adding the edges corresponding to a uniform random
matching between their vertices. Then we say that G(n) is a twisted hypercube on 2n vertices.

We call the copies of G(k) appearing in the construction of G(n) the type k subgraphs of G(n), and we
label them G(k,1), ..., G(k,2n−k) in such a way that for each k ∈ {1, 2, ..., n} and ℓ ∈ {1, 2, ..., 2n−k}
the type (k − 1) subgraphs of G(k,ℓ) are labelled G(k−1,2ℓ−1) and G(k−1,2ℓ). We say that the edges
running between G

(2ℓ−1)
k−1 and G

(2ℓ)
k−1 are type k edges. (See Figure 1 for illustration; disregard the

colouring for now.) //

Since the 1990s various modifications of a Boolean hypercube have been considered as models of
networks that retain some of the structure of a hypercube, but have smaller diameter and better
connectivity properties.

The above random model was first introduced by Dudek et al [6] in 2018, and they showed that
with high probability between any pair of vertices there are at least n internally disjoint paths of
length at most n

log2 n
+O

(
n

(log2 n)
2

)
. Among n-regular graphs with 2n vertices this number of paths

is optimal and the length is asymptotically optimal.

In 2023 Benjamini et al [5] considered a more general random model, where the two copies of G(n−1)

in the construction of G(n) do not need to be independent, and proved that with high probability
it has a small diameter, large vertex expansion, its eigenvalues satisfy a semicircle law, and it has
no non-trivial automorphisms.
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The paper [5] also included a list of remarks and open questions (in Section 3). In particular, they
asked about the mixing time of a lazy random walk on a twisted hypercube, noting that by simple
estimates it is O(n log n) and Ω(n), and wondering whether it is o(n log n). They also asked about
the chromatic number of a twisted hypercube, noting that with high probability it is at least 3.

In this work we study the mixing properties of a randomly twisted hypercube and we establish that
both a lazy and a simple random walk have mixing time of order n. Using this we also show that
the cover time is of order n2n for both walks.

Although it is not the focus of the paper, we also present a quick argument showing that the
chromatic number is ω(1).

We recall the definitions of mixing time, cutoff, cover time and chromatic number.
Definition 1.2. Let X be a Markov chain on a finite state space V , with a unique invariant
distribution π. Then for ε ∈ (0, 1) we define the ε-mixing time of X as

tmix (ε) := max
x∈V

inf {t ≥ 0 : dTV (Px(Xt = ·), π(·)) ≤ ε} .

where dTV denotes the total variation distance between two distributions, defined as dTV (µ, ν) =
1
2

∑
x |µ(x)− ν(x)|.

We say that a sequence
(
X(n)

)
of Markov chains exhibits cutoff at time tn, with window sn if sn

tn
→ 0

as n → ∞, and for any ε ∈ (0, 1) there exists a constant c(ε) such that for all n the ε-mixing time
of X(n) satisfies

tn − c(ε)sn ≤ t
(n)
mix (ε) ≤ tn + c(ε)sn. (1)

In case the Markov chains X(n) are random, we say that the sequence exhibits cutoff with high
probability if (1) holds with a probability 1− o(1) as n → ∞. //
Definition 1.3. Let X be a Markov chain on a finite state space V . Then the cover time of X is
defined as

tcov := max
x∈V

Ex

[
max
y∈V

τy

]
,

where τy denotes the first time the chain visits y. //
Definition 1.4. Given a graph G, a colouring of its vertices with k colours is a function c : V (G) → C
where C is a set of size k. We say that c is a proper colouring if for any pair {x, y} of neighbouring
vertices, we have c(x) ̸= c(y). The chromatic number χ(G) of G is the smallest positive integer k
such that G has a proper colouring with k colours. //

Our main results are the following.

Theorem 1. Let
(
G(n)

)
be a sequence of twisted hypercubes as in Definition 1.1 and let X(n) be a

simple random walk on G(n). Then with high probability the graphs G(n) have the following property.

For any ε ∈ (0, 1) there exist positive constants c(ε) and C(ε) such that for all sufficiently large n
the ε-mixing time of X(n) satisfies

c(ε)n ≤ t
(n)
mix (ε) ≤ C(ε)n.

Also, the sequence
(
X(n)

)
does not exhibit cutoff.

Moreover, the same statement also holds for a lazy random walk instead of a simple one.
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Theorem 2. There exist positive constants c and C with the following property. With high proba-
bility the twisted hypercube G(n) is such that the cover time of a simple random walk on it satisfies

cn2n ≤ t(n)cov ≤ Cn2n.

Moreover, the same statement holds for a lazy random walk instead of a simple one.

Theorem 3. For any positive constant c, with high probability the chromatic number of G(n) satisfies
χ
(
G(n)

)
> c.

1.1 Some notation

We let N = 2n, and we write U to denote the uniform distribution on the vertices of G(n).

We write SRW to mean a simple random walk.

For functions a, b : Z≥0 → [0,∞) we write a(n) ≲ b(n) if there exists a constant C > 0 such that
for all sufficiently large n we have a(n) ≤ Cb(n), and write a(n) ≪ b(n) if for any constant c > 0,
for all sufficiently large n (in terms of c) we have a(n) ≤ cb(n). We define ≳ and ≫ analogously.
We write a(n) ≍ b(n) if we have a(n) ≲ b(n) ≲ a(n). Unless specified otherwise, these relations are
considered as n → ∞.

We often consider quantities like 0.9n or C log n and treat them as integers. In these cases one can
take ⌊·⌋ or ⌈·⌉, but we omit this from the notation.

1.2 Overview

In this section we give an overview of the proof ideas of Theorem 1, which is the most involved one
of our three results. Instead of trying to estimate the mixing times of a walk directly, we bound
the hit times of the walk and then compare the mixing times to these. The hit times are defined as
follows.
Definition 1.5. Let X be a Markov chain on a finite state space V with a unique invariant distri-
bution π. For each α, θ ∈ (0, 1) we define the corresponding hit time of X as

hitα (θ) := inf{t : ∀x, ∀A ⊆ V with π(A) ≥ α we have Px(τA > t) ≤ θ},

where τA = inf {t : Xt ∈ A}. //

We will prove the following two results.

Proposition 1.6. With high probability there exist α, θ ∈ (0, 1) such that the corresponding hit time
of a simple random walk on G(n) satisfies hitα (θ) ≲ n.

Proposition 1.7. With high probability the absolute relaxation time of a simple random walk on
G(n) satisfies tabsrel ≍ n.

Once we have these, the proof of Theorem 1 can be concluded as follows.

Proof of Theorem 1. From Proposition 1.7 we know that hitα (θ) ≲ n for some α, θ ∈ (0, 1) and
from [5, Proposition 1.5] we know that trel ≍ n. Then [3, Proposition 3.3 and Corollary 3.4] allows
us to bound the hit time with all parameters, and we get that hitβ (φ) ≲ n for all β, φ ∈ (0, 1).
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Using [2, Lemma A.3] we can compare the hit times of a lazy random walk and a SRW, and get
that hitlazyβ (φ) ≲ n for all β, φ ∈ (0, 1).

Then using [3, Proposition 1.8], the monotonicity of mixing time in the parameter, and that
tlazymix (ε) ≳ trel for all ε ∈ (0, 1) (by [10, Theorem 12.4] for the lazy walk) we get that mixing
time of the lazy walk satisfies tlazymix (ε) ≍ n ≍ trel for all ε ∈ (0, 1), hence by [3, Theorem 3] the lazy
walk does not exhibit cutoff.

