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Abstract

Motivated by the design of fast reinforcement learning algorithms, see [17], we study the
diffusive limit of a class of pure jump ergodic stochastic control problems. We show that,
whenever the intensity of jumps ε−1 is large enough, the approximation error is governed by the
Hölder regularity of the Hessian matrix of the solution to the limit ergodic partial differential
equation and is, indeed, of order ε

γ
2 for all γ ∈ (0, 1). This extends to this context the results

of [1] obtained for finite horizon problems. Using the limit as an approximation, instead of
directly solving the pre-limit problem, allows for a very significant reduction in the numerical
resolution cost of the control problem. Additionally, we explain how error correction terms of
this approximation can be constructed under appropriate smoothness assumptions. Finally,
we quantify the error induced by the use of the Markov control policy constructed from the
numerical finite difference scheme associated to the limit diffusive problem, which seems to be
new in the literature and of independent interest.

1 Introduction

Let N be a random point process with predictable compensator ην(de)dt, for some finite probability
measure ν on Rd′ , d′ ∈ N, η > 0, and let Xx,α be the solution of

Xx,α = x+

∫ ·
0

∫
Rd′

b(Xx,α
s− , αs, e)N(de, ds) ,
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in which α belongs to the set A of predictable controls with values in some given compact set
A ⊂ Rm and the initial data x ∈ Rd, m ∈ N. Under some standard stability assumptions, see e.g.
[3, 28], the value of the ergodic optimal control problem

ρ∗ := sup
α∈A

lim inf
T→+∞

1

ηT
E
[∫ T

0

r(X0,α
s− , αs)dNs

]
with Nt := N(Rd′ , [0, t]), t ≥ 0, along with some continuous function w, solves the integro-differential
equation

ρ∗= sup
a∈A

{
η

∫
[w(·+ b(·, a, e))− w]ν(de) + r(·, a)

}
on Rd (1.1)

possibly in the viscosity solution sense. This characterisation leads to numerical schemes for
approximating the value of the problem and the Markovian optimal control.

However, (1.1) is non-local in nature which means that, unless ν is concentrated on a small number
of points, the cost of numerical approximation is large, in particular when the intensity η is. This
is a problem, e.g., for bidding problems (see e.g. [16]) in online display-ad auctions, where the
system moves near-continuously in time, meaning that η is very large, and where unknown system
parameters motivate the use of reinforcement learning to solve the control problem. Reinforcement
learning compounds the cost by requiring computation of the optimal strategy for many plausible
values of the parameters, namely at each time the value of the parameter is updated given the flow
of new information, see [17] for more details.

On the other hand, when η is very large, asymptotic regimes exist which offer an alternative
approximation path, notably the diffusive limit on which this paper focuses. Indeed, taking η = ε−1

and b(x, a, e) = εb1(x, a, e) + ε
1
2 b2(x, e), with

∫
Rd′ b2(·, e)ν(de) = 0, an immediate second order

expansion suggests that (ρ∗,w) converges as ε→ 0 to the solution (ρ̄∗, w̄) of

ρ̄∗= sup
ā∈A

{∫
Rd′

b>1 (·, ā, e)ν(de)Dw̄ + Tr

[∫
Rd′

b2b
>
2 (·, e)ν(de)D2w̄

]
+ r(·, a)

}
on Rd. (1.2)

Unlike (1.1), (1.2) is a local equation and much more easily solved numerically. Note that another
possible limit regime, albeit less precise, is obtained via a first order expansion as in [18], which
corresponds to considering a fluid limit.

For such a specification of the coefficients (η, b), the existence of a diffusive limit is expected, see
e.g. [22] for general results on the convergence of stochastic processes. Stability of viscosity solutions,
see e.g. [19, Section 3], can also be used to prove the convergence of the value function of stochastic
control problems. This has been a subject of particular interest in insurance and queueing network
literatures, see e.g. [8, 13, 14]. Nonetheless, these approaches do not permit the characterisation of
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the speed of convergence in the case of a (generic) ergodic optimal control problem as defined in
Section 2 below, which is essential for regret analysis and design of efficient reinforcement learning
algorithms. See [17] for a precise treatment of the Reinforcement Learning problem in this setting.

The aim of this paper is to characterize this convergence speed and explain how to numerically
construct, in an efficient way, an approximation of the optimal control. A first step in this direction
was done by [1] who considered finite time horizon problems. Such problems are easier to handle
from a mathematical point of view, but are unfortunately not adapted to reinforcement learning
algorithms that are based on a regret criterion that is intimately related to an ergodic control
problem, see [17] again.

Still, a similar approach can be used, up to additional technicalities. As in [1], we study the regularity
of w̄ in the solution couple (ρ̄∗, w̄) to (1.2). We show that its second order derivative is (locally)
γ-Hölder with a constant of at most linear growth in x, for some γ ∈ (0, 1], whenever the coefficients
of (1.2) are uniformly Lipschitz in space,

∫
b1(·, e)ν(de) has linear growth, b2 and r are continuous

and bounded, and under a uniform ellipticity condition. By a second order Taylor expansion,
this allows us to pass (rigorously) from (1.2) to (1.1) up to an error term of order ε

γ
2 (locally),

and therefore provides the required convergence rate by verification. In general this rate can not
be improved. As a by-product, the Markovian control taken from the Hamilton-Jacobi-Bellman
equation of the diffusive limit problem provides an ε

γ
2 -optimal control for the original pure-jump

control problem. Under additional regularity assumptions, it can even be improved by constructing
a first-order correction term.

In principle, this provides an efficient way of constructing an almost optimal Markovian control.
However, it still remains to build up a pure numerical scheme. To complete the picture we therefore
derive a convergence rate for a finite difference method for the numerical estimation of ρ̄∗, depending
again on γ. More importantly, we explain how to numerically construct an almost optimal Markovian
control process based on a smoothed version of the numerical approximation of w̄ and we obtain a
convergence rate towards ρ̄∗, and therefore ρ∗, of the expected average gain associated to such a
control. The latter seems to be (surprisingly) completely new and of own interest in the optimal
control literature.

As an example of application, we consider in Section 5 a simplified repeated online auction bidding
problem, where a buyer seeks to maximise its profit when facing both competition and a seller who
adapts its price to incoming bids. Our numerical experiments show that our approximation permits
a considerable gain in computation time relative to a direct resolution of the pure-jump problem (as
expected).

Note that we restrict here to the case where b2 does not depend on the value of the control, meaning
that w̄ solves a semi-linear equation. In principle, the fully non-linear case could be studied along
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the same lines of arguments but the required regularity of the corresponding function w̄ would be
much more complex to derive. We avoid considering this more general case for sake of simplicity.

Notations: We collect here some standard notations that will be used throughout this paper. We
take R+ := [0,+∞) and R∗+ := (0,+∞) throughout. Any element x of Rd is viewed as a column
vector. Md (resp. Sd) denotes the collection of (resp. symmetric) d-dimensional matrices. On Rd or
Md, the superscript > denotes transposition, we set 〈x, y〉 := x>y and |x| :=

√
〈x, x〉 for x, y ∈ Rd.

We let Tr[M ] denote the trace of M ∈Md and |M | be the Euclidean norm of M viewed as a vector
of Rd×d. We denote by B`(x) the open ball centered at x ∈ Rd of radius ` > 0. Given an open set
O ⊂ Rn, n ≥ 1, p ∈ {0, 1, 2}, we use the standard notation Cp(O) to denote the space of p-times
continuously differentiable real-valued maps u on O, and Cpb (O) to denote the subspace of functions
u ∈ Cp(O) such that

‖u‖Cpb (O) :=

p∑
j=0

sup
x∈O

∣∣Dju(x)
∣∣ <∞

in which D0u := u, D1u is the gradient of u, as a line vector, D2u is the Hessian matrix of u. Given
γ ∈ [0, 1], we denote the γ-Hölder modulus of u ∈ C0(O) on O as

[u]γC0(O) := sup
x,x′∈O

|u(x′)− u(x)|
|x′ − x|γ

,

where we use the convention 0/0 = 0. If u = (u1, · · · , ud) takes values in Rd, d ≥ 1, we use the
same notation to denote the sum of the elements {[ui]γC0(O), i ≤ d}. We write u ∈ Cp,γ(O) if Dpu is
γ-Hölder on each compact subset of O, and u ∈ Cp,γb (O) if

‖u‖Cp,γb (O) := ‖u‖Cpb (O) + [Dpu]γC0(O) <∞.

If u is restricted to take values in a subset O′ of R, we write Cp(O;O′), Cpb (O;O′), Cp,γ(O;O′) or
Cp,γb (O;O′) for the corresponding sets. We also use the notation C0

lin(O) to denote the collection of
continuous real-valued function u such that

[u]C0
lin(O) := sup

x∈O

|u(x)|
1 + |x|

<∞.

In all the above notations, we omit O if it is equal to Rd.

2 Pure jump Ergodic Optimal Control

In order to alleviate notations, we first consider the case where the intensity of the jump process is
given, and recall rather standard results from the ergodic control litterature.
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Let Ω = D denote the space of d-dimensional càdlàg functions on R+ andM(Rd′ × R+) denote the
collection of positive finite measures on Rd′ × R+, for some d, d′ ∈ N∗. Consider a measure-valued
map N : D 7→ M(Rd′×R+) and a probability measure P on D such that N is a right-continuous real-
valued Rd′-marked point process with compensator ην(de)dt, in which η > 0 and ν is a probability
measure on Rd′ . See e.g. [12]. For ease of notations, we set Nt := N(Rd′ , [0, t]) for t ≥ 0.

Let F = (Ft)t≥0 be the P-augmentation of the filtration generated by (
∫ t

0

∫
Rd′ exp(e)N(de, dr))t≥0.

Given a compact set A ⊂ Rm, m ∈ N, let A be the collection of F-predictable processes with values
in A. Throughout this paper, unless otherwise stated, we will work on the filtered probability space
(Ω,F ,F,P), where F = F∞.

Given (t, x) ∈ R+ × Rd, α ∈ A, and a measurable map (x, a, e) ∈ Rd × A × Rd′ 7→ b(x, a, e) ∈ Rd,
we define the càdlàg process Xx,α as the solution of

Xx,α
· = x+

∫ ·
0

∫
Rd′

b(Xx,α
s− , αs, e)N(de, ds) . (2.1)

Note that, since the marked point process N has finite activity, the above can be defined path-wise
by (a.s.) finite induction on the jump times.

We then consider the ergodic gain functional

ρ(x, α) := lim inf
T→∞

1

ηT
E
[∫ T

0

r(Xx,α
t− , αt)dNt

]
, (x, α) ∈ Rd ×A, (2.2)

for some bounded measurable map (x, a) ∈ Rd × A 7→ r(x, a) ∈ R. Note that this actually also
pertains to the case where the reward function r depends on the mark e, by arguing as in Remark 2.2
below. By the same remark, the cost could have an extra component given in term of the Lebesgue
measure.

In the above the scaling by 1/(ηT ) means that we consider the gain by average unit of time the
controller acts on the system. Indeed, E[NT ] = ηT and the control only affects the system at jump
times of N .

This functional induces an infinite horizon control problem corresponding to finding the value
function

ρ∗ := sup
α∈A

ρ(·, α). (2.3)

All throughout this paper, we make the following assumptions. First, we impose some control on
the coefficients (b, r).
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Assumption 1. The map (b, r) is continuous. Moreover, there exists Lb,r > 0 such that

[b(·, a, e)]C0
lin

+ ‖r(·, a)‖C0,1
b
≤ Lb,r, for all (a, e) ∈ A× Rd′ .

The next assumption, known as asymptotic flatness, guarantees that each control process contracts
all possible paths of (2.1) exponentially fast to a single trajectory. This is a sufficient condition to
ensure that ρ∗ is constant, i.e. that initial conditions are forgotten. See the proof of Lemma A.1 in
the Appendix. It can be compared to standard assumptions used in the Brownian diffusion case as
in e.g. [3, Proof of Lemma 7.3.4], up to a more abstract statement. We refer to Example 2.1 below
for a case of application.

Assumption 2. There is ζ ∈ C0(Rd × Rd;R+) such that

(i) There exists (`ζ , Lζ) ∈ (R∗+)2 and pζ ≥ 1 for which

`ζ |x− x′|pζ ≤ ζ(x, x′) ≤ Lζ |x− x′|pζ , for all x, x′ ∈ Rd.

(ii) There exists Cζ > 0 such that for all x, x′ ∈ Rd, a ∈ A

η

∫
Rd′
{ζ(x+ b(x, a, e), x′ + b(x′, a, e))− ζ(x, x′)} ν(de) ≤ −Cζζ(x, x′) . (2.4)

Our last assumption is typically required to control the long-time behavior of solutions of (2.1), see
Lemma A.2 in the Appendix. It is a form of Lyapunov stability assumption, see e.g. [10, 21] for
comparison.

