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Part I: Barrier options pricing under
constraints (sum up)
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* X d-risky assets

Xt = X0 +
∫ t
0

diag [Xs]σ(s,Xs)dWs , t ≤ T

* Wealth process: φ ∈ K dt× dP− a.s. and

Yt = y+
∫ t
0
Ysφ

′
sdiag [Xs]

−1 dXs = y+
∫ t
0
Ysφ

′
sσ(s,Xs)dWs ,

��� Super-hedging problem: τ = exit time from [0, T )×O

v(0, X0) := inf
{
y ∈ R : Y y,φτ ≥ g(τ,Xτ) for some φ ∈ K

}



Vanilla options: Explosion of the hedge in BS

• Black and Scholes model: σ is constant

Xt = X0 +
∫ t
0

diag [Xs]σdWs , t ≤ T

• If no contraints: Yt = v(t,Xt)

dYt = Ytφ
′
tσdWt = dv(t,Xt) = vx(t,Xt)XtσdWt

⇒ φt = Xtvx(t,Xt)/v(t,Xt).



...Vanilla options : Explosion of the hedge in BS

Example 1. Digital option in dimension 1

• g(x) = 1x≥κ

• Xt = X0e
−σ2T/2+σWT

• g(XT ) = ĝ(WT ) = 1WT≥κ̂ with κ̂ = [ln(κ/X0) + σ2T/2]/σ.

• v̂(t, w) = v(t,X0e
−σ2t/2+σw) = P [WT −Wt ≥ κ̂− w]



...Vanilla options : Explosion of the hedge in BS

Example 1. Digital option in dimension 1

• Hedge: φt = Xtvx(t,Xt)/v(t,Xt) = v̂w(t,Wt)/v̂(t,Wt).

• v̂w(t, w) = fT−t(κ̂− w) = (2φ(T − t))
1
2 exp(−[κ̂− w]2/[2(T − t)])

• v̂(t, w) ≥ 1/2 if w ≥ κ̂

• For κ̂ ≤Wt ≤ κ̂+ C(T − t)
1
2 but T − t very small:

φt = v̂w(t,Wt)/v̂(t,Wt) very large !



...Vanilla options : Explosion of the hedge in BS

Example 2. Up-and-out call in dimension 1

• O = (0, U) and g(t, x) = [x − κ]+1t=T1x<U : similar problem when

approaches {T, U} if U > κ.
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...Vanilla options : Explosion of the hedge in BS

Usual practice

• For Vanilla option: smoothing of the payoff ok

• For Barrier options: move the barrier not so simple

⇒ use portfolio constraint to rationalize these practices.



Formal Derivation of the PDE

* Yt = v(t,Xt) and

dYt = Ytφ
′
tσ(t,Xt)dWt ≥ dv(t,Xt)

= Lv(t,Xt)dt+Dv(t,Xt)
′diag [Xt]σ(t,Xt)dWt

where

Lv(t, x) =
∂

∂t
v(t, x) +

1

2
Trace[a(t, x)D2v(t, x)]

and a(t, x) = diag [x]σ(t, x)σ(t, x)′diag [x]

* φt ∈ K ⇒ diag [Xt]Dv(t,Xt)/v(t,Xt) ∈ K.

* min
ρ∈dom(δ)∩∂B1

δ(ρ)v − ρ′diag [x]Dv ≥ 0 with

δ(ρ) = sup
ξ∈K

ξ · ρ



PDE characterization
(In BS model, under smoothness assumptions and g(t, ·) = 0 for

t < T )

* Inside the domain

min{−Lv , inf
ρ

(
δ(ρ)v − ρ′diag [x]Dv

)
} = 0 .

* On the time boundary {T} × Ō

min{v − g , inf
ρ

(
δ(ρ)v − ρ′diag [x]Dv

)
} = 0 .

* On the spacial boundary [0, T )× ∂O

min{v − g , inf
ρ

(
δ(ρ)v − ρ′diag [x]Dv

)
} = 0 .



PDE characterization
(In BS model, under smoothness assumptions and g(t, ·) = 0 for

t < T )

* Inside the domain

min{−Lv , inf
ρ

(
δ(ρ)v − ρ′diag [x]Dv

)
} = 0 .

* On the time boundary {T} × Ō
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PDE characterization
(In BS model, under smoothness assumptions and g(t, ·) = 0 for

t < T )

* Inside the domain

−Lv(t, x) = 0 .

