Corrigé de l'examen d'Analyse Numérique du mardi 17 janvier 2012

Durée : 3h Aucun document n'est autorisé

Problème I

1. Soit $f \in C^4([0,1])$ et P le polynôme d'interpolation d'Hermite de degré 3 tel que :

$$P(x) = h_{0,0}(x) f(0) + h_{1,0}(x) f(1) + h_{0,1}(x) f'(0) + h_{1,1}(x) f'(1)$$

Calculez les expressions des polynômes de base $h_{i,j}$, $(i,j) \in \{0,1\}$.

Corrigé:

- $h_{0,0}(x)$ vérifie $h_{0,0}(0) = 1$, $h'_{0,0}(0) = 0$, $h_{0,0}(1) = 0$, $h'_{0,0}(1) = 0$, on trouve ainsi $h_{0,0}(x) = (x-1)^2(2x+1)$
- $-h_{1,0}(x)$ vérifie $h_{1,0}(0) = 0$, $h'_{1,0}(0) = 0$, $h_{1,0}(1) = 1$, $h'_{1,0}(1) = 0$, on trouve ainsi $h_{1,0}(x) = x^2(3-2x)$
- $-h_{0,1}(x)$ vérifie $h_{0,1}(0) = 0$, $h'_{0,1}(0) = 1$, $h_{0,1}(1) = 0$, $h'_{0,1}(1) = 0$, on trouve ainsi $h_{0,1}(x) = x(x-1)^2$
- $-h_{1,1}(x)$ vérifie $h_{1,1}(0) = 0$, $h'_{1,1}(0) = 0$, $h_{1,1}(1) = 0$, $h'_{1,1}(1) = 1$, on trouve ainsi $h_{1,1}(x) = x^2(x-1)$
- 2. Démontrez l'estimation d'erreur :

$$\forall x \in [0,1], \ \exists \xi_x \in]0,1[, \ f(x) - P(x) = \frac{1}{4!}x^2(x-1)^2 f^{(4)}(\xi_x)$$

Indication : on pourra utiliser la fonction $F(t) = f(t) - P(t) - (f(x) - P(x)) \frac{t^2(1-t)^2}{x^2(1-x)^2}$

Corrigé: L'estimation étant vraie pour x = 0 ou x = 1, on suppose $x \in]0,1[$. On vérifie alors que F(0) = F(1) = F(x) = 0, on en déduit par le théorème de Rolle que F' a deux zéros distincts de 0, 1 et x, comme de plus F'(0) = F'(1) = 0 cela fait 4 zéros distincts pour F', donc toujours par Rolle 3 pour F'', 2 pour $F^{(3)}$ et donc il existe ξ_x tel que $F^{(4)}(\xi_x) = 0$, la formule proposée s'en déduit.

3. Démontrez qu'il existe une unique formule de quadrature exacte pour les polynômes de degré inférieur ou égal à 3 de la forme :

$$\int_0^1 f(t)dt \approx a f(0) + b f(1) + c f'(0) + d f'(1)$$

Corrigé:

- Existence : la formule $\int_0^1 f(t)dt \approx \int_0^1 P(t)dt$ avec P le polynôme d'Hermite de la première question vérifie les propriétés demandées.
- Unicité : Soit une telle formule, alors, en prenant successivement pour f les polynômes de base de l'interpolation d'Hermite, on a nécessairement $a = \int_0^1 h_{0,0}(t)dt$, \cdots , $d = \int_0^1 h_{1,1}(t)dt$ et la formule consiste bien à intégrer le polynôme d'interpolation d'Hermite.
- 4. Vérifiez que la formule de quadrature de la question précédente s'écrit :

$$I(f) = \frac{1}{2} (f(0) + f(1)) + \frac{1}{12} (f'(0) - f'(1))$$

Corrigé: Le calcul des intégrales sur [0,1] des $h_{i,j}$ conduit à ce résultat.

Note : on aurait pu aussi répondre simultanément à la question précédente et à celle-ci en cherchant les coefficients de la formule en l'appliquant successivement à : f(x) = 1; (1 = a + b), f(x) = x; $(\frac{1}{2} = b + c - d)$, $f(x) = x^2$; $(\frac{1}{3} = b - 2d)$, $f(x) = x^3$; $(\frac{1}{4} = b - 3d)$.