Assumption 3. There is ξ ∈ C0(Rd × Rd;R+) such that

(i) There exists (`ξ, Lξ) ∈ (R∗+)2 and pξ ≥ 1 for which

`ξ|x|pξ ≤ ξ(x) ≤ Lξ|x|pξ , for all x ∈ Rd.

(ii) There exists C1
ξ > 0 and C2

ξ ∈ R such that for all x ∈ Rd, a ∈ A

η

∫
Rd′
{ξ(x+ b(x, a, e))− ξ(x)} ν(de) ≤ −C1

ξ ξ(x) + C2
ξ . (2.5)

Example 2.1. Consider a bidding problem in a repeated auction with reserve (see e.g. [24] for an
introduction to auctions), in which X stands for the current reserve price and α is the bid. We
set e = (e1, e2, e3, e4) ∈ R4 and consider the dynamic induced by b(x, a, e) := e1(ae2 + e3 − x) for
A := [a, a]⊂ R+. This means that the dynamic is mean-reverting around the level ae2 + e3. In this
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formula, e2 corresponds to the retail value (the price at which the bidder will sell to the final client
the product he bought) so that the value a of the control is the so-called shading factor. Then, e1>0

is the realization of a random mean-reversion speed and e3 is the realisation of an exogeneous noise.
If the reserve price value x is smaller than the bid price ae2 (up to the additional noise value e3)
then it moves up for the next auction, and the other way around if it is bigger. In a second price
auction, with e4 as the value of the competition bid, the natural reward function is

r(x, a) =

∫
R4

(e2 − x ∨ e4)1{ae2≥x∨e4}ν(de) .

We assume that ν([0, 1]×R+×R2) = 1, 1−
∫
R4(1− e1)2pν(de) =: m1 ∈ (0, 1] and that

∫
R4 supa∈A |ae1e2+

e1e3|2pν(de)<∞, for some integer p ≥ 1. Then, Assumption 2 holds with ζ(x, x′) := |x− x′|2p and
Cζ = ηm1, while Assumption 3 holds with ξ(x) = |x|2p, C1

ξ = 1
2
ηm1 and C2

ξ = ηCe for some Ce > 0

that does not depend on η.

Under a standard log-normal model for valuations (see e.g. [32]), and a uniform competition on [0, c̄]

for some c̄ > 0, it is easily verified that Assumption 1 holds. This example is developped further in
Section 5.

Under the above assumptions, we obtain the following classical result, Theorem 2.3 below whose
proof is rather standard, but produced in the Appendix for completeness. To state it, we first need
to introduce the following auxiliary optimal control problems, defined for all x ∈ Rd, λ, T > 0 and
t ≤ T :

Vλ(x) := sup
α∈A

Jλ(x, α) with Jλ(x, α) :=
1

η
E
[∫ ∞

0

e−λsr(Xx,α
s− , αs)dNs

]
(2.6)

and

VT (t, x) := sup
α∈A

JT (t, x, α) with JT (t, x, α) :=
1

η
E
[∫ T

t

r(X t,x,α
s− , αs)dNs

]
(2.7)

where X t,x,α is the solution of (2.1) on [t,∞) such that X t,x,α
t = x.

Remark 2.2. Note that Assumption 1 implies that, for all t ≥ 0, (x, α) ∈ Rd × A sup[0,t] |Xx,α|
has moments of any order. Also, it follows from the Assumption 1 again and the fact that ν is a
probability measure that

ρ(x, α) = lim inf
T→∞

1

T
E
[∫ T

0

r(Xx,α
s , αs)ds

]
,

Jλ(x, α) = E
[∫ ∞

0

e−λsr(Xx,α
s , αs)ds

]
, and JT (t, x, α) = E

[∫ T

t

r(X t,x,α
s , αs)ds

]
.
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For the same reason, we could consider expected gains of the more general form

1

ηT
E
[∫ T

0

∫
Rd′

r̃(Xx,α
s− , αs, e)N(de, ds)

]
=

1

T
E
[∫ T

0

∫
Rd′

r̃(Xx,α
s , αs, e)ν(de)ds

]
upon replacing r by (x, a) ∈ Rd × A 7→

∫
Rd′ r̃(x, a, e)ν(de).

Recall that ρ∗ is defined in (2.3). In the following, we show that this function is actually a constant,
i.e. ρ∗ = ρ∗(0) on Rd.

Theorem 2.3. Let Assumptions 1, 2 and 3 hold. Then, there exists sequences (λn)n≥1 going to 0

and (Tn)n≥1 going to +∞ such that (λnVλn)n≥1 and (T−1
n VTn(0, ·))n≥1 converge uniformly on compact

sets to ρ∗(0), and such that (Vλn − Vλn(0))n≥1 converges uniformly on compact sets to a function
w ∈ C0,1 that solves

ρ∗ = sup
a∈A

{
η

∫
Rd′

[w(·+ b(·, a, e))− w] ν(de) + r(·, a)

}
, on Rd. (2.8)

Moreover, ρ∗ is constant over Rd and, if (w̃, ρ̃) ∈ C0
lin × R, solves the ergodic equation

ρ̃ = sup
a∈A

{
η

∫
Rd′

[w̃(·+ b(·, a, e))− w̃]ν(de) + r(·, a)

}
, on Rd,

then ρ̃ = ρ∗.

Remark 2.4. As a by-product of Theorem 2.3 and the first part of the proof of Lemma A.4, for all
x ∈ Rd, there exists an optimal Markovian control defined by α̂ := â(Xx,α̂

·− ) in which â is a measurable
map satisfying

η

∫
Rd′

w(·+ b(·, â(·), e))ν(de) + r(·, â(·)) = max
a∈A

{
η

∫
Rd′

w(·+ b(·, a, e))ν(de) + r(·, a)

}
, on Rd.

Moreover,

ρ∗ = lim
T→∞

1

ηT
E
[∫ T

0

r(Xx,α̂
t− , α̂t)dNt

]
.

3 Approximation for models with large activity

Given an ε ∈ (0, 1), we now replace η by

ηε := ε−1 .

8



In the following, we omit the dependence of N and Xx,α on ε for ease of notations and set

ρ∗ε := sup
α∈A

lim inf
T→∞

1

ηεT
E
[∫ T

0

r(X0,α
t− , αt)dNt

]
.

We shall see that ρ∗ε, together with the associated optimal policy, can be approximated by considering
its diffusive limit as ε→ 0, upon assuming that the jump coefficient b := bε introduced in Section 2
is of the form

bε = εb1 +
√
εb2 ,

and making the following assumption.

Assumption 4. We have b = εb1 +
√
εb2 for some continuous functions b1 : Rd × A × Rd′ 7→ Rd

and b2 : Rd × Rd′ 7→ Rd such that:

(i) There exists Lb1,b2 > 0 such that

[b1(·, a, e)]C0
lin

+ ‖b2(·, e)‖C0
b
≤ Lb1,b2

for all (a, e) ∈ A× Rd′.

(ii) There exists ς > 0 such that∫
Rd′

b2(·, e)ν(de) = 0 and
∫
Rd′

b2(·, e)b2(·, e)>ν(de) ≥ ςId

where Id is the identity matrix.

(iii) The map

(x, a) ∈ Rd × A 7→ µ(x, a) :=

∫
Rd′

b1(x, a, e)ν(de)

is Lipschitz in x uniformly in a, and there exists a Lipschitz Rd×d-valued function σ defined on
Rd such that

σσ> =

∫
Rd′

b2(·, e)b>2 (·, e)ν(de).

(iv) The estimates of Assumptions 1, 2 and 3 hold for each (ηε,bε, r) in place of (η, b, r), uniformly
in ε > 0.

Example 3.1. Consider the context of Example 2.1 in which η = ε−1 and

bε(x, a, e) = e1(ε(e2a− x) + ε
1
2 e3), (x, a, e) ∈ Rd × A× R4
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with ν as in Example 2.1 such that in addition
∫
R4 e1e3ν(de) = 0. In this context, we obtain

µ(x, a) = n2a− n1x, with n1 :=
∫
R4 e1ν(de) and n2 :=

∫
R4 e1e2ν(de), and σ(x)2 =

∫
R4 |e1e3|2ν(de).

Assume that n1 > 0. Using a second order Taylor expansion around ε = 0, one easily checks that
Assumption 3 holds with ξ(x) = |x|2p, p ≥ 1, for some C1

ξ and C2
ξ that do not depend on ε > 0.

Similarly, Assumption 2 holds with ζ(x, x′) = |x − x′|2p, p ≥ 1, for some Cζ > 0, uniformly in
ε ∈ (0, ε◦), for some ε◦ > 0 small enough.

3.1 Candidate diffusion limit

Let P̄ be a probability measure on D and let W be a stochastic process such that W is a P̄-Brownian
motion, let F̄ = (F̄s)s≥0 be the P̄-augmentation of the filtration generated by W , and let Ā be the
collection of F̄-predictable processes taking values in A. Given ᾱ ∈ Ā, we can then define X̄x,ᾱ as
the unique strong solution (see [34, Thm. 1]) of

X̄x,ᾱ = x+

∫ ·
0

µ(X̄x,ᾱ
s , ᾱs)ds+

∫ ·
0

σ(X̄x,ᾱ
s )dWs . (3.1)

The corresponding ergodic control problem is defined by

ρ̄∗(x) := sup
ᾱ∈Ā

lim inf
T→∞

1

T
E
[∫ T

0

r(X̄x,ᾱ
t , ᾱt)dt

]
, x ∈ Rd.

As in Section 2, we define for λ > 0 and x ∈ Rd

V̄λ(x) := sup
ᾱ∈Ā

J̄λ(x, ᾱ) with J̄λ(x, ᾱ) := E
[∫ ∞

0

e−λsr(X̄x,ᾱ
s , ᾱs)ds

]
,

and impose conditions corresponding to the estimates of Lemma A.1 and A.2.

Assumption 5. There exists LV̄ , CX̄ > 0 and pX̄ ≥ 1 such that:
(i) For all x, x′ ∈ Rd and λ ∈ (0, 1),

|V̄λ(x)− V̄λ(x′)| ≤ LV̄ |x− x′|.

(ii) For all x ∈ Rd and ᾱ ∈ Ā,

E[|X̄x,ᾱ
t |pX̄ ] ≤ CX̄

{
e−t/CX̄ |x|pX̄ + 1

}
, t ≥ 0.

Remark 3.2. (i) The condition (i) of Assumption 5 holds for instance under [3, Assumption 7.3.1].
Indeed, the latter implies a similar bound as (A.3), see [3, Lemma 7.3.4], and the estimate of (i)
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then follows from the same arguments as in the proof of Lemma A.1. More generally, it suffices to
find a family of C2(Rd × Rd;R)-functions (ζ̄ι)ι>0 that is locally bounded, satisfies

Dζ̄ι(x, x
′)

(
µ(x, a)

µ(x′, a)

)
+

1

2
Tr
[
Σ(x, x′)D2ζ̄ι(x, x

′)
]
≤ −Cζ̄ ζ̄ι(x, x′) + %ι , x, x

′ ∈ Rd, a ∈ A, ι > 0,

(3.2)

in which Cζ̄ > 0, limι→0 %ι = 0 and

Σ(x, x′) :=

(
σ(x)

σ(x′)

)(
σ(x)

σ(x′)

)>
,

and such that (ζ̄ι)ι>0 converges pointwise as ι→ 0 to a map ζ̄ : Rd × Rd 7→ R satisfing

1

Cζ̄
|x− x′|pζ̄ ≤ ζ̄(x, x′) ≤ Cζ̄ |x− x′|pζ̄ , for all x, x′ ∈ Rd,

for some pζ̄ ≥ 1. This follows from the arguments used in the proof of Lemma A.1 upon first
applying Itô’s lemma to ζ̄ι and then sending ι→ 0 to deduce the counterpart of (A.2) before using
the inequalities just above.
(ii) The condition (ii) of Assumption 5 holds for instance if we can find a smooth function ξ̄ and
constants C1

ξ̄
> 0 and C2

ξ̄
such that

Dξ̄(x)µ(x, a) +
1

2
Tr
[
σσ>(x)D2ξ̄(x)

]
≤ −C1

ξ̄ ξ̄(x) + C2
ξ̄ , (3.3)

and

1

C2
ξ̄

|x|pξ̄ ≤ ξ̄(x) ≤ C2
ξ̄ |x|

pξ̄ , (3.4)

for all x ∈ Rd, for some pξ̄ ≥ 1. This follows from the same arguments as in the proof of Lemma
A.2. As in (i) above, it suffices that (3.3) holds for a sequence of approximating smooth functions. In
particular, condition (ii) of Assumption 5 holds under [3, Assumption 7.3.1], see [3, Lemma 7.6.3].

Example 3.3. Consider the context of Example 3.1 with σ constant, then it satisfies [3, Assumption
7.3.1], and therefore Assumption 5, by [3, Example 7.3.3].