Since the lazy walk does not exhibit cutoff, neither does the simple random walk. (See [2, Lemma
6.9].)

Using the above bound on the hit times, [3, Remark 1.9], and that tmix (ε) ≳ tabsrel for all ε ∈ (0, 1)
(see [10, Theorem 12.4]), we also get that tmix (ε) ≍ n for all ε ∈ (0, 1).

To prove Proposition 1.6, we define a random time τ and show that with positive probability it
satisfies τ ≲ n, and Xτ is comparable to the uniform distribution.

Inspired by [1], we colour the ‘short’, ‘medium length’ and ‘long’ edges of G(n) green, red, and blue
respectively. We consider a random time τ so that the first τ steps of a random walk X on G(n)

roughly speaking correspond to taking a geometric number of steps as a random walk on the green
and red edges, then walking on the green and red edges until K + L further red edges are crossed
(where K and L are well-chosen parameters), then crossing a blue edge, then walking on the green
and red edges again until L+K more red edges are crossed.

If after the initial geometric number of steps the walk is at a given vertex q, we approximate the
probability of Xτ = y as∑

u,v,w,z

Pq

(
YτKred

= u
∣∣∣ G(n)

)
Pu

(
YτLred−1 = w

∣∣∣ G(n)
)

(2)

· Py

(
YτKred

= v
∣∣∣ G(n)

)
Pv

(
YτLred−1 = z

∣∣∣ G(n)
)
1η(w)=z,

where Y is a simple random walk on the green and red edges of G(n), τ ired denotes the ith time that
a red edge is crossed, and η(w) is a uniformly chosen blue neighbour of w.

To approximate the neighbourhoods of u and v formed by green and red edges of G(n), we consider
random ‘quasi-trees’ Tu and Tv that consist of ‘balls’ that are distributed like balls of a given
radius R in the green distance in a random copy of G(n), and ‘long-range edges’ between them that
correspond to the red edges of G(n) and form a tree-like structure.

Using the iid structure of a quasi-tree T , and the fact that due to the high degrees of vertices, a
random walk Ỹ on it is unlikely to return to a ball it already left, we can get a good understanding
of the behaviour Ỹ . We then prove that for a sufficiently large proportion of pairs (u, v), their neigh-
bourhood in the green and red edges of G(n), and a simple random walk on it is well approximated
by a random quasi-tree and simple random walk on it. This allows us to get a good control over the
probabilities Pu

(
YτLred−1 = w

∣∣∣ G(n)
)

and Pv

(
YτLred−1 = z

∣∣∣ G(n)
)
. After this we use the randomness

of the blue edges and a concentration result similar to [4, Lemma 5.1] to show that the sum (2) is
≳ 1

N .

To prove Proposition 1.7, we use a result that roughly speaking states that if a graph is ‘far from
being bipartite’, then its relaxation time and absolute relaxation time are of the same order. We
prove that whp G(n) satisfies the above property, and use that trel ≍ n from [5, Proposition 1.5].
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1.3 Organisation

In Sections 2 to 5 we work towards the proof of Proposition 1.6. In Section 2 we introduce the
colouring of the edges of G(n) and the exact definition of the random time τ . In Section 3 we give
the definition of a quasi-tree and explain how to couple G(n) to it. In Section 4 we estimate the
success probability of this coupling. In Section 5 we conclude the proof of Proposition 1.6.

In Section 6 we prove Proposition 1.7, hence concluding the proof of Theorem 1. In Section 7 we
prove Theorem 2, and finally in Section 8 we prove Theorem 3.

2 The random time τ

We colour the edges of G(n) with three different colours as follows. We colour the type n edges of
G(n) blue, the type k edges for k ∈ {0.9n, ..., n−1} red, and all remaining edges green. (See Figure 1
for an illustration.)

G(n−1,1)

G(n−1,2)

G(n−2,1) G(n−2,2)

G(n−2,3) G(n−2,4)

G(n,1)

Figure 1: An illustration of G(n), the naming of its subgraphs, and the colouring of its edges.

Given G(n), we define a random time τ and an auxiliary walk X̃ as follows.
Definition 2.1. Let

L := CL
n

log n
+ CL,2

√
n

log n
, K := CK , (3)
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where CL is an appropriately chosen constant (see choice after Lemma 3.2) and CL,2 and CK are
sufficiently large constants, to be specified later.

Let τ
(L+K,j)
red = g(1,j) + ... + g(L+K,j) + (L + K − 1) for j = 1, 2 where g(i,j) are independent

Geom≥0

(
0.1n
n−1

)
random variables and let τgeom ∼ Geom≥0

(
1
n

)
, independently of these. Let

τ := τgeom + 1 + τ
(L+K,1)
red + 1 + τ

(L+K,2)
red .

Let us fix a vertex x of G(n), and let X̃ be a walk on G(n) defined up to time τ , taking steps as
follows. The first τgeom steps are a SRW from x on the green and red edges of G(n) (i.e. on the edges
of the type (n−1) subgraph containing x). Then for i = 1, 2, ..., L+K it crosses a uniformly chosen
red edge emenating from its current position, then it takes g(i,1) steps as a SRW on the green edges.
Then it crosses the blue edge emenating from its current position. Then for i = L+K, ..., 2 it takes
g(i,2) steps as a SRW on the green edges and crosses a uniformly chosen red edge from its location.
Finally, it takes g(1,2) steps as a SRW on the green edges. See Figure 2 for an illustration. //

... ... ...
x q u w z yv︸ ︷︷ ︸

g(1,1) g(K+1,1) g(K+L,1)g(K,1) g(K+L,2) g(K+1,2) g(K,2) g(1,2)

τgeom
τ
(L+K,1)

red τ
(L+K,2)

red

︷ ︸︸ ︷
...

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
︸ ︷︷ ︸ ︸ ︷︷ ︸p

Figure 2: An illustration of the walk X̃ up to time τ .

The proof of Proposition 1.6 relies on the following three results.

The distribution of X̃τ is comparable to the uniform distribution U .

Proposition 2.2. There exists a constant θ such that with high probability G(n) has the following
property. For any vertices x and y of G(n) that are in different type (n− 1) subgraphs, we have

Px

(
X̃τ = y

∣∣∣ G(n)
)

≥ θ

N
.

The time τ is likely of order at most n.

Lemma 2.3. For any θ ∈ (0, 1), for a sufficiently large constant C, for any realisation of the graph
G(n) and any vertex x, we have Px

(
τ > Cn

∣∣ G(n)
)
≤ θ.

The walk X̃ can be coupled closely with a simple random walk on G(n).

Lemma 2.4. For any choice of CL, CL,2 and CK , any realisation of the graph G(n) and any vertex
x, there exists a coupling between the pair

(
τ, X̃

)
defined as above, and a simple random walk X

on G(n) starting from x, such that with probability 1 − o(1) the walks X and X̃ agree up to time
τ . Here the o(1) can depend on the parameters CL, CL,2 and CK , but it does not depend on the
realisation of G(n) and the choice of the vertex x.

The proof of Lemma 2.3 is very simple and omitted. The proof of Lemma 2.4 is also quick, and it
is presented below.
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Proof of Lemma 2.4. Note that a simple random walk X on G(n) at each step crosses a blue edge
with probability 1

n , independently for different steps, and conditional on which steps are blue, the
remaining steps are green with probability 0.9n−1

n−1 and red otherwise, independently of each other.
Because of this we can sample a simple random walk X on G(n) up to the second time it crosses a
blue edge as follows.

