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...Problem formulation

e Controlled process: X¢ defined by
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...Problem formulation

e Controlled process: X¢ defined by

t t
Xe = Xo+ [ b(Xe€)ds+ | a(Xe,&)dWe+ 30 B(X ¢ 1€ e 1€ 0) -

ngt
e Reward function:
£ B et ¢
NE©) = g(Xf.er) + [ fX§&)ds— 3 o X5 6c €
TfST i ? )

e VValue function:

v(0,Xp,e0) := sup E[N()] .
£€So(eon)
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e Tang S. and J. Yong (1993), Finite horizon stochastic optimal switch-
ing and impulse controls with a viscosity solution approach, Stoch. and
Stoch. Reports, 45, 145-176.

e Many others... mostly with infinite time horizon.

e Important points (compare with Tang and Yong):

- the switching process may have an impact on the terminal reward
function and the size of the jumps of the diffusion,

- the jump coefficients may depend on the current value of the diffusion
process X, (continuity of v ?)

- the cost function ¢ is not assumed to be positive (nor non-negative)
(as in Ly Vath and Pham 2006).
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PDE characterization

e Dynamic programming: v is l|.s.c. and for all stopping time 6 < T
P — a.s.

0
v(ta,e) > EW(0, X5 &) + [ (D €)ds]

- E[ Z C<X7(_?C_B),§>€T§_7£T§>]-

t<7§§9 ¢
e PDE: Formal argument
1. Immediate switch: v(t,z,e) > v(t,x + B(x,e,5),e,7) —c(x,e,j) V 7.

2. No switch: L := §p+b(-,e)' Do+ 5Tr |ad'(-,e)D%p| + f(-,e) = 0.
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min {v(T—, x,e) — g(x,e) , Gv(T—,z,e)} =0 , for all (z,e) € R x E . (B)

e Contruction of the smallest solution: G° = g and

G" (@ e) = max(G"( 4 B(@,e,1), ) = e(@, e, ) jzee) — G -

e Proposition If there is a locally bounded supersolution ¢ of (B),
then

(i) G is locally bounded and is the smallest solution of (B).

(ii) Any subsolution ¢ of (B) satisfies ¢ < G if

H3 : If (e;,2;)0<i<k, k > 1, is a sequence in E x R% such that z; =
x;_1 + ﬁ(azi_l,ei:l_,ei) for 1 < i <k and e, = eg, then zp = xg and
Sk e(wi—1,ei-1,€) > 0.
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...PDE characterization (terminal condition)

min {v(T—, x,e) — g(x,e) , Gv(T—,z,e)} =0 , for all (z,e) € R x E . (B)

e Contruction of the smallest solution: G° = g and

G" (e, e) = max (G"(z+ Bz, ,0), 1) — (@, e, Njzee) — G

e Proposition Under H3, the only solution of (B) is G.
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...PDE characterization (unigqueness)

H1l : v satisfies the growth condition

sup [(t,z,e)]/(1 4+ [z]7) < oco.
(t,z,e)€[0,T]xRIx E

H2 : There is a function A on R? x E satisfying

(i) A(-,e) € C2(R?) for all e € E,

(i) DA+ 27Tr [aa’DQ/\} < oA on RY x E, for some o > 0,

(iii) GéA(z,e) > g(x) on RY x E for some continuous function ¢ > 0,
(iv) A>gt,

(V) A(x,e)/|x]? — oo as |z| — oo for all e € E.

e Theorem : Under H1-H2, v is continuous and is the unique (discon-
tinuous) viscosity solution of (PDE)-(B) satisfying the growth property
of H1.
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Sufficient conditions for H1

e Linear growth if: g(z,e) < Cy+n'z, [f'b+ f]T < Cs and n/3—c < 0.

e Growth with coefficient v > 1 if: 3 a supersolution w to (B)
satisfying H1 such that w(-,e) € C2(R%) for each e and (Lw)T 4+ |Dw'ql
is uniformly bounded.

e Growth with coefficient v = p if: ¢ > 0 and 8 = 0 on {z €
R% : |z| > K} x E=.
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o In this case, take: A(t,z,e) := (d4+n|z|2Y +de) for some d > 0 large
enough so that A > ¢gT.
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T he optimal switching problem

Sufficient condition for H2

e General condition: For some v > p, 3 (d;);eg and a > 0 such that
—a < |z+8(z,i, )2 = |z|?Y  for all (z,3,5) € R? x E2

n = min inf 5 5
Lj€B ceRd @ + B(x, 4, )27 — |227 + a

> 0.

e Examples:
1. ¢ > ¢ for some € > 0 and B8 has a compact support.