In order to state the counterpart of Theorem 2.3 for the diffusive limit ergodic control problem, we
also define, for T > 0, t ≤ T and x ∈ Rd,

V̄T (t, x) := sup
ᾱ∈Ā

J̄T (t, x, ᾱ) with J̄T (t, x, ᾱ) := E
[∫ T

t

r(X̄ t,x,ᾱ
s , ᾱs)ds

]
,

11



in which X̄ t,x,ᾱ is the solution of (3.1) on [t,∞) such that X̄ t,x,ᾱ
t = x, and set

L̄āϕ = Dϕµ(·, ā) +
1

2
Tr[σσ>D2ϕ], ā ∈ A,

for a smooth function ϕ : Rd → R.

Theorem 3.4. Let Assumptions 4 and 5 hold. Then, there exists sequences (λn)n≥1 going to 0 and
(Tn)n≥1 going to +∞ such that (λnV̄λn)n≥1 and (T−1

n V̄Tn(0, ·))n≥1 converge uniformly on compact
sets to ρ̄∗(0), and such that (V̄λn − V̄λn(0))n≥1 converges uniformly on compact sets to a function
w̄ ∈ C2 ∩ C0

lin that satisfies

ρ̄∗ = sup
ā∈A

{
L̄āw̄ + r(·, ā)

}
, on Rd, (3.5)

and

‖w̄‖C0,1
b
≤ Lγw̄ and ‖w̄‖C2,γ

b (B1(x)) ≤ Lγw̄(1 + |x|), for all x ∈ Rd, (3.6)

for some Lγw̄ > 0, for all γ ∈ (0, 1). Moreover, ρ̄∗ is constant over Rd, and, if (w̃, ρ̃) ∈ (C2 ∩C0
lin)×R

solves the ergodic equation

ρ̃ = sup
ā∈A

{
L̄āw̃ + r(·, ā)

}
, on Rd, (3.7)

then ρ̃ = ρ̄∗.

Proof. The proof is exactly the same as the one of Theorem 2.3 upon replacing the estimates of
Lemmas A.1 and A.2 by the ones of Assumption 5. See the Appendix. The only significant difference
is that we have to show the estimate (3.6).

1. The fact that, for an appropriate sequence (λn)n≥0 that converges to 0, λnV̄λn(0)→ c ∈ R and
V̄λn − V̄λn(0)→ w̄ uniformly on compact sets for some w̄ ∈ C0,1 follows from Assumption 5 and the
same arguments as in the first part of the proof of Lemma A.3 below.

2. We now argue as in the proof of [3, Theorem 3.5.6]. Fix n ≥ 1, let τ̄x,ᾱn be the first exit time of
X̄x,ᾱ from Bn(0), for (x, ᾱ) ∈ Rd × Ā, and set

V̄ n
λ (x) := sup

ᾱ∈Ā
E

[∫ τ̄x,ᾱn

0

e−λsr(X̄x,ᾱ
s , ᾱs)ds

]
.

Then, V̄ n
λ ∈ C2(Bn(0)) by the arguments in the proof of [3, Theorem 3.5.6]. Moreover, Assumption 5

and the linear growth of r (recall that it is assumed Lipschitz) imply that

sup
n≥1

[V̄ n
λ ]C0

lin
≤ Cλ

12



for some Cλ > 0. Then, arguing as in the proof of [3, Theorem 3.5.6], we obtain that, for all λ > 0,
(V̄ n

λ )n≥1 converges as n→∞ to a map ψλ ∈ C2 that solves

λψλ = sup
ā∈A

{
L̄āψλ + r(·, ā)

}
, on Rd,

and has at most linear growth. Using this linear growth property, Assumption 5 and a verification
argument, we deduce that ψλ = V̄λ.

Since V̄λ ∈ C0,1
b by Assumption 5, it follows from Assumption 4 and Lemma B.2 that, given γ ∈ (0, 1),

V̄λ ∈ C2,γ and that there is K > 0 (depending on γ but not on λ ∈ (0, 1)) such that

‖∆V̄λ‖C2,γ
b (B1(x)) ≤ K(1 + |x|), for all (x, λ) ∈ Rd × (0, 1), (3.8)

where ∆V̄λ := V̄λ − V̄λ(0) solves

λV̄λ(0) + λ∆V̄λ = sup
ā∈A

{
L̄ā∆V̄λ + r(·, ā)

}
, on Rd.

Let (λn)n≥0 be as in step 1. Passing to the limit in the above leads to (3.5), with c defined in step
1. in place of ρ̄∗, and to (3.6).

3. By the same arguments as in Lemma A.4, if (w̃, ρ̃) ∈ (C2 ∩ C0
lin)× R solves (3.7) then ρ̃ = ρ̄∗. In

particular, ρ̄∗ is constant and c = ρ̄∗ by step 2.

4. The fact that there exists (Tn)n≥1 going to +∞ such that (T−1
n V̄Tn(0, ·))n≥1 converge uniformly

on compact sets to ρ̄∗(0) then follows from the same arguments as in Lemma A.5.

3.2 First order approximation guarantees

We can now turn to the main part of this paper and quantify the approximation error due to passing
to the diffusive limit in the original pure jump problem. We will show below that it controlled by the
Hölder regularity of D2w̄, namely that the approximation error is of the order of ε

γ
2 for all γ ∈ (0, 1).

In Section 3.3, we will see that it can be improved by considering appropriate correction terms.

The cornerstone of the analysis is the residual term of a second order Taylor expansion of w̄ performed
on the Dynkin operator of the jump diffusion process (2.1), namely:

δrε(x, a) :=
1

ε

∫
Rd′

[w̄(x+ bε(x, a, e))− w̄(x)] ν(de)−Dw̄(x)µ(x, a)− 1

2
Tr[σσ>(x)D2w̄(x)] , (3.9)

defined for (x, a) ∈ Rd × A. The function δrε measures the error of the diffusion approximation
explicitely in terms of the control problem, and thus will be shown to effectively control the error in
all quantities of interest. Leveraging the regularity results in (3.6), the Hölder regularity of D2w̄

yields Proposition 3.5, which in turn yields Theorem 3.6.
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Proposition 3.5. Let Assumptions 4 and 5 hold with pξ ≥ 3. Then, for every γ ∈ (0, 1), there
exists Lγ,1δr , L

γ,2
δr > 0 such that, for each 0 < ε ≤ ε◦ := (Lb1,b2)−2 and (x, a) ∈ Rd × A,

|δrε(x, a)| ≤ ε
γ
2Lγ,1δr (1 + |x|3), (3.10)

and

sup
t≥0

sup
α∈A

E[|δrε(Xx,α
t , αt)|] ≤ ε

γ
2Lγ,2δr (1 + |x|3) . (3.11)

Proof. 1. We first prove the estimate (3.10) using (3.6). Namely,

w̄(x+ bε(x, a, e))− w̄(x) = w̄(x+ εb1(x, a, e) + ε
1
2 b2(x, e))− w̄(x+ ε

1
2 b2(x, e)))

+ w̄(x+ ε
1
2 b2(x, e))− w̄(x)

where

w̄(x+ εb1(x, a, e) + ε
1
2 b2(x, e))− w̄(x+ ε

1
2 b2(x, e)))

= εDw̄(x+ ε
1
2 b2(x, e))b1(x, a, e) +

∫ 1

0

ε2

2
b1(x, a, e)>D2w̄(x̂ε1(u))b1(x, a, e)du

in which
x̂ε1(u) := x+ ε

1
2 b2(x, e) + uεb1(x, a, e)

is such that
sup
u∈[0,1]

|x̂ε1(u)| ≤ |x|+ ε
1
2Lb1,b2 + εLb1,b2(1 + |x|),

by definition of Lb1,b2 in Assumption 4. By (3.6) and Assumption 4, this implies that∣∣∣∣ε2

2
b1(x, a, e)>D2w̄(x̂ε1(u))b1(x, a, e)

∣∣∣∣
≤ ε2

2
(Lb1,b2)2(1 + |x|)2Lγw̄(1 + |x|+ ε

1
2Lb1,b2 + εLb1,b2(1 + |x|)).

Moreover, since ε
1
2Lb1,b2 ≤ 1, we have

|Dw̄(x+ ε
1
2 b2(x, e))−Dw̄(x)| ≤ Lγw̄(1 + |x|)ε

1
2Lb1,b2

by (i) of Assumption 4 and (3.6).

Using (ii) of Assumption 4, we next obtain that∫
Rd′
{w̄(x+ ε

1
2 b2(x, e))− w̄(x)}ν(de) =

∫
Rd′

∫ 1

0

ε

2
b2(x, e)>D2w̄(x̂ε2(u, e))b2(x, e)du ν(de)
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in which
x̂ε2(u, e) := x+ uε

1
2 b2(x, e) ∈ B1(x)

since ε
1
2Lb1,b2 ≤ 1 by assumption and (i) of Assumption 4. Then, by (3.6) again and (iii) of

Assumption 4∣∣∣∣∫
Rd′
{w̄(x+ ε

1
2 b2(x, e))− w̄(x)}ν(de)− ε

2
Tr[σσ>(x)D2w̄(x)]

∣∣∣∣
=

∣∣∣∣∫
Rd′
{w̄(x+ ε

1
2 b2(x, e))− w̄(x)}ν(de)−

∫
Rd′

ε

2
b2(x, e)>D2w̄(x)b2(x, e)ν(de)

∣∣∣∣
≤ ε

2
(Lb1,b2)2Lγw̄(1 + |x|)(ε

1
2Lb1,b2)γ.

The estimate (3.10) is obtained by combining the above.

2. The estimate (3.11) follows from (3.10), Lemma A.2 and the fact that pξ ≥ 3.

We are now in position to state the main result of this section.

Theorem 3.6. Let Assumptions 4 and 5 hold with pξ ≥ 3. Then, for all γ ∈ (0, 1), there exists
Lγδρ > 0 such that

|ρ̄∗ − ρ∗ε| ≤ ε
γ
2Lγδρ for all ε ∈ (0, 1).

Moreover, there exists a measurable map â : Rd 7→ A such that

L̄âw̄ + r(·, â) = sup
ā∈A

{
L̄āw̄ + r(·, ā)

}
, on Rd

and

ρ∗ε − ε
γ
2Lγδρ ≤ lim inf

T→∞

1

ηεT
E
[∫ T

0

r(X â
t−, â(X â

t−))dNt

]
, for all ε ∈ (0, 1),

in which X â solves
X â
· =

∫ ·
0

∫
Rd′

bε(X
â
s−, â(X â

s−), e)N(de, ds) .

Proof. Fix γ ∈ (0, 1). Hereafter, we denote by wε the function w introduced in Theorem 2.3 for
η = ηε = ε−1. By Theorems 2.3 and 3.4, ∆ε := w̄ − wε solves

ρ̄∗ − ρ∗ε ≤ sup
a∈A

{
1

ε

∫
Rd′

[∆ε(·+ bε(·, a, e))−∆ε] ν(de)−δrε(·, a)

}
, on Rd.
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By the same arguments as in the proof of Lemma A.4, (3.11) applied with x = 0, (3.6), (A.4) and
Lemma A.2, we deduce that

ρ̄∗ − ρ∗ε ≤ L1
δρε

γ
2

for some L1
δρ > 0 that does not depend on ε ∈ (0, 1). Replacing ∆ε by −∆ε in this argument implies

that
ρ∗ε − ρ̄ ≤ L2

δρε
γ
2

for some L2
δρ > 0 that does not depend on ε ∈ (0, 1).

The second assertion of the Theorem is then proved by following the arguments in the first part of
the proof of Lemma A.4 and using the above.

3.3 Higher order expansions

Under additional conditions, one can exhibit a first order correction term to improve the convergence
speed in Theorem 3.6. It is in the spirit of the correction term introduced in [1, Section 3.5]
but is formulated differently. In particular, the function δw̄ε introduced below depends on ε and
the optimization in (3.12) is performed over the whole set A. This approach can be iterated to
higher order correction terms in an obvious manner, upon additional regularity conditions, without
considering a coupled system of PDEs as in [1, Section 3.6].

From now on, we assume the following.

Assumption 6. There exists γ◦ ∈ (0, 1) and (δγ, δC) ∈ (0, 1)× R such that, for each ε ∈ (0, 1), we
can find δρ̄∗ε ∈ R and δw̄ε ∈ C0

lin satisfying ‖δw̄ε‖C2,δγ
b (B1(x)) ≤ δC(1 + |x|) for all x ∈ Rd and

δρ̄∗ε = sup
ā∈A

[
L̄āδw̄ε + ε−

γ◦
2 [δrε + f ](·, ā)

]
on Rd, (3.12)

in which

f(·, ā) := L̄āw̄ + r(·, ā)− ρ̄∗.

Theorem 3.7. Let the conditions of Theorem 3.6 and Assumption 6 hold. Assume further that
pX̄ ≥ 3. Then,

lim sup
ε↓0

|δρ̄∗ε| <∞

and
ρ̄∗(1)
ε := ρ̄∗ + ε

γ◦
2 δρ̄∗ε, ε ∈ (0, 1),
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satisfies
lim sup

ε↓0
ε−

γ◦+δγ
2 |ρ∗ε − ρ̄∗(1)

ε | <∞.