Let τ
(1)
blue, τ

(2)
blue ∼ Geom≥1

(
1
n

)
and let g(i,j) ∼ Geom≥0

(
0.1n
n−1

)
, all independently of each other.

Let B(j) = τ
(j)
blue, let G(j)

1 = g(1,j)∧ (B(j)− 1), R(j)
1 = 1∧ (B(j)− 1−G

(j)
1 ), G(j)

2 = g(2,j)∧ (B(j)− 1−
G

(j)
1 −R

(j)
1 ), ... R

(j)
L+K = 1∧ (B(j)− 1−G

(j)
1 −R

(j)
1 ...−G

(j)
L+K), S(j) = B(j)− 1−G

(j)
1 − ...−R

(j)
L+K .

Let X take S(1) steps as a SRW on the green and red edges, then for i = L+K,L+K − 1, ..., 1 let
it take R

(1)
i steps as a SRW on the red edges, then G

(1)
i steps as a SRW on the green edges. Then

let it cross a blue edge. Then for i = 1, 2, ..., L +K let it take G
(2)
i steps as a SRW on the green

edges, then R
(2)
i steps as a SRW on the red edges. Finally, let it take S(2) steps as a SRW on the

green and red edges, and then let it cross a blue edge.

Having this representation of X, let us couple it to X̃ as follows. Let us sample g(i,j), and con-
ditional on these, let us couple τ

(1)
blue ∼ Geom≥0

(
1
n

)
and τgeom + τ

(L+K,1)
red + 1 ∼ Geom≥1

(
1
n

)
+

g(1,1) + ... + g(L+K,1) + L + K + 1 using their optimal coupling, so that they agree on the event{
τ
(1)
blue ≥ g(1,1) + ...+ g(L+K,1) + L+K + 1

}
.

Then on the event
{
τ
(j)
blue ≥ g(1,j) + ...+ g(L+K,j) + L+K + 1 for j = 1, 2

}
, the walks X and X̃

agree up to time τ . It is easy to see that this event has probability 1− o(1).

In the rest of this section and the following sections we will be working towards the proof of
Proposition 2.2. The proof of Proposition 1.6 given Proposition 2.2 and Lemmas 2.3 and 2.4 is
presented in Section 5.

For any two vertices x and y that are not in the same type (n−1) subgraph of G(n), we can express
the transition probability Px

(
X̃τ = y

∣∣∣ G(n)
)

as follows.

Let Y be a SRW on the green and red edges of G(n), independently of τgeom, and let τ ired denote the
ith time that Y crosses a red edge. For a vertex w of G(n) let η(w) denote its blue neighbour. For
vertices p, q of G(n) let {p ∼r q} denote the event that p and q are connected via a red edge. Then
we have

Px

(
X̃τ = y

∣∣∣ G(n)
)

(4)

=
∑

p,q,u,w,z,v

Px

(
Yτgeom = p

∣∣∣ G(n)
) 1p∼rq

0.1n
Pq

(
YτKred

= u
∣∣∣ G(n)

)
Py

(
YτKred

= v
∣∣∣ G(n)

)
· Pu

(
YτLred−1 = w

∣∣∣ G(n)
)
Pv

(
YτLred−1 = z

∣∣∣ G(n)
)
1η(w)=z,

where the sums are taken over all vertices of G(n).

In what follows we will show that for most u and v in different type (n− 1) subgraphs, their neigh-
bourhoods according to the green and red edges, and the walks on these neighbourhoods can be
approximated well by some random tree-like structures (quasi-trees) and walks on these. We use this
to get a good control over Pu

(
YτLred−1 = w

∣∣∣ G(n)
)

and Pv

(
YτLred−1 = z

∣∣∣ G(n)
)
. Then we use the ran-

domness of the blue edges to show that
∑

w,z Pv

(
YτLred−1 = w

∣∣∣ G(n)
)
Py

(
YτLred−1 = z

∣∣∣ G(n)
)
1η(w)=z

is concentrated.
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To extend the result to all x and y in different type (n − 1) subgraphs, we show that for any
starting point, with high probability YτKred

is such that the above approximation can be applied for
its neighbourhood.

3 The random quasi-tree and its coupling to G(n)

In this section we define random quasi-trees and explain how to we use these to approximate the
green and red neighbourhoods of two vertices in G(n).

3.1 Definition of a quasi-tree

Analogously to [1] we consider a random quasi-tree with the green edges forming the balls, and the
red edges serving as long-range edges.

Let
R := CR log n, (5)

where CR is a sufficiently large constant, to be specified later.
Definition 3.1. A random quasi-tree T is a random graph together with a map ι from its vertices
to the vertex set V (n) of G(n), obtained as follows. Let us start from a root vertex ρ, with a given
ι(ρ). Then consider a ball of radius R around ι(ρ) in a random copy of the type (0.9n−1) subgraph
containing ι(ρ), and attach it to ρ. We call this an R-ball. For each vertex v in the ball let ι(v) be
the corresponding vertex in G(n). Then for each vertex v in the ball, except for ρ we add 0.1n edges
leading to new vertices wv,0.9n, ..., wv,n−1, while for v = ρ we add 0.1n− 1 new edges leading to new
vertices wv,0.9n+1, ..., wv,n−1. We call these long-range edges, and in particular call (v, wv,k) a type
k long-range edge. For each wv,k, we sample ι(wv,k) by choosing uniformly from the 2k vertices of
G(n) with the property that they are in the same type (k+1) subgraph as ι(v) but in different type
k subgraphs. Analogously to the above, we consider a ball of radius R in an independent random
copy of the type (0.9n − 1) subgraph containing ι(w), attach it to w and let ι map each of its
vertices to the corresponding vertex of G(n). We continue analogously, but if v is the new endpoint
of a newly revealed long-range edge of type k, then the further long-range edges we add from v
should be of types {0.9n, ..., n− 1} \ {k}. This way we obtain an infinite random graph consisting
of R-balls and long-range edges between them, where apart from ρ, each vertex is the endpoint of
exactly 0.1n long-range edges which are of types 0.9n, ..., n− 1. //

Note that the edges of the R-balls correspond to green edges, and the long-range edges correspond
to red edges, but the R-balls and the long-range edges are always sampled from a new copy of G(n).

For a vertex v in the quasi-tree, we define its level as the minimal number of long-range edges a path
from ρ to v needs to cross. For a long-range edge e, we define its level as the level of its endpoint
that is further from ρ, and we denote it by ℓ(e).

For a vertex v of the quasi-tree T , we let T (v) denote the subgraph of T induced by the R-ball of
v and the R-balls descending from this.

Let Z be a walk on the quasi-tree that takes steps as a SRW, except that it is not allowed to cross
a long-range in the direction towards to root.1 Let ξk be the kth long-range edge crossed by Z.

If Z starts from ρ, then the entropy of ξk is concentrated in the following sense.
1If Z is at ρ or at a vertex that is not the centre of an R-ball, it takes a step to a uniform neighbour. Otherwise

it disregards the one neighbour that has a smaller level than the current vertex, chooses uniformly from the others,
and takes a step there.
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Lemma 3.2. For any θ > 0, there exists a constant C > 0 with the following property. Let T be
a random quasi-tree and let ξ(1) and ξ(2) be two independent copies of ξ on T . Then for any k we
have

P
(∣∣∣− logPρ

(
ξ
(1)
k = ξ

(2)
k

∣∣∣ ξ(1), T)− kh
∣∣∣ > C

√
kV
)

≤ θ,

where h = c1 log n, V = c2(log n)
2 and c1, c2 ≍ 1 as n → ∞.