5. Donnez une majoration de l'erreur $|\int_0^1 f(t)dt - I(f)|$

Corrigé: Comme $I(f) = \int_0^1 P(t)dt$ et que l'on a une estimation de l'erreur f(t) - P(t) on en déduit la majoration :

$$\begin{aligned} \left| \int_0^1 f(t)dt - I(f) \right| &= \left| \frac{1}{4!} \int_0^1 t^2 (t-1)^2 f^{(4)}(\xi_t) dt \right| \\ &\leq \frac{1}{4!} \sup_{t = 0}^{1} \left| f^{(4)}(x) \right| \int_0^1 t^2 (t-1)^2 dt \\ &\leq \frac{1}{720} \sup_{t = 0}^{1} \left| f^{(4)}(x) \right| \end{aligned}$$

6. En déduire une formule de quadrature sur le segment borné $[\alpha, \beta]$ de \mathbb{R} , exacte pour les polynômes de degré inférieur ou égal à 3, de la forme :

$$\int_{\alpha}^{\beta} f(t)dt \approx I_{\alpha}^{\beta}(f) = r f(\alpha) + s f(\beta) + u f'(\alpha) + v f'(\beta)$$

Exprimez les coefficients r, s, u, v en fonction de α et β .

Corrigé : Le changement de variable $t = \alpha + u(\beta - \alpha)$ permet de se ramener au segment [0,1], soit

$$\int_{\alpha}^{\beta} f(t)dt = (\beta - \alpha) \int_{0}^{1} g(u)du, \quad \text{avec} \quad g(x) = f(\alpha + x(\beta - \alpha))$$

et donc en utilisant la formule de quadrature sur [0,1] (avec g'x) = $(\beta - \alpha)f'(\alpha + x(\beta - \alpha))$):

$$\int_{0}^{\beta} f(t)dt \approx \frac{\beta - \alpha}{2} \left(f(\alpha) + f(\beta) \right) + \frac{(\beta - \alpha)^{2}}{12} \left(f'(\alpha) - f'(\beta) \right)$$

Le changement de variable étant affine il conserve le degré d'un polynôme, la formule est donc exacte pour les polynômes de degré inférieur ou égal à 3.

7. Etablissez la majoration d'erreur pour $f \in C^4([\alpha, \beta])$:

$$\left| \int_{\alpha}^{\beta} f(t)dt - I_{\alpha}^{\beta}(f) \right| \le \frac{(\beta - \alpha)^5}{720} \sup_{x \in [\alpha, \beta]} |f^{(4)}(x)|$$

Corrigé : De la majoration d'erreur sur [0,1] on déduit que l'erreur sur $\int_0^1 g(t)dt$ est majorée par $\frac{1}{720}\sup_{x\in]0,1[}|g^{(4)}(x)|=\frac{(\beta-\alpha)^4}{720}\sup_{x\in]\alpha,\beta[}|f^{(4)}(x)|$, d'où le résultat.

8. En déduire la formule de quadrature composée sur [a,b], où $h=\frac{b-a}{n}$ et $x_i=a+i\,h$:

$$\int_{a}^{b} f(t)dt \approx U(f) = h\left(\frac{f(x_0)}{2} + f(x_1) + \dots + f(x_{n-1}) + \frac{f(x_n)}{2}\right) + \frac{h^2}{12}\left(f'(x_0) - f'(x_n)\right)$$

Corrigé: En écrivant $\int_a^b f(t)dt = \sum_{i=0}^{i=n-1} \int_{x_i}^{x_{i+1}} f(t)dt$ puis en appliquant la formule de quadrature élémentaire pour chacune des intégrales de la somme on obtient

$$U(f) = \sum_{i=0}^{i=n-1} \left[\frac{h}{2} \left(f(x_i + f(x_{i+1})) + \frac{h^2}{12} \left(f'(x_i) - f'(x_{i+1}) \right) \right]$$

d'où la formule demandée.

9. Donnez une majoration de l'erreur $\left|\int_a^b f(t)dt - U(f)\right|$ pour $f \in C^4([a,b])$.

Corrigé:

$$\left| \int_{a}^{b} f(t)dt - U(f) \right| \leq \sum_{i=0}^{i=n-1} \left| \int_{x_{i}}^{x_{i+1}} f(t)dt - I_{x_{i}}^{x_{i+1}}(f) \right|$$

