Test du 9 janvier 2008

Durée 1h30, les documents et calculatrices sont interdits.

La qualité de rédaction et de la présentation entrera pour une part importante dans l'appréciation des copies. Le barême tiendra compte de la longueur du sujet.

Les 2 exercices sont indépendants.

Questions de cours :

- 1. Soit f, une fonction définie sur un sous-ensemble D_f de \mathbb{R}^2 . Donner la définition du graphe de D_f .
- 2. Soit f, une fonction de classe C^1 sur un ouvert U, et $M_0 = (x_0, y_0) \in U$. Donner la définition de l'approximation affine de f au voisinage du point M_0 .
- 3. Donner la définition d'une fonction convexe de classe C^1 sur un domaine convexe de \mathbb{R}^2 .
- 4. Soit f, une fonction de classe C^2 sur un ouvert U, et $M_0 = (x_0, y_0) \in U$. Donner la définition de la matrice hessienne de f au point M_0 .

Exercice 1.

Soit f la fonction définie par

$$f(x;y) = x^4y - y^2 - y \ln(x+1) + 2.$$

On note D son ensemble de définition, qui est un sous-ensemble ouvert de \mathbb{R}^2 .

- 1. Montrer que D est un sous-ensemble convexe de \mathbb{R}^2 , puis que f est de classe \mathcal{C}^2 sur D.
- 2. Calculer les dérivées partielles premières et secondes de f.
- 3. Écrire la formule de Taylor-Young de f à l'ordre 2 au point (0,0).
- 4. En déduire l'équation du plan tangent au graphe de f en ce point et la position du graphe par rapport au plan tangent.
- 5. Quelle est la nature du point (0;0)?
- 6. f est-elle convexe sur D? concave?
- 7. Montrer que f n'est ni majorée, ni minorée sur D.
- 8. Soit ϕ la fonction définie par

$$\phi(x) = x^4 - \ln(x+1).$$

- (a) Montrer que ϕ est définie, convexe et de classe \mathcal{C}^2 sur $]-1,+\infty[$.
- (b) Déduire du tableau de variations de la fonction ϕ' que la fonction ϕ a un unique minimum sur $]-1,+\infty[$ (que l'on ne cherchera pas à calculer), et tracer le graphe de la fonction ϕ .
- (c) En déduire la courbe de niveau 2 de la fonction f, et tracer cette courbe de niveau.
- 9. Calculer une valeur approchée de f(0,1;1,02).
- 10. On fixe la valeur de x à 0. Quelle est la variation absolue de la variable y à partir de 1, pour que la valeur de f diminue (relativement) de 3%?

Exercice 2.

1. Soit f, la fonction définie par

$$f(r) = \ln\left(\frac{4-r}{r-1}\right).$$

- (a) Déterminer l'ensemble de définition D_f de la fonction f.
- (b) La fonction f a-t-elle des extremums sur D_f ? Si oui, lesquels?
- 2. Soit g, la fonction définie par

$$g(x;y) = \ln\left(\frac{4-x^2-y^2}{x^2+y^2-1}\right).$$

- (a) Déterminer l'ensemble de définition D_g de la fonction g.
- (b) Représenter géométriquement l'ensemble D_g . L'ensemble D_g est-il borné? convexe? On justifiera avec soin chacune des réponses.
- (c) Soit $k \in \mathbb{R}$. Montrer que la courbe de niveau k, notée C_k , de la fonction g est le cercle de centre 0 et de rayon $\sqrt{\frac{4+e^k}{1+e^k}}$.

 Indication. On pourra poser $r = x^2 + y^2$ et remarquer que g(x; y) = f(r).
- 3. (a) Vérifier que g est de classe C^2 sur D_g , et calculer les dérivées partielles premières et secondes de g.
 - (b) La fonction g a-t-elle des extremums sur D_g ? Si oui, lesquels?
 - (c) La fonction g est-elle convexe sur D_g ? concave?
- 4. (a) Écrire l'équation du plan tangent π_0 en $M_0 = (1,1)$ à la surface représentative \mathcal{S}_g de la fonction g.
 - (b) Quelle est la position relative du plan tangent π_0 par rapport à la surface S_g ?
 - (c) La fonction g est-elle localement convexe en M_0 ? concave?
- 5. (a) Écrire l'équation du plan tangent π_1 en $M_1 = (\sqrt{2}, 0)$ à la surface représentative S_g de la fonction g.
 - (b) Quelle est la position relative du plan tangent π_1 par rapport à la surface \mathcal{S}_g ?
 - (c) La fonction g est-elle localement convexe en M_1 ? concave?