Moreover, for each ε ∈ (0, 1), there exists a measurable map âε : Rd 7→ A such that

L̄âεδw̄ε + ε−
γ◦
2 [δrε + f ](·, âε) = sup

ā∈A

[
L̄āδw̄ε + ε−

γ◦
2 [δrε + f ](·, ā)

]
on Rd

and
lim sup

ε↓0
ε−

γ◦+δγ
2 |ρ∗ε − ρε(0, âε(X âε

·−))| <∞,

in which X âε solves
X âε =

∫ ·
0

∫
Rd′

bε(X
âε
s−, âε(X

âε
s−), e)N(de, ds) .

Proof. It follows from the same arguments as in Lemma A.4 and the fact that f ≤ 0 by (3.5) that

δρ̄∗ε = sup
ᾱ∈Ā

lim
T→∞

1

T
E
[∫ T

0

ε−
γ◦
2 [δrε + f ](X̄0,ᾱ

s , ᾱs)ds

]
≤ sup

ᾱ∈Ā
lim sup
T→∞

1

T
E
[∫ T

0

ε−
γ◦
2 δrε(X̄

0,ᾱ
s , ᾱs)ds

]
.

Let â be as in Theorem 3.6. Then, f(·, â) = 0 by (3.5). Hence,

δρ̄∗ε ≥ lim inf
T→∞

1

T
E
[∫ T

0

ε−
γ◦
2 δrε(X̄

â
s , â(X̄ â

s ))ds

]
in which X̄ â solves

X̄ â =

∫ ·
0

µ(X̄ â
s , â(X̄ â

s ))ds+

∫ ·
0

σ(X̄ â
s )dWs.

Note that the existence of a solution of the above is guaranteed, upon considering another probability
space and Brownian motion. Combining the above inequalities with (3.10), applied with γ = γ◦,
and the second assertion of Assumption 5 with pX̄ ≥ 3 shows that |δρ̄∗ε| ≤ C ′ for some C ′ > 0 that
does not depend on ε ∈ (0, ε◦].

Moreover, by Assumption 6 and the same arguments as in the proof of Proposition 3.5,

δr
′

ε(x, a) :=
1

ε

∫
Rd′

[δw̄ε(x+ bε(x, a, e))− δw̄ε(x)] ν(de)− L̄aδw̄ε

satisfies
|δr′ε(x, ·)| ≤ ε

δγ
2 C ′′(1 + |x|3), x ∈ Rd,

for some C ′′ > 0 that does not depend on ε ∈ (0, ε◦]. Since, by construction, w̄
(1)
ε := w̄ + ε

γ◦
2 δw̄ε

solves

ρ̄∗(1)
ε = sup

a∈A

[
1

ε

∫
Rd′

[
w̄(1)
ε (·+ bε(·, a))− w̄(1)

ε

]
ν(de)− ε

γ◦
2 δr

′

ε(·, a) + r(·, a)

]
on Rd,
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the same arguments as in the proof of Theorem 3.6 then imply that |ρ̄∗(1)
ε − ρ∗ε| ≤ Lε

γ◦+δγ
2 , for some

L > 0 that does not depend on ε ∈ (0, ε◦], and also lead to the last assertion of the Theorem.

4 Numerical resolution of the ergodic diffusive problem

The numerical resolution of (3.5) can be done by using standard finite difference schemes as explained
in [26, Chapter 7]. We focus on the one-dimensional case d = 1 for simplicity, and also because
similar schemes in higher dimension often have to be constructed on a case by case basis, see e.g. [26,
Chapter 5].

Given κ ∈ N, κ ≥ 3, and h > 0, we consider the space gridMκ
h := {zi := −κh+ (i− 1)h, 1 ≤ i ≤

2κ+ 1}. We use the notation
◦
Mκ

h :=Mκ
h \ {z1, z2κ+1} and denote by Lκh the collection of real-valued

maps ϕ defined onMκ
h. For ϕ ∈ Lκh, we define the usual finite (central) differences operators:

∆hϕ(x) :=
ϕ(x+ h)− ϕ(x− h)

2h
, ∆2

hϕ(x) :=
ϕ(x+ h) + ϕ(x− h)− 2ϕ(x)

h2
, x ∈

◦
Mκ

h,

and set

L̄āhϕ := µ(·, ā)∆hϕ+
1

2
σ2∆2

hϕ, ā ∈ A. (4.1)

Then, we approximate the solution (ρ̄∗, w̄) of (3.5) by a solution (ρ̄κ,∗h , w̄κ
h) ∈ R× Lκh of

ρ̄κ,∗h = sup
ā∈A

{
L̄āhw̄κ

h + r(·, ā)
}
, on

◦
Mκ

h, (4.2)

with a suitable reflecting boundary at z1 and z2κ+1, see below. Note that w̄κ
h is defined only up to a

constant and that we can, and will, set w̄κ
h(0) = ρ̄κ,∗h ∆th in the following, with

∆th :=
h2

(Lb1,b2)2
.

Let us now denote by A the collection of measurable maps from R to A and identify, given ā ∈ A,
w̄κ
h and r(·, ā(·)) onMκ

h to column vectors W̄κ
h := (w̄κ

h(zi))1≤i≤2κ+1 and R(ā) := (r(zi, ā(zi))1≤i≤2κ+1

of R2κ+1. Then, to solve (4.2) onMκ
h with w̄κ

h(0) = ρ̄κ,∗h ∆th, including a suitable reflection term on
the boundary {z1, z2κ+1}, we search for (ρ̄κ,∗h , W̄κ

h) ∈ R× R2κ+1 that satisfies

W̄κ
h = sup

ā∈A
Q̄ā
h

{
W̄κ

h − eρ̄
κ,∗
h ∆th + R(ā)∆th

}
, onMκ

h (4.3)

w̄κ
h(0) = ρ̄κ,∗h ∆th (4.4)
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where e is the column vector of R2κ+1 with all entries equal to 1, and Q̄ā
h = ((Q̄ā

h)i,j)1≤i,j≤2κ+1 is the
matrix with all entries null except for

(Q̄ā
h)
i,i−1 := q−h (zi, ā(zi)) , (Q̄ā

h)
i,i := qh(zi, ā(zi)) , and (Q̄ā

h)
i,i+1 := q+

h (zi, ā(zi)) ,

for 1 < i < 2κ+ 1, with

qh := 1− σ2

(Lb1,b2)2
, q+

h :=
µh+ σ2

2(Lb1,b2)2
, and q−h :=

−µh+ σ2

2(Lb1,b2)2
,

and except for

(Q̄ā
h)

1,j := (Q̄ā
h)

3,j for j = 2, 3, 4

(Q̄ā
h)

2κ+1,j := (Q̄ā
h)

2κ−1,j for j = 2κ− 2, 2κ− 1, 2κ.

The above scheme is of the form of [26, Chapter 7 (2.3)], and (4.2) and (4.3) are the same on
◦
Mκ

h.

Without loss of generality, one can assume from now on that

Lb1,b2 > ‖σ‖C0
b
.

Consequently, recalling (i)-(ii) of Assumption 4, Q̄ā
h defines a transition probability matrix satisfying

min
1≤i≤2κ+1

min
1∨(i−1)≤j 6=i≤(2κ+1)∧(i+1)

(Q̄ā
h)
i,j =: p

h
> 0

whenever

Lb1,b2(1 + κh)h < ς. (4.5)

Given ā ∈ A, let (Zx,ā
t )t∈N be the Markov chain starting from x ∈Mκ

h and such that

P[Zx,ā
t+1 = zj|Zx,ā

t = zi] = (Q̄ā
h)
i,j, 1 ≤ i, j ≤ 2κ+ 1, t ∈ N.

Then,

P[Zx,ā
κ = 0] ≥ (p

h
)κ > 0, (4.6)

under (4.5). Further assuming that

(b, r)(x, ·) : A 7→ R2 is continuous for all x ∈ R, (4.7)

it follows that the conditions of [26, Chapter 7 Theorem 2.1] hold so that (ρ̄κ,∗h , W̄κ
h) is well-defined

and can be computed by using the iterative scheme of [26, Chapter 7 (2.3)].

Under the following conditions, one can exhibit an upper-bound on the convergence rate of the
above numerical scheme.
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Assumption 7. There exists a function ξ̄ ∈ C3(R), pξ̄ ≥ 2, and constants C1
ξ̄
> 0 and C2

ξ̄
∈ R such

that (3.3) and (3.4) hold for all x ∈ Rd. Moreover, there are constants L > 0, Υ > 0, and CΥ > 0,
such that |D2ξ̄(x)|+ |D3ξ̄(x)| ≤ L(1 + |x|pξ̄−1) for all x ∈ R, and sgn(x)Dξ̄(x) ≥ CΥ |x|pξ̄−1 for all
|x| ≥ Υ, where sgn(·) is the sign function.

Proposition 4.1. Let Assumptions 4, 5 and 7 hold with pξ ≥ 3. Assume further that (4.7) is
satisfied. Then, there exists Lnum > 0 and hnum > 0 such that, for all (h, κ) ∈ (0, hnum)×N, satisfying
(4.5), κh2 ≤ 1 and (κ− 3)h ≥ Υ, we have

|ρ̄κ,∗h − ρ̄
∗| ≤ Lnum(hγ + h−1|κh|−|pξ̄−1|).

In particular,

|ρ̄κ,∗h − ρ
∗
ε| ≤ Lnum(hγ + h−1|κh|−|pξ̄−1|) + ε

γ
2Lγδρ for all ε ∈ (0, 1).

Proof. Given ā ∈ A and x ∈Mκ
h, let X̃x,ā be the pure jump continuous time Markov chain defined

by a sequence of jump times (τn)n≥1 such that the increments (τn+1 − τn)n≥0 (with the convention
τ0 = 0) are independent and identically distributed according to the exponential law of mean ∆th
and such that, for n ≥ 1,

P[X̃x,ā
τn = zi|(X̃x,ā

0 , τ0), . . . , (X̃x,ā
τn−1

, τn−1), τn] = (Q̄ā
h)
i,j(X̃x,ā

τn−1
),

with
j(X̃x,ā

τn−1
)∈ N s.t. zj(X̃x,ā

τn−1
) = X̃x,ā

τn−1
,

and X̃x,ā = X̃x,ā
τn−1

on [τn−1, τn).

1. First note that, by construction, w̄κ
h is bounded on the finite setMκ

h. Then, by the arguments in
the proof of Lemma A.4 and (4.3), we have

ρ̄κ,∗h = sup
ā∈A

lim
T→∞

1

T
E
[∫ T

0

r(X̃x,ā
s , ā(X̃x,ā

s ))ds

]
. (4.8)

2. We now prove that there exists C1′

ξ̄
, C2′

ξ̄
, hnum > 0 such that, for all x ∈ R, ā ∈ A, 0 < h ≤ hnum

and κ such that (4.5) holds, κh2 ≤ 1 and (κ− 3)h ≥ Υ, we have

E[|X̃x,ā
t |pξ̄ ] ≤ C2

ξ̄

{
e
−C1′

ξ̄
t
C2
ξ̄ |x|

pξ̄ +
C2′

ξ̄

C1′

ξ̄

(1− e−C
1′
ξ̄
t
)

}
, t ≥ 0. (4.9)

Using Assumption 7 and Assumption 4, and Taylor expansions of first and second orders, we first
deduce that, for x ∈

◦
Mκ

h,

Dξ̄(x)µ(x, ā(x)) +
1

2
σ2(x)D2ξ̄(x) =

1

∆th
E[ξ̄(X̃x,ā

τ1
)− ξ̄(x)]− c(x)h,

20



in which |c(x)| ≤ C(1 + |x|pξ̄) ≤ C(1 +C2
ξ̄
ξ̄(x)) for some C > 0 independent on x ∈ R, ā ∈ A, h and

κ. Using (3.3), this implies that, for x ∈
◦
Mκ

h,

1

∆th
E[ξ̄(X̃x,ā

τ1
)− ξ̄(x)] ≤ −

(
C1
ξ̄ − hCC

2
ξ̄

)
ξ̄(x) + C2

ξ̄ + Ch. (4.10)

Consider now the case x = z1, the other boundary case, x = z2κ+1, being symmetric. Let Ξ be a
discrete random variable taking value k ∈ {1, 2, 3} with probability (Q̄ā

h)
1,k. Using Assumption 7

and (3.4), we obtain that, for some random variable ẑΞ such that ẑΞ ∈ [z1, z1 + Ξh] a.s.,

1

∆th
E[ξ̄(X̃x,ā

τ1
)− ξ̄(x)] =

1

∆th
E[ξ(z1 + Ξh)− ξ(z1)]

=
1

∆th
E[ΞhDξ(ẑΞ)]

≤ −
L2
b1,b2

h
CΥE[Ξ |ẑΞ|pξ̄−1]

≤ −L2
b1,b2

CΥE[κh |ẑΞ|pξ̄−1]

≤ −C ′ξ̄(x) (4.11)

when |(κ− 3)h| ≥ Υ and κh2 ≤ 1, in which C ′ > 0 does not depend on κ nor h. The above also
holds with z2κ+1 in place of z1. Combining (4.10)-(4.11), we obtain

1

∆th
E[ξ̄(X̃x,ā

τ1
)− ξ̄(x)] ≤ −

(
(C1

ξ̄ − hCC
2
ξ̄ ) ∧ C ′

)
ξ̄(x) + C2

ξ̄ + Ch ≤ −C1′

ξ̄ ξ̄(x) + C2′

ξ̄ ,

for all x ∈Mκ
h, whenever h ≤ hnum, in which C1′

ξ̄
, C2′

ξ̄
, hnum > 0 do not depend on κ nor h. One can

then argue as in the proof of Lemma A.2 to obtain (4.9).