2. c independent of x, satisfies a strict triangular condition

and B has a compact support.
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The stochastic target problem (super-hedging)

Interpretation

e “Wealth process”: Yty’¢ =y~ [ s dWs.

e Super-hedging problem: u(0,Xg,eq) is the inf of the set of all y
such that

t
YE? 2 NN = 9O, N + [ O Nds = 30 e (XM Nv  Now)
TZ-NSt ' ' ‘
where

t t
XN = Xo+ | b(Xs,No)ds+ | a(Xs, Ns)dWs + B(X N ,Nn ,Ny).
0 0 N 7 7 7
T <t

e = Hedges the reward associated to a random policy.
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Dynamic programming

e Supersolution property: y > u(0, Xg,eg) = I ¢ s.t. for all stopping
times 06 < T P — a.s.

0
e > u(Q,XéV,Ng)—I—/O FXN,Nds — Y (XN _,N.y_,N_x) P-as.
TZNSQ 1 (] 1

e Subsolution property: y < u(0,Xg,eqg) = V ¢ and stopping times
0 <TP-—a.s.

0
= Yey,¢>u(0,XéV,N@)—|—/O FXN, Nds — Y (XN N_y_,N_y)| <1.
TZNSQ 7 7 7
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PDE characterization

e Formal argument: Set y =u(0,x,e) and “Xg_ =2z", “"Ng_ =¢€".

\

0+
0 <d|Y?—u(0,Xo,No)— [ FOXN N)ds+ 3 e(XD_ Nov_,Nox)

N<o+ )
= (¢g —aVu) - dWy

—  L%udt
— Lv_olu(0z+ B(xz,e,Ng),) —u(0,z,e) + c(x,e, Ng)} .

e Formal condition:

1. ¢O = aVu

2. geu — u(O,:I:,e) o U;(O,ZIZ"—ﬁ(w,B,NO),) o C(.I,B,NO) 2 0

3. L4 >0



The stochastic target problem (super-hedging)

PDE characterization

e Formal argument: Set y =u(0,z,e) and “Xg_ =2z", “Ng_ =¢€".

|
0 <d|Y¥?—u(0,Xg, Ng) — /OO+ FXY Nods+ Y c(XﬁV_,NTN_,NTN)
N<o+ Z y
= (¢g — aVu) - dWy
—  LC%udt
— 17{\7:0 {u (0,2 + B(x,e, Ng),) —u(0,z,e) + c(x,e, Ng)} .

e Formal condition:
1. qbo = aVu

2. Optimality = min{—L% , G°u} =0
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The stochastic target problem (super-hedging)

...PDE characterization

e Theorem : If u is locally bounded, then it is a discontinuous Viscosity
solution of

min {—L%(t,z) , Gu(t,xz,e)} = 0.
with terminal condition

min{u(T—,z,e) — g(x,e) , Gu(T—,x,e)} =0 , for all (x,¢e) € R x E. (B)



The stochastic target problem (super-hedging)

...PDE characterization

H1’ : u7T satisfies the growth condition

sup [t z,e)]/(1 4+ [z]7) < oco.
(t,z,e)€[0,T]xRIx E



The stochastic target problem (super-hedging)

...PDE characterization

H1’ : T satisfies the growth condition

sup [t z,e)]/(1 4+ [z]7) < oco.
(t,z,e)€[0,T]xRIx E

H2 : There is a function A on R? x E satisfying

(i) A(-,e) € C2(R?) for all e € E,

(i) DA+ 277 [aa’DQ/\} < oA on R? x E, for some o > 0,

(iii) GéA(z,e) > g(x) on RY x E for some continuous function ¢ > 0,
(iv) A>gT,

(v) A(x,e)/|x]? — oo as |z| — oo for all e € E.