Proof. Let us use the notation Hb (·) and Hb (·|·) like in [2, Definitions 2.23 and 2.24], and their
properties from Section B of the same article.

Then we can note that for any realisation t of T , we have H1 (ξ1|T = t) ≍ log n and H2 (ξ1|T = t) ≍
(log n)2, and the values of these only depend on the R-ball of ρ. 2

Since the R-balls are iid and the walk Z does not backtrack long-range edges, we get that
− logPρ

(
ξ
(1)
k = ξ

(2)
k

∣∣∣ ξ(1), T) decomposes as a sum of iid copies of − logPρ

(
ξ
(1)
1 = ξ

(2)
1

∣∣∣ ξ(1), T). We

can also note that Var
(
− logPρ

(
ξ
(1)
1 = ξ

(2)
1

∣∣∣ ξ(1), T)) ≤ H2 (ξ1|T ), hence for any θ, for sufficiently
large C we have

P
(∣∣∣− logPρ

(
ξ
(1)
k = ξ

(2)
k

∣∣∣ ξ(1), T)− kh
∣∣∣ > C

√
kV
)

≤ θ

where h = H1 (ξ1|T ) = c1 log n, V = H2 (ξ1|T ) = c2(log n)
2 with c1, c2 ≍ 1 as n → ∞.

Let us choose the constant CL in (3) as CL = log 2
2c1

.

3.2 Coupling to G(n)

In this section we explain how we couple the (green and red) neighbourhoods of two vertices of G(n)

and the walks on them with random quasi-trees and walks on them.

Similarly to previous works, we are not able to closely couple the neighbourhood of a vertex v in
G(n) to the entire first L levels of a quasi-tree T , since the chance that some vertices appear multiple
times in the ι of the first L levels of T is too high. Instead, we focus on coupling the parts that
are likely to be visited by a walk. If a long-range edge of T is unlikely to be crossed by Z, then we
disregard the part of T descending from it (we ‘truncate’ that edge). Below we define ‘truncation
criteria’ that specify when exactly to do this. Also, if we already have a disagreement between some
parts of T and G(n), then we do not continue trying to couple the parts of T descending from it.

We also restrict our attention to vertices v of G(n) that are ‘K-roots’, i.e. where we already know
that their neighbourhood is tree-like in the first K < L levels, and we only couple with T from then
onwards.

Once we coupled the neighbourhood of v with a tree T , we also couple the walks Y and Z on these.
We say that the coupling is successful if Y and Z reach level L without visiting any parts of G(n)

and T that disagree or got truncated.
2We drop the conditioning on T = t from the notation. Let τred be the first time that Z crosses a long-range

edge. Then τred ≤st Geom≥1

(
0.1n
n−1

)
, hence H1 (τred) ≍ H2 (τred) ≍ 1. Also, Zk can take ≤ nk different values,

hence H1 (Zk|τred = k) ≤ k logn and H2 (Zk|τred = k) ≤ (k logn)2. Conditional on the value of τred and Zτred−1,
the value of ξ1 is uniform over 0.1n or 0.1n − 1 different edges, hence we have H1 (ξ1|Zτred = v, τred = k) ≍ logn
and H2 (ξ1|Zτred = v, τred = k) ≍ (logn)2 for any possible v and k. Using these and that Hb (ξ1|Zτred , τred)−O(1) ≲
Hb (ξ1) ≲ Hb (ξ1|Zτred , τred) + Hb (Zτred |τred) + Hb (τred) we get the result.
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Let K = CK as defined in (3), where CK is a sufficiently large constant, to be specified later.

For a long-range edge e of a given quasi-tree T and a given constant A we define truncation criteria
as follows.

Tr(e,A) :=

{
− logP

(
ξℓ(e) = e

∣∣ ξ, T ) > 1

2
logN +A

√
(log logN)(logN)

}
,

Tr′(e) :=

{
− logP(ξL−K = e) <

1

2
logN +

√
(log logN)(logN)

}
.

Then we can bound the probability of Z crossing a truncated edge before hitting level L − K as
follows.

Lemma 3.3. For any θ > 0, for sufficiently large values of A (in terms of θ and CL), and sufficiently
large n we have

P

(
L−K⋃
k=1

Tr(ξk, A)

)
< θ.

Also, for sufficiently large values of CL,2 (in terms of θ and CL), and sufficiently large n we have

P
(
Tr′(ξL−K)

)
< θ.

Sketch proof. We use that Tr(e,A) implies Tr(e′, A) for all descendants e′ of e, and Lemma 3.2 with
k = L−K.

Definition 3.4. Let u be a vertex of G(n) and let eu be the type 0.9n red edge from it. Then we say
that u is a K-root in G(n) if a neighbourhood of u of green and red edges in G(n) \{eu} is a possible
realisation of (ι of) the first K levels of a quasi-tree. We denote the set of K-roots by VK−root. //

Let us consider any two vertices x and y that are in different type (n − 1) subgraphs of G(n)

and work on the event that both of them are K-roots, with corresponding neighbourhoods Tx,0

and Ty,0 respectively. Then we couple the neighbourhoods of x and y with the first L levels of two
independent quasi-trees Tx and Ty conditioned to have the first K levels as Tx,0 and Ty,0 respectively,
as follows.

We denote the level K vertices of Tx by z1, ..., zLx , and the level K vertices of Ty by zLx+1, ...,
zLx+Ly . Then we explore from z1 up to level L as follows.

Firstly, we pick k ∈ {0.9n, ..., n− 1} such that the type k long-range edge of v is not yet explored,
we reveal the other endpoint v of the type k long-range edge from z1 in Tx, and couple ι(v) with
the other endpoint of the type k red edge from ι(z1) in G(n) according to the optimal coupling. We
also couple the R-ball of v with the distance R green neighbourhood of ι(v) in G(n) according to the
optimal coupling. If either of these optimal couplings fails, we say that the long-range edge (z1, v)
is truncated due to the optimal coupling failing. Otherwise, if the distance R green neighbourhood
of ι(v) contains any of the already explored vertices, we say that (z1, v) is truncated due to an
overlap. Otherwise, if Tr((z1, v), A) or Tr′((z1, v)) holds with respect to Tx(z1), we say that (z1, v)
is truncated according to a truncation criterion. We proceed similarly with the other yet unexplored
long-range edges from z1. If a long-range edge (z1, v) is truncated for any of the above reasons,
then we will not explore further into this direction. Otherwise we continue exploring analogously
from each vertex in the R-ball of v. We continue the exploration up to level L. (In each level, the
truncation criteria are considered with respect to Tx(z1).)
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Then we explore similarly from z2, z3, ..., zLx+Ly . (When exploring from zi we consider the trun-
cation criteria with respect to Tx(zi) or Ty(zi).)

We denote by Fi the σ-algebra generated by the explorations from z1, ..., zi. We say that zi is good
if it is not contained in any R-ball revealed during the explorations from z1, ..., zi−1. Otherwise we
call zi bad.

After coupling the neighbourhoods of x and y with the trees, we couple independent walks Y (1) and
Y (2) on the green and red edges of G(n) from x and y respectively, with independent walks Z(1) and
Z(2) on Tx and Ty from x and y respectively such that the following are satisfied. Let τ

(L,i)
red denote

the Lth time that Y (i) crosses a red edge. We say that a vertex v of T is at the boundary of an
R-ball if it is at graph distance R from the centre of the R-ball it is contained in.