$$\leq \sum_{i=0}^{i=n-1} \frac{h^{5}}{720} \sup_{x \in]a,b[} |f^{(4)}(x)|$$

$$\leq \frac{h^{4}}{720} (b-a) \sup_{x \in]a,b[} |f^{(4)}(x)|$$

Problème II

Résolution au sens des moindres carrés d'un système surdimensionné

Soit A une matrice réelle $m \times n$ avec m > n et b un vecteur donné dans \mathbb{R}^m , le problème est consacré à la recherche d'un algorithme pour trouver un vecteur $x \in \mathbb{R}^n$ qui minimise la fonctionnelle :

$$J(y) = ||Ay - b||^2$$

où $\|.\|$ désigne la norme euclidienne dans \mathbb{R}^m . Pour éviter toute confusion, on notera (x, y) le produit scalaire euclidien dans \mathbb{R}^n et $\langle x, y \rangle$ le produit scalaire euclidien dans \mathbb{R}^m .

1. Montrez que $x \in \mathbb{R}^n$ vérifie $\{J(x + \lambda z) \geq J(x), \forall z \in \mathbb{R}^n, \forall \lambda \in \mathbb{R}\}$ si et seulement si $(A^t$ désignant la matrice transposée de A):

$$A^t A x = A^t b \quad . \tag{1}$$

En déduire que la condition précédente est une condition nécessaire et suffisante pour que x soit solution du problème :

$$J(x) = Inf\{J(y) \ ; \ y \in \mathbb{R}^n\}$$
 (2)

Corrigé : Développons $J(x + \lambda z)$:

$$J(x + \lambda z) = ||A(x + \lambda z) - b||_{2}^{2} = J(x) + 2\lambda < Ax - b, Az > +\lambda^{2}||Az||^{2}$$

Comme $\langle Ax - b, Az \rangle = (A^t(Ax - b), x)$, on voit donc que si $A^t(Ax - b) = 0$, alors $J(x + \lambda z) \geq J(x)$ quels que soient λ et z, c'est donc une condition suffisante pour que x réalise le minimum de J sur \mathbb{R}^n .

Réciproquement, supposons $A^t(Ax - b) \neq 0$, alors il existe z tel que < Ax - b, Az > soit strictement négatif (prendre $z = -A^t(Ax - b)$), en posant $\mu = -2 < Ax - b, Az >$, $\mu > 0$, $J(x + \lambda z) = J(x) - \lambda(\mu - \lambda ||Az||^2)$ et donc $J(x + \lambda z) < J(x)$ pour λ assez petit, x n'est pas minimum local, la condition est donc nécessaire.

2. Démontrez que $Ker(A) = Ker(A^tA)$, Ker(A) désignant le noyau de A.

Corrigé: Il est clair que $Ker(A) \subset Ker(A^tA)$, montrons l'inclusion inverse. Soit $x \in Ker(A^tA)$, i.e. $x \in \mathbb{R}^n$ et $A^tAx = 0 \in \mathbb{R}^n$, on en déduit $(A^tAx, x) = 0$ qui s'écrit aussi $\langle Ax, Ax \rangle = 0 = ||Ax||^2$ et donc $x \in Ker(A)$.

3. Soit r le rang de A (on rappelle que le rang d'une matrice ou d'une application linéaire est la dimension de son image). Quel est le rang s de A^tA ? En déduire que si r = n l'équation (1) admet une unique solution.

Corrigé: On sait que pour une matrice B de dimensions $p \times q$ on a la relation $q = \dim(Im(B)) + \dim(Ker(B))$. On en déduit, si $\dim(Im(A)) = r$, que $\dim(Ker(A)) = n - r$, donc le rang de A^tA est $s = n - \dim(Ker(A^tA)) = n - \dim(Ker(A)) = r$. Ainsi si r = n la matrice A^tA est inversible et l'équation (1) admet une unique solution.

4. Dans le cas général où $r \leq n$, montrez que :

$$Im(A^t A) = Ker(A)^{\perp} = \{ y \in \mathbb{R}^n \mid (y, x) = 0, \ \forall x \in Ker \ A) \}$$
 (3)

Corrigé :

- (a) Montrons $Im(A^tA) \subset Ker(A)^{\perp}$: soit $y \in Im(A^tA)$, i.e. $y = A^tAx$ avec $x \in \mathbb{R}^n$ et soit $z \in Ker(A)$, alors $(y, z) = (A^tAx, z) = \langle Ax, Az \rangle = 0$, c'est à dire y est orthogonal à tous les éléments de Ker(A), cqfd.
- (b) D'autre part, la relation sur les dimensions nous dit que $\dim(Ker(A)^{\perp}) = n \dim(Ker(A)) = r = \dim(Im(A^tA)).$

Les deux sous-espaces $Im(A^tA)$ et $Ker(A)^{\perp}$ ont même dimension et l'un est inclus dans l'autre ils sont donc égaux.

