UE 13 : SOUTIEN – SEMAINE DU 25 NOVEMBRE AU 1^{er} DÉCEMBRE

Exercice 1

On note f la fonction définie pour tout (x;y) de \mathbb{R}^2 par $f(x;y) = x^2y^2 + 2xy - 3x^2 + 1$.

- **1.** Montrer que f est de classe C^2 sur \mathbb{R}^2 .
- 2. Calculer les dérivées partielles premières de f puis les dérivées partielles secondes de f.
- 3. Le théorème de Schwarz est-il vérifié?

Exercice 2

On note g la fonction de deux variables réelles définie par $g(x;y) = \ln(y^3 + x^2y - y)$.

- **1.a.** Quel est l'ensemble de définition de g? Le dessiner.
- 1.b. Démontrer que l'ensemble de définition de g n'est ni convexe, ni borné.
- **2.** Donner le développement limité d'ordre 1 de g au voisinage de (1;1).
- 3. Quelle est une équation du plan tangent à la surface représentative de g au point (1;1;0)?
- **4.** Utiliser la question **2.** pour donner une valeur décimale approchée de g(0,8;1,1).

Exercice 3

Soit f la fonction définie par $f(x;y) = \frac{3x}{x+y}$ pour tous les réels x et y vérifiant $x+y \neq 0$.

- 1. Dire brièvement pourquoi f est de classe \mathcal{C}^1 sur son ensemble de définition.
- **2.a.** Donner l'expression du gradient de f.
- **2.b.** En utilisant la question précédente, estimer la différence f(0,9;-2,2)-f(1;-2).
- **3.a.** Calculer les élasticités partielles de f.
- **3.b.** La variable x, initialement égale à 2, diminue de 6 %; dans le même temps, la variable y, initialement égale à 1, augmente de 9 %. À l'aide d'un calcul approché, déterminer la variation relative de f(x;y) liée à ces variations.
- **4.** Lorsque (x;y) passe de (1;1) à (1,01;0,97), quelle est approximativement la variation de f(x;y)? On donnera la variation absolue et la variation relative.

Exercice 4

On note φ et ψ les fonctions de deux variables réelles définies respectivement par :

$$\varphi(x;y) = \frac{2x^2}{y}$$
 et $\psi(x;y) = \frac{2y}{x^3}$.

Donner l'ensemble de définition de φ puis calculer ses dérivées partielles premières et secondes. Faire de même pour ψ .

Exercice 5

Donner l'ensemble de définition des trois fonctions suivantes. Dire pourquoi chacune est de classe \mathcal{C}^1 sur son ensemble de définition, puis calculer ses dérivées partielles premières.

- **1.** La fonction f définie par $f(x;y) = (x-y)(x-y^2)$.
- **2.** La fonction g définie par $g(x;y) = \exp\left(\frac{3x-2y}{x^2+1}\right)$.
- **3.** La fonction h définie par $h(x;y) = x^2 \ln(x^2 + y^2)$.

Exercice 6

On note f la fonction de deux variables réelles dont l'expression est :

$$f(x;y) = \frac{xy+1}{x^2 - y}.$$

- 1. Préciser le domaine de définition de f, noté D.
- **2.** Démontrer que D n'est pas un convexe de \mathbb{R}^2 .
- 3. Justifier que f est de classe \mathcal{C}^1 sur D, puis calculer les dérivées partielles premières de f.
- **4.** Calculer le gradient de f au point (0;1).

Exercice 7

Étudier précisément les fonctions définies par les expressions suivantes.

$$f(x) = \frac{1}{x} \ln \left(\frac{e^x - 1}{x} \right)$$

$$g(x) = x + \sqrt{|x^2 - 1|}$$

$$h(x) = \frac{1}{2} \ln \left(\left| \frac{x-1}{x+1} \right| \right)$$

Exercice 8

On note f la fonction de deux variables réelles définie par $f(x;y) = \ln(x^2 + y^2 + 2x + 2y + 2)$. Le domaine de définition de la fonction f, inclus dans \mathbb{R}^2 , sera noté \mathcal{D}_f .

- 1. Représenter \mathcal{D}_f , puis démontrer que \mathcal{D}_f n'est pas un convexe de \mathbb{R}^2 .
- **2.** Répondre OUI ou NON, sans justifier : dans \mathbb{R}^2 , l'ensemble \mathcal{D}_f est-il ouvert ? compact ?
- 3. Déterminer la courbe de niveau 0 de f; en donner une représentation.
- 4. Parmi les égalités ci-dessous, lesquelles sont vraies? Justifier.

(a)
$$\frac{\partial f}{\partial x}(-1;7) = 0.$$
 (b) $f(1;1) = 3\ln 2.$ (c) $\frac{\partial f}{\partial y}(2;0) = \frac{2}{5}.$