We couple Y (1) and Y (2) with Z(1) and Z(2) up to τ
(K,1)
red and τ

(K,2)
red respectively such that on the

event that for i = 1, 2

(i) up to τ
(K,i)
red the walk Z(i) does not hit the boundary of an R-ball,

(ii) the first red edge that Y (i) crosses is not the type (0.9n− 1) red edge from Y
(i)
0 , and

(iii) up to the Kth time that Y (i) crosses a red edge, it never backtracks the most recently crossed
red edge,

we have Y
(i)
j = ι

(
Z

(i)
j

)
for i = 1, 2, j ≤ τ

(K,i)
red .

We say that the coupling is successful in the first K levels if (i), (ii) and (iii) hold. In this case if
Z(i) reached level K at zki , then we couple the rest of the walks Y (1) and Y (2) with Z(1) and Z(2)

from zk1 and zk2 until τ (L,1)red and τ
(L,2)
red respectively such that on the event that for i = 1, 2

(vi) between τ
(K,i)
red and τ

(L,i)
red the walk Z(i) does not cross a truncated long-range edge and does

not hit the boundary of an R-ball,

(v) between the Kth and the Lth time that Y (i) crosses a red edge, it never backtracks the most
recently crossed red edge,

we have Y
(i)
j = ι

(
Z

(i)
j

)
for i = 1, 2, τ (K,i)

red ≤ j ≤ τ
(L,i)
red .

We say that the coupling is successful between levels K and L if (iv) and (v) hold.

We say that the coupling is successful if it is successful in the first K levels, and also between levels
K and L.

4 Estimates regarding K-roots and the success of coupling

In this section we prove an estimate about VK−root that will make it sufficient to consider the case
when u and v in (4) are both K-roots, and then we estimate the probability that the coupling
around two K-roots succeeds.
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4.1 Estimates regarding K-roots

In this section we show that for any starting vertex, YτKred is a K-root with high probability.

Lemma 4.1. For sufficiently large values of CK the following holds. With high probability G(n) is
such that for any vertex q we have Pq

(
YτKred

∈ VK−root

∣∣∣ G(n)
)
= 1− o(1).

Proof. Note that the number of vertices in a given R-ball is ≤ 2nR and for any k the number of
vertices in the first k levels of a quasi-tree is ≤ n2kR. Also, if there are s red edges revealed in G(n)

so far and we are revealing the red edge of a given type, from a given vertex, the probability of the
other endpoint taking a specific value is ≤ 1

20.9n−1−s
. If s ≤ 20.1n, then this is ≤ 4N− 9

10 .

Let us consider a given vertex q of G(n) and reveal its ‘level 2K neighbourhood’ in G(n) as follows.
Firstly, let us reveal the green edges around it up to green distance R. Then for each vertex in
this ball let us reveal the other endpoint of the red edges from it, except for the type 0.9n red edge
from q. For each newly revealed endpoint, reveal the green edges around it up to green distance R.
Then for each vertex in these newly revealed balls let us reveal the other endpoint of the red edges
emenating form it. Let us continue similarly for K levels. We say that an overlap occurs if a newly
revealed ball of green distance R intersects with any previously revealed ball.

From the above estimates we get that the probability that the level 2K neighbourhood of a given

vertex q contains more than one an overlap is ≤ P
(
Bin
(
n4RK , 4n

3RK

N
9
10

)
> 1
)
≲
(
n5RK

N
9
10

)2
≪ 1

N . If
there is only 1 overlap, then whp the first vertex reached by the walk that is at long-range distance
K from q is a K-root. Also, the probability of the walk backtracking any of the first K long-range
edges crossed is o(1), so whp crossing K red edges corresponds to reaching long-range distance K.

So whp G(n) is such that the level 2K neighbourhood of each q has at most 1 overlap, and on this
event we have Pq

(
YτKred

∈ VK−root

∣∣∣ G(n)
)
= 1− o(1).

4.2 Estimates regarding the success of coupling

In this section we prove that with high probability G(n) is such that for any two K-roots in different
type (n−1) subgraphs, the coupling described in Section 3.2 has a positive probability of succeeding.

Note that in a given quasi-tree T the number of non-truncated long-range edges at a given level is

≤ exp
(
1
2 logN +A

√
(log logN)(logN)

)
= N

1
2
+A

√
log logN
logN . In Tx and Ty the number of vertices

up to level K is ≤ n2KR and the number of explored vertices in each level of each T (zi) is ≤

N
1
2
+A

√
log logN
logN . Hence the overall number of explored vertices up to level L is ≤ Ln2KRN

1
2
+A

√
log logN
logN ≪

N
1
2
+α for any α > 0.

Lemma 4.2. There exists a constant B with the following property. Let x and y be two vertices in
different type (n − 1) subgraphs of G(n) and let Tx,0 and Ty,0 be possible realisations of the first K
levels of quasi-trees. Let {Tx,0, Ty,0} denote the event that some neighbourhoods of x and y in G(n)

look like Tx,0 and Ty,0 respectively. Then the number Bad of bad vertices (defined in Section 3.2)
satisfies

P(Bad > B | Tx,0, Ty,0) ≪ 1

N2
.
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Proof. At each step of the exploration the probability of the newly revealed R-ball containing a zi
is ≲ n2RKn2R

N
9
10

. This is ≪ 1

N
9
10−α

for any α > 0. So

P(Bad > B | Tx,0, Ty,0) ≤
(
N

1
2
+α

B

)(
1

N
9
10

−α

)B

≤ N−B( 2
5
−2α),

which is ≪ 1
N2 for α sufficiently small and B sufficiently large.

Lemma 4.3. For any θ ∈ (0, 1) for sufficiently large value of CR and sufficiently large values of n,
for all i ∈ {1, 2, ..., Lx}, the following holds. Let us consider the coupling of Y (1) and Z(1) from zi,
between levels K and L, as in Section 3.2. Then we have

Pzi

(
coupling of Y (1) and Z(1) succeeds between levels K and L

∣∣∣ Fi−1

)
≥ (1− θ)1{zi good}.

The analogous result holds for i ∈ {Lx+1, ..., Lx+Ly} with Y (2) and Z(2) instead of Y (1) and Z(1).

Proof. In case zi is good, we know that the R-ball of zi does not intersect any of the already revealed
R-balls. Now consider the exploration from zi and the walks from zi.

The probability that the walk Z(j) up to time τ
(L,j)
red crosses a long-range edge that is truncated due

to an overlap is ≲ Ln2RLn2RN
1
2+α

N
9
10

≪ 1. Similarly, the probability of Z(j) crossing a long-range edge
where the optimal coupling failed is also ≪ 1.

The probability of Z(j) hitting the boundary of an R-ball is ≲ LP
(
Geom≥0

(
0.1n−1

n

)
> R

)
≲

n
logn

(
9.1
10

)C5 logn. This is ≪ 1 for sufficiently large values of CR.

The probability that up to the Lth time that Y (j) crosses a red edge, it ever backtracks the most
recently crossed red edge is ≤ L 1

0.1n ≪ 1.

Lemma 4.4. For sufficiently large values of CR the following holds. For any realisation of the first
K levels of Tx,0 and Ty,0, the probability that the coupling of Z(i) and Y (i) is successful in the first
K levels is 1− o(1) .

Proof. The probability that the first red edge crossed by Y (j) is the type 0.9n one from Y
(j)
0 is

≤ 1
0.1n ≪ 1.

The probabilities of the other ways of the coupling failing can be bounded analogously to the proof
of Lemma 4.3.