3. From now on, we denote by C > 0 a generic constant, which may change from line to line, but
does not depend on κ or h. We now appeal to (3.6) and the Lipschitz continuity of (µ, σ2), and use
the fact that h ≤ 1 to deduce by consistency arguments that, for x ∈Mκ

h,

L̄ā(x)w̄(x) =
1

∆th
E[w̄(X̃x,ā

τ1
)− w̄(x)] + δrh(x, a(x))

in which

|δrh(x, ā(x))| ≤C((1 + |x|)h+ hγ)(1 + |x|) + Ch−1(1 + |x|)1{|x|=κh}.

The above combined with (3.5) implies that

ρ̄∗ =
1

∆th
sup
ā∈A

E
[
w̄(X̃x,ā

τ1
)− w̄(x) + {r(x, ā) + δrh(x, ā)}∆th

]
for x ∈Mκ

h.
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Arguing again as in the proof of Lemma A.4, recalling 4.8, and combining (4.9) with Hölder’s and
Markov’s inequality, we deduce that we can find C,C ′, C ′′ > 0 such that

|ρ̄κ,∗h − ρ̄
∗| ≤ sup

ā∈A
lim sup
T→∞

1

T
E
[∫ T

0

|δrh|(X̃0,ā
s , ā(X̃0,ā

s ))
(

1{|X̃0,ā
s |<κh} + 1{|X̃0,ā

s |=κh}

)
ds

]
≤ sup

ā∈A
lim sup
T→∞

C

T

∫ T

0

E
[
(h+ h|X̃0,ā

s |2 + hγ|X̃0,ā
s |) + h−1(1 + |X̃0,ā

s |)1{|X̃0,ā
s |=κh}

]
ds

≤C ′(h+ hγ) + sup
ā∈A

lim sup
T→∞

h−1C

T

∫ T

0

E[(1 + |X̃0,ā
s |)pξ̄ ]

1
pξ̄

(
E[|X̃0,ā

s |pξ̄ ]
(κh)pξ̄

) pξ̄−1

pξ̄

ds

≤C ′′(hγ + h−1|κh|−|pξ̄−1|) .

It remains to appeal to Theorem 3.6 to complete the proof.

One can also construct from the above scheme an almost optimal control for the original pure jump
problem. We first extend the definition of w̄κ

h by setting

w̄κ
h(x) := w̄κ

h(Πκ
h(x)), x ∈ R,

in which Πκ
h(x) := inf{z ∈Mκ

h : z ≥ x} ∧ z2κ+1. Then, we let φ be a smooth density function with
support (−1, 1) such that ‖φ‖C2

b
≤ 1. Given n ≥ 1, let

w̄κ,n
h (x) :=

∫
(w̄κ

h(y)− ρ̄κ,∗h ∆th)φ(n(y − x))dy, x ∈ R,

with the convention that w̄κ
h = w̄κ

h(z1) − ρ̄κ,∗h ∆th on (−∞, z1) and w̄κ
h = w̄κ

h(z2κ+1) − ρ̄κ,∗h ∆th on
(z2κ+1,∞).

Let āκ,nh ∈ A be such that

āκ,nh ∈ arg max
a∈A

[L̄aw̄κ,n
h + r(·, a)], on R, (4.12)

and set α̂κ,nh = āκ,nh (X̂κ,n,h) with

X̂κ,n,h
· =

∫ ·
0

∫
Rd′

bε(X̂
κ,n,h
s− , āκ,nh (X̂κ,n,h

s− ), e)N(de, ds) .

The control āκ,nh can be computed numerically at low cost, e.g. via first order conditions; Proposition
4.2 gives the associated error bounds. This approach seems novel in the literature, and is of
independent methodological interest.
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Proposition 4.2. Let the conditions of Proposition 4.1 hold. Then, there exists C > 0 such that,
for all K > 0, n ≥ 1 and ε ∈ (0, 1),

|ρ∗ε(0, α̂
κ,n
h )− ρ∗ε| ≤ C

(
n−γ + ε

γ
2 + n sup

x∈BK(0)

|w̄κ
h − ρ̄

κ,∗
h ∆th − w̄|(x) + nK−1

)
. (4.13)

If, moreover,
(i) σ is constant,
(ii) there exists c > 0 such that µ(x)− µ(x′) ≤ −c(x− x′) if x ≥ x′ ∈ R,
(iii) there exists R > 0 such that

sup
|x|>R

sup
ā∈A

µ(x, ā)x < −1

2
σ2, (4.14)

then
lim sup
h→0

sup
x∈BK(0)

|w̄κh
h − ρ̄

κh,∗
h ∆th − w̄|(x) = 0

for any family (κh)h>0 ⊂ N such that limh↓0 κhh
2 = 0 and limh↓0 κhh

pξ̄
pξ̄−1 =∞.

Proof. 1. We first note that

Dw̄κ,n
h (x) =

∫
Dw̄(y)φ(n(y − x))dy −

∫
(w̄κ

h − ρ̄
κ,∗
h ∆th − w̄)(y)nφ′(n(y − x))dy

D2w̄κ,n
h (x) =

∫
D2w̄(y)φ(n(y − x))dy +

∫
(w̄κ

h − ρ̄
κ,∗
h ∆th − w̄)(y)n2φ′′(n(y − x))dy, x ∈ R,

in which φ′ and φ′′ stand for the first and second order derivatives of φ. Hence, it follows from (3.6),
(i) of Assumption 4 and (3.5) that

L̄āκ,nh (·)w̄κ,n
h + r(·, āκ,nh (·)) = max

a∈A
[L̄aw̄κ,n

h + r(·, a)]

≥ max
a∈A

[L̄aw̄ + r(·, a)]− 1

2
δrκ,nh

= ρ̄∗ − 1

2
δrκ,nh

in which δrκ,nh satisfies, for some C > 0 independent on n, κ and h,

0 ≤ δrκ,nh (x) ≤ C(1 + |x|)

[
n−γ + 2n2

∫
B 1
n

(x)

|w̄κ
h − ρ̄

κ,∗
h ∆th − w̄|(y)dy

]
.

Similarly,

ρ̄∗ − 1

2
δrκ,nh ≤ L̄āκ,nh (·)w̄κ,n

h + r(·, āκ,nh (·))

≤ L̄āκ,nh (·)w̄ + r(·, āκ,nh (·)) +
1

2
δrκ,nh .
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Recalling (3.9) and Theorem 3.6, we deduce that

ρ∗ε − ε
γ
2Lγδρ ≤

1

ε

∫
Rd′

[w̄(x+ bε(x, ā
κ,n
h (x), e))− w̄(x)] ν(de) + r(x, āκ,nh (x)) + δrκ,nh (x)− δrε(x, āκ,nh (x))

for all x ∈ R. We then deduce (4.13) by the same arguments as in the proof of Theorem 3.6.

2. It remains to prove the second assertion of the proposition. For ease of notations, we do not write
the dependence of κ with respect to h, but we keep in mind that we can consider h small and that κ
can be adjusted as soon as the following results can apply to sequences such that limh↓0 κhh

2 = 0

and limh↓0 κhh

pξ̄
pξ̄−1 =∞.

2.a. We first prove that [w̄κ
h]C0

lin(Mκ
h) does not depend on κ nor h. To this end, we adapt the arguments

of Lemma A.1 and Theorem 2.3, and actually prove that it is Lipschitz, uniformly in κ and h.
Let (ξj)j≥1 be a sequence of i.i.d. random variables following the uniform distribution on [0, 1] and let
(τn)n≥1 be a random sequence, independent of (ξj)j≥1, such that the increments (τn+1− τn)n≥0 (with
the convention τ0 = 0) are independent and identically distributed according to the exponential law
of mean ∆th. Given (x, ā, y) ∈ R× A× R, set

∆x(x, ā, y) := h1{y≤q+
h (x,ā)} − h1{q+

h (x,a)<y≤(q+
h +q−h )(x,ā)}, if x ∈

◦
Mκ

h,

and

∆x(z1, ā, y) := 2h+ ∆x(z3, ā, y) , ∆x(z2κ+1, ā, y) := −2h+ ∆x(z2κ−1, ā, y).

Let Ǎ denote the collection of A-valued processes that are predictable with respect to the filtration
generated by t 7→

∑
i≥1 ξi1{τi≤t} Given α̌ ∈ Ǎ and x ∈ Mκ

h, let X̃x,α̌ be the pure jump continuous
time Markov chain defined by

X̃x,α̌
τi+1

= X̃x,α̌
τi

+ ∆x(X̃x,ā
τi
, α̌τi , ξi+1)

and X̃x,α̌ = X̃x,α̌
τi

on [τi, τi+1), i ≥ 0. It has the same law as the process introduced at the beginning
of the proof of Proposition 4.1, and in particular

ρ̄κ,∗h = sup
α̌∈Ǎ

lim
T→∞

1

T
E
[∫ T

0

r(X̃x,ā
s , α̌s)ds

]
.

We set
V̌λ(x) := sup

α̌∈Ǎ
E
[∫ ∞

0

e−λsr(X̌x,α̌
s , α̌s)ds

]
.

2.a.(i) We first need to obtain contraction estimates similar to the ones obtained in the proof of
Lemma A.1. We restrict for the moment to the case where the distance between the initial data are
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in 2hZ.
Let us first observe that, for h small enough for condition (4.5) to hold, we have q+

h (x) < (q+
h +

q−h )(x′) = σ2/(Lb1,b2)
2 =: m and conversely. Although recall that, by Assumption, µ(x)− µ(x′) ≤

−c(x−x′) ≤ 0 and therefore q+
h (x) ≤ q+

h (x′) if x ≥ x′ ∈ R. Keeping this in mind, direct computations

show that, if x− x′ ∈ 2hZ and x, x′ ∈
◦
Mκ

h, and ā ∈ A, then
1

∆th
E [|x+ ∆x(x, ā, ξ1)− x′ −∆x(x′, ā, ξ1)| − |x− x′|]

= (|x− x′ + 2h| − |x− x′|) q
+
h (x) ∧m− q+

h (x) ∧ q+
h (x′)

∆th

+ (|x− x′ − 2h| − |x− x′|) q
+
h (x′) ∧m− q+

h (x′) ∧ q+
h (x)

∆th

= (|x− x′ + 2h| − |x− x′|) µ(x)− µ(x) ∧ µ(x′)

2h
+ (|x− x′ − 2h| − |x− x′|) µ(x′)− µ(x) ∧ µ(x′)

2h

=
[
1{x≥x′}(µ(x)− µ(x′)) + 1{x′>x}(µ(x′)− µ(x))

]
≤ −c|x− x′| .

On the other hand, if x = z1, x′ ∈
◦
Mκ

h and z1 − x′ ∈ 2hZ, then
1

∆th
E [|x+ ∆x(x, ā, ξ1)− x′ −∆x(x′, ā, ξ1)| − |x− x′|]

=
1

∆th

(
−2hq+

h (x′, ā)− 4h(q+
h (z3, ā))− q+

h (x′, ā))− 2h(1− q+
h (z3, ā))

)
1{x′≥z1+4h}

− 1

∆th
|x− x′| 1{x′<z1+4h}

≤ −c|z3 − x′|

≤ − c
2
|x− x′| .