5. En déduire que $A^tb \in Im(A^tA)$ et qu'il existe une unique solution \hat{x} de l'équation (1) dans $Ker(A)^{\perp}$.

Corrigé: Compte tenu du résultat précédent, il faut montrer $A^tb \in Ker(A)^{\perp}$, mais soit $z \in Ker(A)$, $(A^tb, z) = < b$, Az >= 0 ce qui démontre cette inclusion. Comme $\mathbb{R}^n = Im(A^tA) \oplus Ker(A) = Im(A^tA) \oplus Ker(A^tA)$ on en déduit que A^tA est bijectif de $Im(A^tA)$ sur lui même, donc il existe une unique solution \hat{x} de l'équation (1) dans $Im(A^tA) = Ker(A)^{\perp}$.

6. Montrez que \hat{x} est la solution de norme euclidienne minimale de l'équation (1).

Corrigé: Toute autre solution x de (1) s'écrira $x = \hat{x} + z$ avec $z \in Ker(A)$, et donc $||x||^2 = ||\hat{x}||^2 + ||z||^2$ puisque $(\hat{x}, z) = 0$, (attention ici ||x|| désigne la norme euclidienne dans \mathbb{R}^n), ce qui prouve que \hat{x} est la solution de norme euclidienne minimale.

7. On suppose dans les questions qui suivent r < n et on cherche à calculer la solution \hat{x} de l'équation (1) dans $Ker(A)^{\perp}$. On considère la méthode itérative :

$$(A^t A + \alpha I)x^{k+1} = A^t b + \alpha x^k \tag{4}$$

avec x^0 arbitraire dans \mathbb{R}^n et $\alpha > 0$.

(a) Montrez que le rayon spectral de la matrice d'itération de la méthode (4) est 1.

Corrigé: La matrice d'itération est $\alpha(A^tA+\alpha I)^{-1}$; c'est une matrice symétrique dont les valeurs propres sont $\frac{\alpha}{\alpha+\lambda}$ avec λ valeur propre de la matrice symétrique A^tA , comme $(A^tAx,x)=< Ax, Ax>\geq 0$ A^tA est semi-définie positive donc $\lambda\geq 0$, mais comme r< n le noyau de A^tA n'est pas réduit à 0, elle a des valeurs propres nulles, la plus grande valeur propre de la matrice d'itération est donc 1.

(b) En utilisant le fait que $\mathbb{R}^n = Im(A^tA) \oplus Ker(A^tA)$, montrez que néanmoins la méthode converge toujours.

Corrigé: On a vu que $\mathbb{R}^n = Im(A^tA) \oplus Ker(A^tA)$ et que $A^tb \in Im(A^tA)$. Si on décompose x^k suivant ces deux sous-espaces : $x^k = x_a^k + x_b^k$ avec $x_a^k \in Im(A^tA)$ et $x_b^k \in Ker(A^tA)$, on obtient :

$$(A^{t}A + \alpha I)(x_a^{k+1} + x_b^{k+1}) = A^{t}b + \alpha(x_a^{k} + x_b^{k})$$

et par projection sur les deux sous-espaces orthogonaux

$$(A^tA + \alpha I)x_a^{k+1} = A^tb + \alpha x_a^k \quad \text{et} \quad x_b^{k+1} = x_b^k$$

Ansi la composante sur $Ker(A^tA)$ ne change pas et la composante sur $Im(A^tA)$ évolue; mais sur ce dernier sous-espace A^tA est bijective donc définie positive et la matrice d'itération (restreinte au sous-espace) a un rayon spectral strictement inférieur à 1 et donc la méthode y est convergente. Les composantes suivant les deux sous-espaces étant convergentes, la méthode est globalement convergente.

(c) Montrez que si $x^0 \in Ker(A)^{\perp}$ (par exemple $x^0 = 0$ ou $x^0 = A^t b$) alors la suite converge vers \hat{x} .

Corrigé: Si $x^0 \in Ker(A)^{\perp}$, $x_b^0 = 0$ et tous les x_b^k sont nuls. La limite z de la suite vérifie $(A^tA + \alpha I)z = A^tb + \alpha z$ avec $z \in Ker(A)^{\perp}$, c'est donc la solution unique de (1) dans $Ker(A)^{\perp}$, c'est à dire \hat{x} .