Lemma 4.5. For any θ ∈ (0, 1), for sufficiently large values of the constants CR and CK , the
following holds. For x, y and {Tx,0, Ty,0} as in Lemma 4.2 we have

P
(
Px

(
the coupling of Y (1) and Z(1) succeeds

∣∣∣ FLx+Ly

)
> 1− θ

∣∣∣ Tx,0, Ty,0

)
≥ 1− o

(
1

N2

)
.

The analogous result holds for Y (2) and Z(2) starting from y.

Proof. Let

V̂ :=
{
zi : Px

(
ξ+K = zi, coupling of X(1) and Z(1) fails

∣∣∣ FLx+Ly

)
≥ θ
}
,
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h(zi) := Px

(
ξ+K = zi

∣∣ FLx+Ly

)
,

where ξ+K denotes the endpoint of ξK further from the root.

We will show that

P
(
h(V̂ ) > 3θ

∣∣∣ Tx,0, Ty,0

)
≪ 1

N2
. (6)

Once we have this, the proof is immediate (we have to replace θ by 1
5θ).

The proof of (6) is analogous to the proof of [9, Proposition 5.7]. We use that h(zi) ≤
(

1
0.1n−1

)K
≪

1
n2 .

5 Bounding the hit time

In this section we conclude the proof of Proposition 2.2, and then the proof of Proposition 1.6.

5.1 Proof of Proposition 2.2

For u, v ∈ VK−root in different type (n− 1) subgraphs of G(n), let Fu,v = FLu+Lv be the σ-algebra
generated by the explorations around them up to level L and let
Ωu,v = {coupling of (Y (1), Y (2)) and (Z(1), Z(2)) from (u, v) succeeds}.

Lemma 5.1. For any θ ∈ (0, 1), there exists θ′ ∈ (0, 1) with the following property. For any u and
v in different type (n−1) subgraphs of G(n), on the event that u, v ∈ VK−root and P(Ωu,v | Fu,v) > θ,
we have

P

(∑
w,z

P(u,v)

(
Y

(1)

τ
(L,1)
red −1

= w, Y
(2)

τ
(L,2)
red −1

= z,Ωu,v

∣∣∣∣ G(n)

)
1η(w)=z <

θ′

N

∣∣∣∣∣ Fu,v

)
≪ 1

N2
.

Proof. By the definition of Tr′(·) we have

Pv

(
Y

(1)

τ
(L,1)
red −1

= w,Ωu,v

∣∣∣∣ Fu,v

)
≤ exp

(
−1

2
logN −

√
(logN)(log logN)

)
<

1√
N logN

for all w, and similarly Pv

(
Y

(2)

τ
(L,2)
red −1

= z,Ωu,v

∣∣∣∣ Fu,v

)
< 1√

N logN
for all z. Also, conditional on Fu,v,

the type n blue edges form a uniform random matching between the two type (n− 1) subgraphs.

For each i and j in these type (n−1) subgraphs let wi,j = P(u,v)

(
Y

(1)

τ
(L,1)
red −1

= i, Y
(2)

τ
(L,2)
red −1

= j,Ωu,v

∣∣∣∣ Fu,v

)
.

Also, let m = 2a = 1
2n−1

∑
i,j wi,j ≍ 1

N and b = maxi,j wi,j ≤ 1
N(logN)2

. Then with a proof analogous
to the proof of [4, Lemma 5.1] we get that

P

(∑
i

wi,ηn(i) ≤ m− a

∣∣∣∣∣ Fu,v

)
≤ exp

(
− a2

4bm

)
≪ 1

N2
.

Note that the probability P(u,v)

(
Y

(1)

τ
(L,1)
red −1

= w, Y
(2)

τ
(L,2)
red −1

= z,Ωu,v

∣∣∣∣ G(n)

)
is Fu,v-measurable, so we

can change the conditioning on G(n) to a conditioning on Fu,v. This finishes the proof.
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Let us choose CL,2, CR and CK such that Lemmas 4.1 and 4.5 are satisfied.

Let θ1 be the constant from Lemma 4.1, let θ2 be an arbitrary constant in (0, 1) and let θ3 be the
corresponding constant θ′ from Lemma 5.1.

Let Ω0 be the high probability event that G(n) satisfies all of the following.

• For all q we have Pq

(
YτKred

∈ VK−root

∣∣∣ G(n)
)
≥ θ1. (See Lemma 4.1.)

• For all u, v ∈ VK−root in different type (n − 1) subgraphs, we have P(Ωu,v | Fu,v) > θ2.
(See Lemma 4.5.)

• For all u, v ∈ VK−root in different type (n − 1) subgraphs with P(Ωu,v | Fu,v) > θ2, we have∑
w,z P(u,v)

(
Y

(1)

τ
(L,1)
red −1

= w, Y
(2)

τ
(L,2)
red −1

= z,Ωu,v

∣∣∣∣ G(n)

)
1η(w)=z ≥ θ3

N . (See Lemma 5.1.)

Proof of Proposition 2.2. Let us work on the high probability event Ω0.

Consider any x and y that are in different type (n−1) subgraphs. Let ℓ be such that x is in G(n−1,ℓ).
Then by (4) we have

Px

(
X̃τ = y

∣∣∣ G(n)
)

≥
(

inf
q∈G(n−1,ℓ)

Pq

(
YτKred

∈ VK−root

∣∣∣ G(n)
))

Py

(
YτKred

∈ VK−root

∣∣∣ G(n)
)

·

 inf
u∈VK−root∩G(n−1,ℓ)

v∈VK−root∩G(n−1,3−ℓ)

∑
w,z

Pu

(
YτLred−1 = w

∣∣∣ G(n)
)
Pv

(
YτLred−1 = z

∣∣∣ G(n)
)
1η(w)=z

 .

By the definition of Ω0 this is ≥ θ21θ3
1
N . This finishes the proof.

5.2 Proof of Proposition 1.6

Let θ be as in Proposition 2.2 and let us work on the corresponding high probability event. Then
we have

1− dTV

(
Px

(
X̃τ = ·

∣∣∣ G(n)
)
,U(·)

)
=

∑
y

1

N
∧ Px

(
X̃τ = y

∣∣∣ G(n)
)

≥ N · θ

N
= θ,

hence, also using Lemma 2.4 (with 1
2θ), we get

dTV

(
Px

(
Xτ = ·

∣∣∣ G(n)
)
,U(·)

)
≤ Px

(
Xτ ̸= X̃τ

∣∣∣ G(n)
)

+ dTV

(
Px

(
X̃τ = ·

∣∣∣ G(n)
)
,U(·)

)
≤ 1

2
θ + (1− θ) = 1− 1

2
θ.

From Lemma 2.3 we know that there exists C such that Px

(
τ > Cn

∣∣ G(n)
)
≤ 1

4θ for all x.

Let α = 1− 1
8θ and let us consider any x ∈ V (n) and A ⊆ V (n) with U(A) ≥ α.

Then Px

(
τA > Cn

∣∣ G(n)
)
≤ Px

(
τ > Cn

∣∣ G(n)
)
+Px

(
τA > τ

∣∣ G(n)
)
. We have Px

(
τ > Cn

∣∣ G(n)
)
≤

1
4θ and Px

(
τA > τ

∣∣ G(n)
)
≤ Px

(
Xτ ̸∈ A

∣∣ G(n)
)
≤ U(Ac)+dTV

(
Px

(
Xτ = ·

∣∣ G(n)
)
,U(·)

)
≤ (1−α)+(

1− 1
8θ
)
. So overall we get that Px

(
τA > Cn

∣∣ G(n)
)
≤ 1− 1

8θ

This shows that hit1− 1
8
θ

(
1− 1

8θ
)
≤ Cn, and so finishes the proof.
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6 Bounding the absolute relaxation time

In this section we prove Proposition 1.7.