In the case, x′ = z2κ+1 (with κ ≥ 4 which we can assume here w.l.o.g.), then

1

∆th
E [|x+ ∆x(x, ā, ξ1)− x′ −∆x(x′, ā, ξ1)| − |x− x′|]

=
1

∆th

[
−4hq+

h (x′, ā)− 6h(q+
h (z3, ā))− q+

h (z2κ−1, ā))− 4h(1− q+
h (z3, ā)))

]
≤ −c|z3 − z2κ−1|

≤ − c
2
|x− x′|,

in which the last inequalities follows from the fact that κ ≥ 4. A similar analysis can be done when
x′ = z2κ+1 and x ∈Mκ

h. The above implies that, for h small enough,

1

∆th
E [|x+ ∆x(x, ā, ξ1)− x′ −∆x(x′, ā, ξ1)| − |x− x′|] ≤ − c

2
|x− x′| ∀ x, x′ ∈Mκ

h s.t. x− x′ ∈ 2hZ,
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which is the required contraction property, whenever x − x′ ∈ 2hZ. The key property is that
X̌x,α̌− X̌x′,α̌ remains in 2hZ whenever x−x′ ∈ 2hZ (by the above calculations jumps of X̌x,α̌− X̌x′,α̌

lie in {−6h,−4h,−2h, 0, 2h, 4h, 6h}). Then, the same arguments as in the proof of Lemma A.1
imply that one can find Ľ > 0, that only depends on c, such that

|V̌λ(x)− V̌λ(x′)| ≤ Ľ|x− x′|, for x, x′ ∈Mκ
h s.t. x− x′ ∈ (2hZ). (4.15)

In particular,

|V̌λ(x)− V̌λ(0)| ≤ Ľ|x|, for x ∈Mκ
h ∩ (2hZ). (4.16)

2.a.(ii) We now turn to the general case in which the distance between the initial data does not

belong to 2hZ. Take x ∈ {x◦− h, x◦+ h} ∩
◦
Mκ

h, for some x◦ ∈Mκ
h ∩ (2hZ). Let θ1 be the first time

at which |X̌x,α̌
θ1
− x| = h. By the dynamic programming principle,

|V̌λ(x)− V̌λ(x◦)| ≤ sup
α̌∈Ǎ

E
[

1

λ
(1− e−λθ1)‖r‖C0

b
+ e−λθ1 |V̌λ(X̌x,α̌

θ1
)− V̌λ(x◦)|

]
+ E

[
(1− e−λθ1)|V̌λ(x◦)|

]
in which X̌x,α̌

θ1
−x◦ ∈ {−2h, 0, 2h} and therefore |V̌λ(X̌x,α̌

θ1
)−V̌λ(x◦)| ≤ 2Ľ|h| by (4.15). By exhaustive

enumeration, one can compute

E[e−λθ1 ] =
∑
k≥1

qh(x)k−1(1− qh(x)

(∫ ∞
0

e−λy
1

∆th
e−∆t−1

h ydy

)k
=
∑
k≥1

qh(x)k−1(1− qh(x)) (λ∆th + 1)−k

= (λ∆th + 1)−1 (1− qh(x))
λ∆th + 1

λ∆th + 1− qh(x◦)

=
1− qh(x)

λ∆th + 1− qh(x)
≤ 1.

Since 1− qh(x) ≥ (σ/Lb1,b2)
2 ≥ (ς/Lb1,b2)

2 > 0 for all h, by Assumption 4, the above implies that,
for some C > 0, independent on λ, κ and h,

|V̌λ(x)− V̌λ(x◦)| ≤ sup
a∈A

E
[

∆th
λ∆th + 1− qh(x)

‖r‖C0
b

+ 2
1− qh(x)

λ∆th + 1− qh(x)
Ľ|h|

]
+ E

[
λ∆th

λ∆th + 1− qh(x)
|V̌λ(x◦)|

]
=C(∆th + h+ λ∆th|V̌λ(x◦)|).
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Note that λV̌λ is bounded by ‖r‖C0
b
<∞, while ∆th ≤ h ≤ |x|, for x 6= 0 and h small enough. Since

x◦ ∈Mκ
h ∩ (2hZ), the above, combined with (4.16), thus shows that

|V̌λ(x)− V̌λ(0)| ≤ Ľ′|x|, ∀ x ∈
◦
Mκ

h, (4.17)

for some Ľ′ > 0 that does not depend on λ, h nor κ. In the case where x ∈ {z1, z2κ+1}, we can
conduct a similar analysis by considering the first time θ1 at which X̌x,α̌ jumps. In this case,
X̌x,α̌
θ1
∈

◦
Mκ

h by construction and |X̌x,α̌
θ1
− x◦| ≤ 2h. Given (4.15), we retrieve a similar estimate as

(4.17). Hence,

|V̌λ(x)− V̌λ(0)| ≤ Ľ′|x|, ∀ x ∈Mκ
h, (4.18)

for some Ľ′ > 0 that does not depend on λ, h nor κ.

2.a.(iii) We are now in position to show that [w̄κ
h]C0

lin(Mκ
h) does not depend on κ nor h. Using

(4.18) and the arguments of Lemma A.3, we obtain that, after possibly passing to a subsequence,
(V̌λ − V̌λ(0))λ>0 converges pointwise, as λ→ 0, to w̄κ

h − ρ̄
κ,∗
h ∆th and that the latter satisfies

|w̄κ
h(x)− ρ̄κ,∗h ∆th| ≤ Ľ′|x|, x ∈Mκ

h. (4.19)

2.b. To complete the proof, it remains to appeal to the stability of viscosity solutions, and use
comparison results in the class of semi-continuous super/sub-solutions with linear growth. Let
(κh)h>0 be as in the statement of the Proposition. By (4.19), (w̄κh

h − ρ̄
κh,∗
h ∆th)h>0 admits locally

bounded relaxed semi-limits

w̄∞∗0 (x) := lim sup
x′→x, h↓0

w̄κh
h (x′)− ρ̄κh,∗h ∆th , w̄∞0∗(x) := lim inf

x′→x, h↓0
w̄κh
h (x′)− ρ̄κh,∗h ∆th.

which take the value 0 at 0, recall (4.4), and have linear growth. We can then use that (4.2) is
satisfied on any bounded set B for h small enough with respect to B, Proposition 4.1 and standard
stability arguments for viscosity solutions, see e.g. [7, Theorem 2.1] for the case of numerical schemes
or [5, Theorem 6.2, p.77] for general stability results, to deduce that w̄∞0∗ and w̄∞∗0 are respectively
viscosity super- and subsolutions of (3.5) in the classical sense of viscosity solutions for elliptic
equations (the constant ρ̄∗ being already given). We claim that w̄∞∗0 = w̄ + g for some g ∈ R. Then,
we will deduce that g = w̄∞∗0 (0)−w̄(0) = 0 by construction. The same argument can be used to prove
that w̄∞0∗ = w̄. To prove the above, we follow the arguments of [6, Proof of Theorem 3.1]. We first fix
R > 0 and let BR := BR(0) be the open ball of radius R centered at 0. Set g := max∂BR(w̄∞∗0 − w̄).
Since Φ := w̄∞∗0 − w̄ − g has linear growth, see (3.6) and above, we can fix ι > 0, independently of
R, such that x 7→ Φ(x)− ι|x|2 has a maximum point x̂R on (BR)c. If sup(BR)c Φ > 0, then, for ι > 0

small enough, we have Φ(x̂R)− ι|x̂R|2 > 0 and therefore x̂R lies in the interior of (BR)c. We now use
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the subsolution property of w̄∞∗0 and the fact that w̄ is a smooth solution of (3.5) to obtain

0 ≤ sup
ā∈A

{
L̄āw̄(x̂R) + r(x̂R, ā)− ρ̄∗ + ι

(
2µ(x̂R, ā)x̂R + σ2

)}
≤ι sup

ā∈A

{
2µ(x̂R, ā)x̂R + σ2

}
.

Using (4.14), we get a contradiction for R large enough. This shows that sup(BR)c Φ ≤ 0. Now the
fact that maxBR∪∂BR Φ = 0 follows by the maximum principle applied to (3.5) on BR with Dirichlet
boundary conditions on ∂BR. Moreover, Φ is a viscosity subsolution of

0 ≤ sup
ā∈A
L̄āΦ.

We can thus now appeal to the strong maximum principle, see e.g. [23, Theorem 1], to deduce that
w̄∞∗0 − w̄ − g = Φ ≡ 0, with g = w̄∞∗0 (0)− w̄(0) = 0.

As mentioned above, similar reasoning can be applied to w̄∞0∗, showing that

lim sup
x′→x, h↓0

|w̄κh
h − ρ̄

κh,∗
h ∆th − w̄|(x′) = 0, x ∈ R,

so that the convergence is uniform on compact sets.

5 Application to high-frequency auctions

5.1 Motivation and setting

Web display advertising is a typical example of real-world high-frequency pure jump control problems
[18]. The ad spaces are sold by algorithmic platforms in automated auctions which occur at the
dozen microsecond scale [32]. The frequency imposes computational issues on optimisation problems
in this industry, while at the same time, the volume creates a significant monetary incentive for all
parties to engage in revenue maximisation.

Consequently, the question of the strategic behaviour of bidders in repeated auctions in the face
of learning sellers has been a popular topic in contemporary auction theory, see e.g. [30, § 4] for a
survey. A rich line of work has focused on asymmetric problems where one player is significantly
more patient than the other [2, 31]. This asymmetry reduces game theoretic considerations in the
analysis to optimisation or control problems. In this example, we take interest in the case where
the buyer is infinitely patient (it optimises an ergodic objective), while the seller’s algorithm has
effectively finite memory.
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Given these horizons, the format of the auction will strongly influence the behaviour of bidders and
sellers when they seek to maximise their profit, see e.g. [24] for some generic examples. While it is a
sub-optimal auction format for the seller [29], we choose to focus on the second price auction format
here. Indeed, there are unsurmountable difficulties in learning the optimal auction format [27], and
second-price is in practice a common compromise between tractability and optimality [33].

Recalling the notations introduced in Example 2.1, in a second price auction with reserve, the bidder
wins if it outbids the maximum of the competing bids denoted by e4∈ R+ and the reserve price
x, and pays the smallest bid which still wins the auction, i.e. x ∨ e4. As a result of the time scale,
there is little time in practice to perform computations to determine the bid, and one typically
relies on using a precomputed function of the value to bid when an ad-slot arrives and its value
e2∈ R+ is revealed. More formally: the bid should be predictable. For simplicity, in this example,
we consider a linear shading of the value: ae2, where the control input value a is the shading factor.
Consequently, we have the (expected) reward function for the bidder in a single auction

r(x, a) :=

∫
(e2 − x ∨ e4)1{ae2≥x∨e4}ν(de) . (5.1)

Such auctions are well-defined only for positive bids. Thus, we impose a ∈ R+.

Within the constraints of a second price auction, maximising profits corresponds to tuning the
reserve price x. Dynamically optimising the reserve price is a difficult problem even for a stationary
bidder, see e.g. [2, 16]. To simplify, we consider the mean-reverting dynamic introduced in Example
2.1. For some η = ε−1 fixed, this dynamic is given by (2.1) with

b := bε = εb1 +
√
εb2 where b1(x, a, e) := e1(ae2 − x) and b2(x, e) := e1e3. (5.2)

In the above framework, the noise realisation of e1 encodes seller aggressivity as an exogenous ran-
domness, while the noise realisation of e3 encodes the realisation of the seller’s internal randomisation
aimed at increasing robustness to strategic play.

Under the conditions outlined in Example 2.1, we can choose for simplicity

ν(de) =
4∏
i=1

fi(ei)dei

in which
f1 ∼ Unif(0, 1) and f3 ∼ N (0, σ2

0)

with σ0 = 1
2
.

Second price auctions without reserve leave the most revenue on the table when the buyers are
highly asymmetrical, we therefore study

f2 ∼ LogNorm(µ1, σ1) and f4 ∼ Unif(0, 1)
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with µ1 = 0 and σ1 = 1
2
. Note that empirical observations [32] suggest log-normals are a realistic

model for values.

Assumption 1, and the remaining conditions in Example 2.1 for Assumptions 2 and 3 are easily seen
to hold under the above choices. Therefore, this pure jump process admits, and converges to, a
diffusion limit by Theorem 3.6, in particular, it is easily checked that the coefficients of the limit
diffusion are given by

µ(x, a) :=
1

2
(aC − x) and σ(x) :=

σ0√
3
, (5.3)

where C := exp
(
µ1 +

σ2
1

2

)
. It is clear from (5.1) and (5.3), that values of a larger than 1 cannot be

optimal, therefore we fix A = [0, 1].

5.2 Numerical Resolution of the HJB Equations

Using this example motivated by high-frequency auctions we illustrate in this section the benefits
of the diffusion limit problem in regards to numerical computation. We use the method detailed
in Section 4 to solve numerically (3.5), with parameters µ and σ given by (5.3). Throughout,
we will take κh := h−1/4, for which h ≤

(
σ
2

) 8
3 suffices to uphold condition (4.5) since we have

[µ]C0
lin
≤ (1 + e1/8)/2. Note that, with f1, f2, f3 as above, p in Example 2.1 and Example 3.3 can be

taken to be any positive real number.

In comparison to (3.5), solving (2.8) with coefficients given by (5.2) is complicated by the computation
of the integral term. In many situations, when ν is a non-atomic measure with a known closed
form, quadrature would be the preferred method for resolution, see e.g. [15]. In this example, this
quadrature would be 4-dimensional, which is somewhat expensive.