The stochastic target problem (super-hedging)

...PDE characterization

H1’ : T satisfies the growth condition

sup [t z,e)]/(1 4+ [z]7) < oco.
(t,z,e)€[0,T]xRIx E

H2 : There is a function A on R? x E satisfying

(i) A(-,e) € C2(R?) for all e € E,

(i) DA+ 277 [aa’DQ/\} < oA on R? x E, for some o > 0,

(iii) GéA(z,e) > g(x) on RY x E for some continuous function ¢ > 0,
(iv) A>gT,

(v) A(x,e)/|x]? — oo as |z| — oo for all e € E.

e Theorem : Under H1'-H2, w is continuous and is the unique (discon-
tinuous) viscosity solution of (PDE)-(B) satisfying the growth property
of H1'.
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Equivalence through PDEs

e Theorem If v and v are locally bounded, then both are discontinuous
viscosity solutions of

min {—L%(t,z) , GV (t,z,e)} =0.
with terminal condition

min{V(T—,x,e) — g(z,e) , GV(T—,x,e)} =0 , for all (x,e) € RYx E .



Equivalence property

Equivalence through PDEs

e Theorem If wand v are locally bounded, then both are discontinuous
viscosity solutions of

min{—-Lp(t,z) , GV (t,z,e)} =0.
with terminal condition

min{V(T—,x,e) — g(xz,e) , GV(T—,x,e)} =0 , for all (x,e) € R x E .

e Theorem If v and vT have polynomial growth and H2 holds, then

u=wo, l.e.
sup E[MN(¢)] = Super-hedging price of MN(N)
£€So(eo)
Recall
¢ 0 ¢
() = g(XF, &) + [ F(X§, &)ds — 3 c<XT§_,5T;—_,§T§> .

TE<T



Equivalence property

Equivalence through PDEs

e Theorem If wand v are locally bounded, then both are discontinuous
viscosity solutions of

min{—-Lp(t,z) , GV (t,z,e)} =0.
with terminal condition

min{V(T—,x,e) — g(xz,e) , GV(T—,x,e)} =0 , for all (x,e) € R x E .

e Theorem If v and vT have polynomial growth and H2 holds, then
u=wo, l.e.

sup E[MN(¢)] = Super-hedging price of MN(N)
£€50(eo)

Economic value of the firm Hedging value of the total reward

for a policy viewed as random

Recall

_ ok T eoxe ¢
() = g(X5,60) + | F(X§ 6)ds— 30 o X5 €6 &c) -

TE<T
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An other dual formulation

e Dual variables: Let U/ = set of predictable essentially bounded
processes v = (9, ..., %) with values in (0,00)"t1. Set

HY = € (/C)T/E(ug _ ide. dt)) QY ~P .
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processes v = (9, ..., %) with values in (0,00)"t1. Set
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e Dual problem: (0, Xq,eq) := sup,eyy EQ [ N(NV)].
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An other dual formulation

e Dual variables: Let U/ = set of predictable essentially bounded
processes v = (9, ..., %) with values in (0,00)"t1. Set

HY = € (/OT /E(ug _ ide. dt)) QY ~P .

e Dual problem: (0, Xq,eq) := sup,eyy EQ [ N(NV)].

e Theorem If 4T and vT have polynomial growth and H2 holds, then

u=w, i.e.

sup E[M(¢)] = supEQ [N(N)]
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Equivalence property

An other dual formulation

e Dual variables: Let U/ = set of predictable essentially bounded
processes v = (9, ..., %) with values in (0,00)"t1. Set

HY = € (/OT /E(ug _ ide. dt)) QY ~P .

e Dual problem: (0, Xq,eq) := sup,eyy EQ [ N(NV)].

e Theorem If 4T and vT have polynomial growth and H2 holds, then
u=w, i.e.
sup E[N()] = sugl@@” [ (V)]

£€8So(ep) ve
Optimum over Optimum over

switching strategies probability laws on N