We will prove that whp the graph G(n) is such that for any partition (A,B) of the vertices, at
least a constant proportion of the edges of G(n) run within A or within B. Then we show that this
property implies tabsrel ≍ trel.

First we prove the following lemma.

Lemma 6.1. There exists a positive constant c with the following property.

Let m ∈ Z≥1 and let V1, V2, ... V8 be disjoint sets of size m each. Let us consider a random graph H
with vertex set V =

⋃8
i=1 Vi and edge set E consisting of a uniformly chosen perfect matching between

V2i−1 and V2i for i = 1, 2, 3, 4, a uniform perfect matching between V4i−3 ∪ V4i−2 and V4i−1 ∪ V4i

for i = 1, 2 and a uniform perfect matching between
⋃4

i=1 Vi and
⋃8

i=5 Vi. (These matchings are
independent of each other.)

Then with probability ≥ 1 − 2−
1
4
m the graph H is such that for any partition (A,B) of V we have

|E(A)|+ |E(B)| ≥ c|E|. Here E(A) denotes the set of edges with both endpoints in A, and E(B) is
defined analogously.

Proof. Consider a partition (A,B) of V . Let A0 := A∩ (V1∪V2), B0 := B∩ (V1∪V2). Let Ã consist
of A0 and the neighbours of B0 in V3 ∪ V4. Let B̃ =

(⋃4
i=1 Vi

)
\ Ã. Let Â consist of the neighbours

of B̃ in
⋃8

i=5 Vi, and let B̂ =
(⋃8

i=5 Vi

)
\ Â. Fix some constant δ ∈

(
0, 14
)

such that C(δ) in [9,

Lemma 6.5] satisfies C(δ) ≤ 1
8 .

We will consider the following events.

Ω1 :=

{
|A0| ̸∈

(
1

2
− δ,

1

2
+ δ

)
|V1 ∪ V2|

}
,

Ω2 :=
{
≥ 2δm edges run between B̃ ∩ V3 and B̃ ∩ V4

}
,

Ω3 :=
{
≥ 4δm edges run between B̂ ∩ (V5 ∪ V6) and B̂ ∩ (V7 ∪ V8)

}
.

Note that these events only depend on A0 and the graph H. We will show that if any of them holds,
then for any choice of (A,B) with the given A0, there are ≥ δm edges with both endpoints in A
or both endpoints in B. Then we will use [9, Lemma 6.5] to bound the probability of these events
failing for a given A0, and take a union bound over the possible choices of A0.

If Ω1 holds, then by pigeonhole principle at least δm edges of the matching between V1 and V2 have
both endpoints in A0 or both endpoints in B0.

If Ω2 holds and |B̃ ∩A ∩ (V3 ∪ V4)| ≤ δm then at least δm of the edges between B̃ ∩ V3 and B̃ ∩ V4

have both endpoints in B. If Ω2 holds and |B̃∩A∩ (V3∪V4)| > δm then there are at least δm edges
between A0 and B̃ ∩ A ∩ (V3 ∪ V4). So in either case there are ≥ δm edges with both endpoints in
A or both endpoints in B.

If Ω3 holds and |B̂∩A| ≤ 2δm then at least 2δm of the edges between B̂∩(V5∪V6) and B̂∩(V7∪V8)
have both endpoints in B. If Ω3 holds and |B̂∩A| > 2δm then there are at least 2δm edges between
Ã and B̂ ∩ A. If |Ã ∩ B| ≤ δm then at least δm of these edges have both endpoints in A. If
|Ã ∩ B| > δm then there are at least δm edges between B0 and Ã ∩ B. So in all cases there are
≥ δm edges with both endpoints in A or both endpoints in B.
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In what follows assume that |A0| ∈
(
1
2 − δ, 12 + δ

)
|V1 ∪ V2|. Also note that |Ã| = 1

2

∣∣∣⋃4
i=1 Vi

∣∣∣.
Let σ be a matching on V1∪V2 that matches vertices x and y if and only if their neighbours in V3∪V4

are connected by an edge. Note that σ is a uniformly chosen perfect matching on V1 ∪ V2. (The
uniform randomness of σ comes from the randomness of edges between V1 ∪V2 and V3 ∪V4, for any
realisation of the other edges.) By [9, Lemma 6.5] we know that with probability ≥ 1−2−2m( 1

2
−C(δ))

there are at least 2δm pairs in σ with both ends in A0, i.e. Ω2 holds.

Now consider a matching η of
⋃4

i=1 Vi that matches vertices x and y if and only if their neighbours in⋃8
i=5 Vi are connected by an edge between V5∪V6 and V7∪V8. This is a uniform perfect matching on⋃4
i=1 Vi, independently of σ. By [9, Lemma 6.5] we know that with probability ≥ 1− 2−4m( 1

2
−C(δ))

there are at least 4δm pairs in η with both ends in Ã, i.e. Ω3 holds.

Taking a union bound over the ≤ 22m choices of A0 ⊆ (V1 ∪ V2) with |A0| ∈
(
1
2 − δ, 12 + δ

)
|V1 ∪ V2|

finishes the proof.

We use the above lemma for different subgraphs of G(n) to show the following.

Lemma 6.2. There exists a positive constant c′ with the following property. With high probability
G(n) is such that for any partition (A,B) of its vertices we have |E(A)|+ |E(B)| ≥ c′|E|.

Proof. Let n
2 +5 ≤ m ≤ n and consider the set of edges Em,i at levels m− 2, m− 1 and m in graph

G(m,i) for each i ∈ {1, 2, ..., 2n−m}. Using Lemma 6.1 for each Em,i and taking a union bound we
get that with probability ≥ 1−2n−m ·2−

1
4
·2m−3 ≥ 1−2

n
2
−2

n
2 each Em,i is such that for any partition

(A,B) of the vertices at least c proportion of the edges have both endpoints in A or both endpoints
in B.

Taking a union bound over m and using that a constant proportion of the edges of G(n) is at levels
≥ n

2 + 3 we get that with probability ≥ 1 − n
2 · 2

n
2
−2

n
2 = 1 − o(1) the graph G(n) has the required

property.

Finally, we use a result stating that the above property implies that trel ≍ tabsrel .

Proposition 6.3. Let G = (V,E) be a graph satisfying that there is a constant c > 0 such that for
any partition of V into two sets A and B, we have |E(A)|+ |E(B)| > c|E|. Then a simple random
walk on G satisfies that trel ≍ tabsrel .

The proof of Proposition 6.3 relies on a result from [8] and it is presented in [1].

Proof of Proposition 1.7. The proof follows directly from Lemma 6.2, Proposition 6.3 and as from [5,
Proposition 3] we know that trel ≍ n.

7 The cover time

In this section we present the proof of Theorem 2.

In what follows we consider a simple random walk. Once we prove the bounds for this, the bounds
for a lazy random walk follow by noting that the cover time of a lazy walk is twice the cover time
of a simple random walk.
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The lower bound follows from a general lower bound from [7] which states that the cover time of a
simple random walk on a graph with N vertices satisfies tcov ≥ N logN .