In contrast, the relatively simple form of the combination of independent noise sources makes Monte
Carlo simulation competitive in this specific example. Fixing a gridMκε

ε,hε
analogous to the one in

Section 4, we compute the empirical transition distribution pε,hεNε
: (x, a) ∈Mκε

ε,hε
×A→ pε,hεNε

(·;x, a) ∈
∆2κε+1, where ∆2κε+1 is the 2κε + 1-dimensional probability simplex, based on Nε independent
samples from each law, by projecting sample transitions ontoMκε

ε,hε
. We then approximate (2.8) by

solving the analogue of (4.3), i.e. finding (ρκε,∗ε,hε
, Wκε

ε,hε
), Wκε

ε,hε
:= (wκε

ε,hε
(zi))1≤i≤2κε+1, solving

0 = max
a∈A

{
1

ε
(P a

Nε,ε,hε − I2κε+1)Wκε
ε,hε
− ewκε

ε,hε
(0) + R(a)

}
(5.4)

ρκε,∗ε,hε
= wκε

ε,hε
(0) (5.5)
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by policy iteration, where P a
Nε,ε,hε

= (pε,hεNε
(zj; zi, a(zi)))1≤i,j≤2κε+1, I2κε+1 is the 2κε + 1-dimensional

identity matrix, and R(a) is as in Section 4.

As ε→ 0, all the transitions concentrate into a ball of size ε
1
2 with a drift of size ε, meaning that the

mesh must refine faster than ε, in order to avoid degeneracy. Therefore, we consider the sequence
of grids {Mκε

ε,hε
}ε≥0, with Mκε

ε,hε
= {yi = −10 + (i − 1)hε, 1 ≤ i ≤ 2κε + 1} with hε = ε2 and

κε = 20/hε. We take Nε := κ2
ε ∧ 106 to reduce noise while capping unmanageable computation cost

once ε <
√

2/10. Note that the refinement of the grid Mκε
ε,hε

as ε → 0 does not imply that the
accuracy of the scheme increases as ε→ 0, the increasingly fine resolution is a cost incurred due to
ηε. The increase in this cost becomes impossible to maintain as ε becomes small, this is illustrated
by Figure 1: it rises at a rate ε−4.
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Figure 1: Comparison of computation costs for (5.4) (ρκε,∗ε,hε
) and (4.3) (ρ̄κ,∗h ).

In contrast, using the diffusion limit by combining Sections 3 and 4, allows us to solve the problem
to a high precision for relatively cheap. Figure 2 demonstrates the convergence in value of Theorem
3.6, with a rate of ε

1
2 .

Explicit computation for approximately optimal controls using (4.12) is impractical for the r given
in (5.1), due to its lack of a closed-form derivative to apply first-order conditions. Nevertheless,
in order to illustrate the bounds in Propositions 4.2, we resort to numerical approximation. We
fix a grid AΓ := {iΓ−1, 0 ≤ i ≤ Γ} on A = [0, 1], fixing Γ = 1000, and then solve the maximum in
(4.12) on AΓ instead of A. Contrary to Section 4, we only compute it onMκh

h . This yields a map
ăΓ
h :Mκh

h → AΓ, which can be viewed as a vector of controls associated toMκh
h .

From here, we extend the definition of ăΓ
h by setting ăΓ

h(x) := ăΓ
h(Πκh

h (x)), for x ∈ R, where
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Πκh
h (x) := inf{z ∈Mκh

h : z ≥ x} ∧ z2κh+1, so that ăΓ
h ∈ A. We now consider the solution X̆κh,h,Γ of

X̆κh,h,Γ
· =

∫ ·
0

∫
Rd′

bε(X̆
κh,h,Γ
s− , ăΓ

h(X̆κh,h,Γ
s− ), e)N(de, ds) ,

and evaluate ρε(0, ᾰΓ
h) for each ε, where ᾰΓ

h := ăΓ
h(X̆κh,h,Γ

·− ). In practice, we fix T = 1000 and compute

ε

T
E
[∫ T

0

r(X̆κh,h,Γ
t− , ăΓ

h(X̆κh,h,Γ
t− ))dNt

]
by Monte Carlo with 1000ε−1 trajectories1 of X̆κh,h,Γ for each ε.

In spite of the noise and the simple approximate control scheme, we recover the bounds of Propositions
4.2, in terms of ε in Figure 3, with h = 0.0035570, the smallest h on Figure 1. Note that this
convergence rate matches the one of Figure 2.
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Figure 2: Approximation error of ρ∗ε by ρ̄
κh,∗
h .
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Figure 3: Suboptimality of the diffusive con-
trol relative to ρ∗ε.

Appendix

A Proof of Theorem 2.3

In this Appendix, we first provide the proof of Theorem 2.3. It follows a standard route. We adapt
arguments of [4] and [3] to our context.

1Computing an ergodic average over each trajectory is very numerically expensive for small values of ε, reducing
the feasible amount of samples. In spite of the noise, a slope faster than 1

2 is still visible in Figure 3.

32



We first show that (Vλ)λ∈(0,1) is equi-Lipschitz continuous, under the contraction condition of
Assumption 2.

Lemma A.1. Let Assumptions 1 and 2 hold, then

|Vλ(x)− Vλ(x′)| ≤ LV |x− x′|, for x, x′ ∈ Rd, λ ∈ (0, 1),

in which

LV :=
Lb,rpζ
Cζ

(
Lζ
`ζ

) 1
pζ

.

Proof. Fix x, x′ ∈ Rd, together with α ∈ A. By applying (2.4) of Assumption 2, we have

η

∫
Rd′

{
ζ(X·− + b(X·−, α, e), X

′
− + b(X ′·−, α, e))− ζ(X·−, X

′
·−)
}
ν(de) ≤ −Cζζ(X·−, X

′
·−) (A.1)

in which (X,X ′) := (Xx,α, Xx′,α) and (X·−, X
′
·−) is its left-limit. Applying Itô’s Lemma2 then

implies

ζ(Xt, X
′
t) = ζ(x, x′) +

∫ t

0

∫
Rd′

(ζ(Xs− + b(Xs−, αs, e), X
′
s + b(X ′s−, αs, e))− ζ(Xs−, X

′
s−))N(de, ds)

for t ≥ 0. Combining the above with (A.1) yields

ζ(Xt, X
′
t) ≤ ζ(x, x′)− Cζ

∫ t

0

ζ(Xs, X
′
s)ds+Mt

in which

M :=

∫ ·
0

∫
Rd′

(ζ(Xs− + b(Xs−, αs, e), X
′
s + b(X ′s−, αs, e))− ζ(Xs−, X

′
s−))(N(de, ds)− ην(de)ds),

is a local martingale. Upon using a localisation argument, recall (i) of Assumption 2, taking the
expectation and using an immediate comparison result for ODEs leads to

E[ζ(Xt, X
′
t)] ≤ ζ(x, x′)e−Cζt, t ≥ 0. (A.2)

It remains to use (i) of Assumption 2 to deduce that

E[|Xt −X ′t|pζ ] ≤
Lζ
`ζ
|x− x′|pζe−Cζt , t ≥ 0. (A.3)

2Which, in this setting, is equivalent to writing ζ(Xt, X
′
t) as the sum of its jumps.
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Combining the above with Remark 2.2, the Lipschitz continuity assumption on r, Assumption 1,
and using Jensen’s inequality then leads to

|Jλ(x, α)− Jλ(x′, α)| ≤ Lb,r

∫ ∞
0

e−λtE [|Xt −X ′t|] dt

≤ Lb,r

∫ ∞
0

e−λtE [|Xt −X ′t|pζ ]
1
pζ dt

≤ Lb,r

(
Lζ
`ζ

) 1
pζ
∫ ∞

0

|x− x′| e−λt−
Cζ
pζ
t
dt

≤ Lb,rpζ
Cζ + λpζ

(
Lζ
`ζ

) 1
pζ

|x− x′| .

Since |Vλ(x)− Vλ(x′)| ≤ supα∈A |Jλ(x, α)− Jλ(x′, α)| and λpζ ≥ 0, this completes the proof.

We now use Assumption 3 to provide a uniform (in time and the control) estimate on the diffusion
(2.1).

Lemma A.2. Let Assumptions 1 and 3 hold. Then, for all (x, α) ∈ Rd ×A,

E[|Xx,α
t |pξ ] ≤

1

`ξ

{
e−C

1
ξ tLξ|x|pξ +

C2
ξ

C1
ξ

(1− e−C1
ξ t)

}
, t ≥ 0.

Proof. Fix (x, α) ∈ Rd ×A and let us write X for Xx,α. By (2.5) and the same arguments as in the
proof of Lemma A.1,

E[ξ(Xt)] ≤ ξ(x) +

∫ t

0

E[−C1
ξ ξ(Xs) + C2

ξ ]ds, t ≥ 0,

which implies that

E[ξ(Xt)] ≤ e−C
1
ξ tξ(x) +

C2
ξ

C1
ξ

(1− e−C1
ξ t), t ≥ 0.

We conclude with (i) of Assumption 3.

We can now prove a first convergence result.

Lemma A.3. Let Assumptions 1 and 2 hold. Then there is c ∈ R and a sequence (λn)n≥1 going to
0 such that (λnVλn)n≥1 converges uniformly on compact sets to c, and such that (Vλn − Vλn(0))n≥1

converges uniformly on compact sets to a function w ∈ C0,1 that solves

c = sup
a∈A

{
η

∫
Rd′

[w(·+ b(·, a, e))− w] ν(de) + r(·, a)

}
, on Rd,
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and satisfies

|w(x)| ≤ LV |x|, x ∈ Rd. (A.4)

Proof. The proof applies classical arguments from [4] to the pure jump setting. By Lemma A.1,
(Vλ − Vλ(0))λ>0 is equicontinuous in the Lipschitz sense and, in particular, |Vλ(x)− Vλ(0)| ≤ LV |x|
for all x ∈ Rd and λ > 0. Hence, (λ(Vλ − Vλ(0)))λ≥0 converges uniformly on compact sets to 0 as
λ → 0. Since (λVλ(0))λ≥0 is bounded, recall Lemma A.2 and Assumption 1, there is a sequence
(λn)n≥1 converging to 0 such that λnVλn(0) → c ∈ R as n → ∞. Thus, λnVλn → c uniformly on
compact sets.

By Lemma A.1, (Vλ − Vλ(0))λ>0 is locally bounded. Then, a diagonalisation argument allows one
to extract a further subsequence (also denoted (λn)n≥0) such that Vλn − Vλn(0) → w on Qd for
some w : Qd → R. By the uniform equicontinuity of (Vλ)λ∈(0,1), w can be extended to Rd and
Vλn − Vλn(0) → w uniformly on compact sets. Moreover, w is LV -Lipschitz and w(0) = 0, which
implies (A.4).

Next, it follows from standard arguments, see e.g. [11], that Vλn solves for each n ≥ 1

0 = sup
a∈A

{
η

∫
Rd′

[Vλn(·+ b(·, a, e))− Vλn ]ν(de) + r(·, a)

}
− λnVλn , on Rd. (A.5)

Hence,

λnVλn(0) =− λn(Vλn − Vλn(0))

+ sup
a∈A

{
η

∫
Rd′

[Vλn(·+ b(·, a, e))− Vλn(0)− (Vλn − Vλn(0))]ν(de) + r(·, a)

}
, on Rd,

and passing to the limit (recall Assumption 1 and that ν is a probability measure) implies that

c = sup
a∈A

{
η

∫
Rd′

[w(·+ b(·, a, e))− w]ν(de) + r(·, a)

}
, on Rd.

We now have to prove that the constant c defined above equals ρ∗(0) and that only (w, ρ∗(0)) solves
(2.8), up to restricting to functions with linear growth taking the value 0 at 0.

Lemma A.4. Let Assumptions 1, 2 and 3 hold. Let (w̃, ρ̃) ∈ C0
lin × R be a solution of the ergodic

equation

ρ̃ = sup
a∈A

{
η

∫
Rd′

[w̃(·+ b(·, a, e))− w̃]ν(de) + r(·, a)

}
, on Rd.

Then, ρ∗ is constant and equal to ρ̃. In particular, the constant c of Lemma A.3 is equal to ρ∗.
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Proof. Let us fix x ∈ Rd.

a. By Lemma A.3 and [9, Proposition 7.33, p.153], we can find a measurable map x′ ∈ Rd → â(x′) ∈ A
such that

ρ̃ = η

∫
Rd′

[w̃(·+ b(·, â(·), e))− w̃]ν(de) + r(·, â(·)), on Rd.

Let X̂ denote the solution of (2.1) associated to α̂ := â(X̂·−) and the initial condition x. Then, Itô’s
Lemma implies that

E
[
w̃(X̂t)− w̃(x) +

1

η

∫ t

0

r(X̂s−, α̂s)dNs

]
= ρ̃t, t ≥ 0.

Moreover, since w̃ has linear growth, there exists C > 0 such that

E[|w̃(X̂t)− w̃(x)|] ≤ CE[1+|X̂t|+ |x|].

By Lemma A.2, E[|X̂t|]/t→ 0 as t→∞ since pξ ≥ 1. Then, the above implies that

lim
t→∞

1

ηt
E
[∫ t

0

r(X̂s−, α̂s)dNs

]
= ρ̃.

b. Conversely, for any α ∈ A,

E
[
w̃(Xx,α

t )− w̃(x) +
1

η

∫ t

0

r(Xx,α
s− , αs)dNs

]
≤ ρ̃t, t ≥ 0.