For the upper bound, we use Matthew’s theorem (see [10, Theorem 11.2]) and a standard bound
on the maximal hitting time in terms of the maximal hitting time from the invariant distribution
(see [10, Lemma 10.2], which give that tcov ≤ maxx,y∈V (n) Ey[τx] logN ≤ 2maxx∈V (n) Eπ[τx] logN ,
where τx denotes the hitting time of vertex x.

Therefore, it only remains to prove that

max
x∈V (n)

Eπ[τx] ≲ N = 2n. (7)

We know that Ex[τ
+
x ] = 1

π(x) = 2n for all x, where τ+x denotes the first return time to x, and we
will use this to prove an upper bound of the same order on any hitting time.

In what follows we work on the high probability event that the mixing times of G(n), G(n−1,1) and
G(n−1,2) all satisfy the bounds in Theorem 1. Let us fix a vertex x of G(n) and for notational
convenience assume that x is in G(n−1,1).

Note that in each step a random walk has probability ≤ 1
n of stepping to x and probability 1

n of
stepping to G(n−1,2), hence for any positive constant A there exists a positive constant εA such that
Px(τ

+
x ≥ An, τG(n−1,2) ≤ An) ≥ εA.

Let Y be a simple random walk on G(n−1,2) and let t := 2tG
(n−1,2)

mix

(
1
16

)
be two times its 1

16 -mixing
time. From the assumption that G(n−1,2) satisfies the bounds in Theorem 1 we know that t ≤
Cn where C is a positive constant. From [10, Lemma 6.17] we also know that at time t the
separation distance s(t) := maxy,z∈V (n−1,2)

(
1− Py(Yt=z)

π
G(n−1,2) (z)

)
of Y satisfies s(t) ≤ 1

4 . Hence we get

that Py(Yt = z) ≥ 3
4πG(n−1,2)(z) = 3

2N for all y and z in G(n−1,2).

Let X be a simple random walk on G(n). Note that in each step X crosses a type n edge with
probability 1

n , regardless of its location, hence starting from y, we have τG(n−1,1) ∼ Geom≥1

(
1
n

)
and

conditional on the value of τG(n−1,1) , the walk (Xk)k<τ
G(n−1,1)

is distributed like a simple random
walk on G(n−1,2). Let θ be a sufficiently small constant such that P

(
Geom≥1

(
1
n

)
> t
)
≥ θ. Then

we have

N = Ex

[
τ+x
]

≥
∑

y,z∈V (n−1,2)

Px

(
τ+x ≥ An, τG(n−1,2) ≤ An,Xτ

G(n−1,2)
= y
)

· Py(Xt = z, t < τG(n−1,1)) · Ez[τx]

≥
∑

y,z∈V (n−1,2)

Px

(
τ+x ≥ An, τG(n−1,2) ≤ An,Xτ

G(n−1,2)
= y
)

· Py(Yt = z)Py(t < τG(n−1,ℓ)) · Ez[τx]

≥
∑

y,z∈V (n−1,2)

Px

(
τ+x ≥ An, τG(n−1,2) ≤ An,Xτ

G(n−1,2)
= y
)

· 3

2N
P
(
Geom≥1

(
1

n

)
> t

)
Ez[τx]

≥
∑

z∈V (n−1,2)

εA
3

2N
θEz[τx] =

3

4
εAθEπ

G(n−1,2)
[τx] .

This shows that Eπ
G(n−1,2)

[τx] ≤ 4
3εAθN .
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To obtain a bound on Eπ[τx], note that Pπ
G(n−1,1)

(
Xτ

G(n−1,2)
= y
)
= πG(n−1,2)(y), hence

Eπ[τx] =
1

2
Eπ

G(n−1,1)
[τx] +

1

2
Eπ

G(n−1,2)
[τx] ≤ Eπ

G(n−1,2)
[τx] +

1

2
Eπ

G(n−1,1)
[τG(n−1,1) ]

≤ 4

3εAθ
N +

1

2
n ≤

(
4

3εAθ
+ 1

)
N.

This finishes the proof of (7), hence completing the proof of Theorem 2.

8 The chromatic number

In this section we prove the following auxiliary statement, which immediately implies Theorem 3.

Lemma 8.1. For any positive integer c there exists a graph Hc such that χ (Hc) > c and with high
probability the graph G(n) contains a copy of Hc.

We prove Lemma 8.1 by induction on c.

For c = 1 the statement holds with H1 consisting of two vertices connected via an edge.

Assume that the statement holds for c = k and let us construct Hk+1 as follows.

Let Mk be the number of vertices of Hk. Let A be a set of kMk vertices and let H(1)
k , ..., H

(
(kMk

Mk
)
)

k

be
(
kMk
Mk

)
disjoint copies of Hk. Let A(1), ..., A

(
(kMk

Mk
)
)

be an enumeration of all size Mk subsets of
A, and let Hk+1 be a graph on kMk +

(
kMk
Mk

)
vertices obtained by considering A and all H(i), and

for each i adding Mk edges according to a perfect matching between the Mk vertices in A(i) and
the Mk vertices in H(i).

Firstly, we show that χ (Hk+1) > k+1. Assume for contradiction that there is a proper colouring of
Hk+1 with (k+ 1) colours. Then by the pigeonhole principle there is an i such that all Mk vertices
in A(i) are of the same colour. 3 Since each vertex in H

(i)
k is connected to a vertex in A(i), this

colour cannot appear in the vertices of H(i)
k . This means that we have a proper colouring of H(i)

k

with k colours, which contradicts χ (Hk) > k. So we must have χ (Hk+1) > k + 1.

Now we turn to showing that whp G(n) contains a copy of Hk+1.

We know that whp G(n) contains a copy of Hk, hence there is a positive integer nk such that
P
(
G(nk) contains a copy of Hk

)
≥ 1

2 . Let m = nk +
(
kMk
Mk

)
. We will show that

P
(
G(m) contains a copy of Hk+1

)
≥ 2

−(mkMk+1)(kMk
Mk

)
> 0. Once we have this, using that the num-

ber of independent copies of G(m) in G(n) diverges as n → ∞, we can conclude that G(n) contains
Hk+1 with high probability.

We can prove the lower bound on P
(
G(m) contains a copy of Hk+1

)
as follows.

Let A be a fixed set of size kMk in G(nk,1) and let A(0), ..., A
(
(kMk

Mk
)−1

)
be an enumeration of its size

Mk subsets. Note that for each i we have P
(
G(nk+i,2) contains a copy of Hk

)
≥ 1

2 , since G(nk+i,2)

contains copies of G(nk).
3We use that Mk ≥ k + 1, hence kMk ≥ (k + 1)(Mk − 1) + 1.
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On the event that G(nk+i,2) contains a copy H
(i)
k of Hk for each i ∈

{
0, 1...,

(
kMk
Mk

)}
, the prob-

ability that the vertices of each H
(i)
k are matched to the vertices of the corresponding A(i) is∏(kMk

Mk
)−1

i=0

(
2nk+i

kMk

)−1
≥ 2

−mkMk(kMk
Mk

). We used here that for each i there is a perfect matching
between the vertices of G(nc+i,2) and the vertices of G(nc+i,1), the latter graph contains G(nk,1)

containing A, and these matchings are independent for different i.

This finishes the proof that Hk+1 has the desired properties, hence finishing the proof of Lemma 8.1.

Remark 8.2. The above proof, if carried out with a bit more care, can provide a quantitative lower
bound on the growth of the chromatic number as n → ∞, however since this bound would be extremely
weak, we decided not to work out its details. It remains an open question to find a sensible lower
bound on χ

(
G(n)

)
as a function of n that holds with high probability.
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