By Lemma A.2 and the linear growth of w̃ again, we deduce that

lim sup
t→∞

1

ηt
E
[∫ t

0

r(Xx,α
s− , αs)dNs

]
≤ ρ̃.

c. Combining a. and b. implies that ρ̃ = ρ∗(x). By arbitrariness of x ∈ Rd, ρ∗ is constant.

We are now in position to prove our second convergence result, and therefore to complete the proof
of Theorem 2.3.

Lemma A.5. Let Assumptions 1, 2 and 3 hold. Then, there exists a sequence (Tn)n≥1 going to +∞
such that (T−1

n VTn(0, ·))n≥1 converges uniformly on compact sets to ρ∗(0).

Proof. The proof follows from the same arguments as in [4, Prop. VI.1] except that in their case the
convergence holds uniformly on Rd. Let (λn)n≥1 be as in Lemma A.3 and set Tn := δ/λn for some
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δ ∈ (0, 1), so that λn → 0 and Tn →∞ as n→∞. Fix x ∈ Rd. By Lemma A.1 and Lemma A.2,
we can find C > 0 such that E[|Vλn(Xx,α

t )− Vλn(x)|] ≤ C(1 + |x|) uniformly in α ∈ A and for all
x ∈ Rd, and t ≥ 0. Arguing as in the proof of [4, Prop. VI.1], we then deduce from the dynamic
programming principle applied to Vλn , see e.g. [11], Lemma A.1, Lemma A.2 and Assumption 1 that,
for some C ′ > 0 that does not depend on n,

|ρ∗(1− e−δ)− δ

Tn
VTn(0, x)| ≤ 2|λnVλn(x)− ρ∗|+λnC ′(1 + |x|).

It remains to divide the above by δ, send n→∞ and use Lemmas A.3 and A.4 to obtain that

ρ∗
(1− e−δ)

δ
≤ lim inf

n→∞

1

Tn
VTn(0, x) ≤ lim sup

n→∞

1

Tn
VTn(0, x) ≤ ρ∗

(1− e−δ)
δ

,

and we conclude by arbitrariness of δ ∈ (0, 1). The fact that the convergence is uniform on compact
sets follows from the above and Lemma A.3.

B Estimates for elliptic Hamilton-Jacobi-Bellman equations
without control on the volatility part

In this section, we collect standard estimates on elliptic Hamilton-Jacobi-Bellman equations associated
to infinite horizon optimal control problems of a diffusion, in which there is no control on the volatility
part. This is a specific class of quasi-linear equations whose analysis is standard. Our focus here
is on the growth rate of local C2,1

b -estimates in the case where the solution is already known to be
Lipschitz. We follow closely the arguments of [20] that considers compact domains and insist only
on the points where the Lipschitz continuity property is used.

As usual, we first consider linear equations of the form

0 = 〈b,Du>〉+
1

2
Tr
[
aD2u

]
− λu− f on Rd. (B.1)

We fix M > 0 and a modulus of continuity % (i.e. a real valued map on Rd that is continuous at 0

and such that %(0) = 0). We let S(M,%) denote the collections of real-valued maps u ∈ C2 such
that u(0) = 0, |Du| ≤M and that are strong solutions of (B.1) with coefficients satisfying:

(i) λ ∈ [0, 1],

(ii) (b, f) : Rd → Rd × R is measurable and [b]C0
lin

+ ‖f‖C0
b
≤M ,

(iii) a : Rd → Sd is bounded by M and admits % as a modulus of continuity,
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(iv) inf{ξ>a(x) ξ : (x,ξ) ∈ Rd×Rd, |ξ| = 1} ≥ 1/M .

Hereafter, we use the convention 0/0 = 0.

Lemma B.1. For each γ ∈ (0, 1), there exists Kγ
M,% > 0 such that any u ∈ S(M,%) satisfies

‖u‖C1,γ
b (B2(x)) ≤ Kγ

M,%(1 + |x|), for all x ∈ Rd.

Proof. 1. Given p > 1, we first estimate ‖u‖W 2,p(B2(x)) in which ‖ · ‖W 2,p(B2(x)) denotes the norm
associated to the Sobolev space W 2,p(B2(x)). We follow the proof of [20, Theorem 9.11]. Fix
x0 ∈ B2(x). By [20, (9.37)], for any v ∈ W 2,p(B3(x0)) supported in some BR(x0) ⊂ B3(x), R > 0,
there is C1 > 0, that depends only on p, such that

∥∥D2v
∥∥
Lp(BR(x0))

≤ C1M

(
sup
BR(x0)

|a− a(x0)|
∥∥D2v

∥∥
Lp(BR(x0))

+
∥∥Tr[aD2v]

∥∥
Lp(BR(x0))

)
,

in which ‖·‖Lp(BR(x0)) denotes the usual norm of the Lp-space associated to the Lebesgues measure
on BR(x0).

The uniform continuity of a implies that there exists R > 0 small enough, that only depends on p,
M and %, such that |a− a(x0)| ≤ (2C1M)−1 on BR(x0), so that the above implies that∥∥D2v

∥∥
Lp(BR(x0))

≤ 2C1M
∥∥Tr[aD2v]

∥∥
Lp(BR(x0))

. (B.2)

Take u ∈ S(M,%) a solution to (B.1) in B3(x), applying (B.2) yields∥∥D2u
∥∥
Lp(BR(x0))

≤ C2(‖f‖C0
b (B3(x)) + λ ‖u‖C0

b (B3(x)) + ‖b‖C0
b (B3(x))

∥∥Du>
∥∥
C0
b (B3(x))

)

for some C2 > 0 that only depends on M , p and %. From the definition of S(M,%), it follows that
there is C3 > 0, independent of x0, such that

‖u‖W 2,p(BR(x0)) ≤ C3(1 + |x|) ,

and, by covering B2(x) with finitely many balls of radius less that R, one obtains

‖u‖W 2,p(B2(x)) ≤ C4(1 + |x|)

for some C4 that depends only on p, M and %.

2. Using an imbedding theorem, see e.g. [20, Theorem 7.26], we can find K̄γ,p > 0 such that

‖u‖C1,γ
b (B2(x)) ≤ K̄γ,p‖u‖W 2,p(B2(x)), ∀ u ∈ S(M,%), x ∈ Rd,

for all p ∈ N such that 0 < d/p < 1 and γ ∈ (0, 1− d/p). Given γ ∈ (0, 1), the required result follows
by combining the above for some p large enough.
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We now turn to the quasilinear case

0 = b̂(·,Du>) +
1

2
Tr
[
aD2u

]
− λu on Rd, (B.3)

in which
b̂(x, y) := 〈b(x, y), y〉 − f(x, y), (x, y) ∈ Rd × Rd.

We again fix M > 0, and ρ = (ρ1, ρ2) ∈ (0, 1]2, and let S̃(M,ρ) denote the collection of real-valued
maps u ∈ C2 such that u(0) = 0, |Du| ≤ M , and that are solutions of (B.3) for some coefficients
satisfying:

(a.) λ ∈ [0, 1],

(b.) (b, f) : Rd → Rd × R is measurable and [b]C0
lin(R2d) + ‖f‖C0

b (R2d) ≤M ,

(c.) a : Rd → Sd is measurable and bounded by M .

(d.) inf{ξ>a(x) ξ : (x,ξ) ∈ Rd×Rd, |ξ| = 1} ≥ 1/M ,

(e.) for all x, x′ ∈ Rd such that |x− x′| ≤ 1 and all y, y′ ∈ Rd:

|a(x)− a(x′)|+ |b̂(x, y)− b̂(x′, y′)| ≤M (|x− x′|ρ1 + |y − y′|ρ2) .

Lemma B.2. Fix γ ∈ (0, ρ1 ∧ ρ2). Then, there exists K̃γ
M,ρ > 0 such that any u ∈ S̃(M,ρ) satisfies

‖u‖C2,γ
b (B1(x)) ≤ K̃γ

M,ρ(1 + |x|), for all x ∈ Rd.

Proof. Fix x ∈ Rd. Since |Du| ≤ M , by Lemma B.1 applied to the coefficient x′ ∈ Rd 7→
(b(x′,Du(x′)), a(x′), f(x′,Du(x′))) in place of (b, a, f), for each γ ∈ (0, 1), we can find Cγ > 0 such
that

‖u‖C1,γ
b (B2(x)) ≤ Cγ(1 + |x|) for all x ∈ Rd. (B.4)

It then follows from [20, Theorem 9.19] that u ∈ C2,γ
b (B2(x)) for any γ ∈ (0, ρ1 ∧ ρ2).

To obtain an associated estimate, we turn to the proof of [20, Theorem 6.2] which we apply to
the solution w = u of the linear equation Lw := 1

2
Tr [aD2w] = −b̂(·,Dw>) + λw, in our particular

setting. Fix x0 ∈ B2(x), and consider the constant coefficient equation L0w := 1
2
Tr [a(x0)D2w] = F

where F (z) := 1
2
Tr [(a(x0)− a(z))D2u(z)]− b̂(z,Du>(z)) + λu(z), z ∈ Rd.
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We first introduce some notations. For Ω ⊂ Rd, γ ∈ (0, 1), and f ∈ C2,γ(Ω) define the following
norm and Schauder semi-norm respectively as follows:

|f |(2)
0,γ,Ω := sup

z∈Ω
d2
z |f(z)|+ sup

(z,z′)∈Ω2

d2+γ
z,z′
|f(z)− f(z′)|
|z − z′|γ

[f ]∗2,γ,Ω := sup
(z,z′)∈Ω2

d2+γ
z,z′
|D2f(z)−D2f(z′)|

|z − z′|γ
(B.5)

[f ]∗2,Ω := sup
z∈Ω

d2
z

∣∣D2f(z)
∣∣ , (B.6)

where dz is the distance of z to the boundary of Ω and dz,z′ := dz∧dz′ for any (z, z′) ∈ Ω2.

We now fix γ ∈ (0, ρ1 ∧ ρ2). Let µ ∈ (0, 1
2
] and set Ω :=B2(x). Fix y0 ∈ B2(x) such that dx0 ≤ dy0

(without loss of generality) and set B := Bµdx0
(x0). Then, [20, Lemma 6.1 (a.)] (see [20, (6.16)] for

details) applied to L0w = F implies that

d2+γ
x0,y0

|D2u(x0)−D2u(y0)|
|x0 − y0|γ

= d2+γ
x0

|D2u(x0)−D2u(y0)|
|x0 − y0|γ

≤ Cγ
1

µ2+γ
(‖u‖C0

b (B2(x)) + |F |(2)
0,γ,B) +

4

µγ
[u]∗2,B2(x)

for some Cγ
1 > 0, which only depends on γ ∈ (0, ρ1 ∧ ρ2). Then, using [20, (6.8)] yields

d2+γ
x0,y0

|D2u(x0)−D2u(y0)|
|x0 − y0|γ

≤ Cγ
1

µ2+γ

(
‖u‖C0

b (B2(x)) + |F |(2)
0,γ,B

)
+ 4

(
C1(µ)‖u‖C0

b (B2(x)) + µγ[u]∗2,γ,B2(x)

)
for some C1(µ) > 0 that only depends on µ. The Schauder estimate then comes from bounding term
by term |F |(2)

0,γ,B. First, we argue as for [20, (6.19)], using (c.) and (e.) in the definition of S̃(M,ρ),
to obtain ∣∣Tr

[
(a(x0)− a))D2u

]∣∣(2)

0,γ,B
≤ Cγ

2µ
2+γ
[
C2(µ)‖u‖C0

b (B2(x)) + µγ[u]∗2,γ,B2(x)

]
for some Cγ

2 , C2(µ) > 0 which only depend on γ and µ. Second, we combine (B.4) with items (a.)
and (e.) in the definition of S̃(M,ρ) to obtain that∣∣∣b̂(·,Du>)−λu

∣∣∣(2)

0,γ,B2(x)
≤ Cγ

3 (1 + |x|)

for some Cγ
3 > 0, that only depends on γ.

Combining the above with (B.4) and using the arbitrariness of x0, y0 ∈ B2(x) leads to

[u]∗2,γ,B2(x) ≤
Cγ

1

µ2+γ

(
‖u‖C0

b (B2(x)) + Cγ
3 (1 + |x|)

)
+
Cγ

1C
γ
2

2

[
C2(µ)‖u‖C0

b (B2(x)) + µγ[u]∗2,γ,B2(x)

]
+ 4

(
C1(µ)‖u‖C0

b (B2(x)) + µγ[u]∗2,γ,B2(x)

)
.
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We now take µ > 0 small enough and recall (B.4) to obtain, for each 0 < γ < ρ1 ∧ ρ2, a constant
Cγ

4 > 0, independent on x, such that

[u]∗2,γ,B2(x) ≤ Cγ
4 (1 + |x|)

and we conclude by using [20, (6.9)] and the fact that the distance between a point of B1(x) and
the boundary of B2(x) is a least 1.
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