* On the time boundary {T} × Ō

v(T, x) = ĝ(x) .

* On the spacial boundary [0, T )× ∂O

inf
ρ

(
δ(ρ)v − ρ′diag [x]Dv

)
= 0 .

��� Neumann boundary condition with control on the direction of

reflection !



Part II: Interpretation in terms of
reflected process
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Barrier options: Shortselling constraints in BS

• Schmock U., S. E. Shreve and U. Wystup (2002). Valuation of ex-

otic options under shortselling constraints. Finance and stochastics,

6, 143-172.

• Starting point: dual formulation of Cvitanic̀ J. and I. Karatzas

(1993)∗ and Föllmer H. and D. Kramkov (1997) †

∗Hedging contingent claims with constrained portfolios. Annals of Applied Prob-
ability, 3, 652-681.
†Optional decomposition under constraints. Probability Theory and Related
Fields, 109, 1-25.
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...Barrier options: Shortselling constraints in BS

* Set of dual variables: K̃: the set of bounded adapted processes

ϑ taking values in K̃ = dom(δ).

* “Super-martingale measures”: Associate the P-equivalent prob-

ability measure Qϑ

dQϑ

dP
= e−

1
2

∫ T
0 |σ(t,Xt)−1ϑt|2dt+

∫ T
0 (σ(t,Xt)−1ϑt)′dWt

and denote by Eϑ the associated expectation operator.

* Discounting factor: Eϑr := e−
∫ r
0 δ(ϑt)dt .

��� Dual formulation: (assume g > 0 uniformly)

v(0, X0) = sup
ϑ∈K̃

Eϑ
[
Eϑτ g(τ,Xτ)

]
.



...Barrier options: Shortselling constraints in BS
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g(t, x) = [x− κ]+1t=T1x<U :

v(0, X0) = sup
ϑ≥0

E
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∫ T
0 ϑtdtg(T,XTe

−
∫ T
0 ϑtdt)1

{sups≤T Xse
−
∫ s
0 ϑtdt<U}
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...Barrier options: Shortselling constraints in BS

* A simple case: 1-dim. BS model with K = [−α,∞), O = (0, U),

g(t, x) = [x− κ]+1t=T1x<U :

v(0, X0) = sup
ϑ≥0

E
[
e−α

∫ T
0 ϑtdtg(T,XTe

−
∫ T
0 ϑtdt)1

{sups≤T Xse
−
∫ s
0 ϑtdt<U}

]

��� Dual formulation in terms of reflected process:

v(0, X0) = E
[
e−αφ

∗
T g(T,XTe

−φ∗T )1{sups≤T Xse
−φ∗s<U}

]

⇒ φ∗ = local time which causes reflection of X on U .



Part III: Optimal control of reflection for
SDEs



Problem formulation

��� Controlled SDE: Given a “control” process β = (α, ε), let

(Xα,ε, Lα,ε) be a continuous adapted process with Lα,ε ∈ BVF(R+)

non-decreasing satisfying

X(s) = x+
∫ s
t
µ(X(r), βr)dr+

∫ s
t
σ(X(r), βr)dW (r) +

∫ s
t
γ(X(r), εr)dL(r)

L(s) =
∫ s
t

1{X(r)∈∂O} d|L|(r) , t ≤ s ≤ T .D



Problem formulation

* Controlled SDE: Given a “control” process β = (α, ε), let

(Xα,ε, Lα,ε) be a continuous adapted process with Lα,ε ∈ BVF(R+)

non-decreasing satisfying

X(s) = x+
∫ s
t
µ(X(r), βr)dr+

∫ s
t
σ(X(r), βr)dW (r) +

∫ s
t
γ(X(r), εr)dL(r)

L(s) =
∫ s
t

1{X(r)∈∂O} d|L|(r) , t ≤ s ≤ T .D

��� Control problem:

u(t, x) := sup
(α,ε)

J(t, x;α, ε)

where

J(t, x;α, ε) := E
[
β
α,ε
t,x (T )g

(
X
α,ε
t,x (T )

)
+
∫ T
t
β
α,ε
t,x (s)f

(
X
α,ε
t,x (s), α(s), ε(s)

)
ds

]
,

β
α,ε
t,x (s) := e

−
∫ s
t ρ(X

α,ε
t,x (r),ε(r))dLα,εt,x(r) .
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• Theorem (Dupuis and Ishii Fix γ ∈ C2(Rd,Rd) with |γ| = 1.

Assume that O is open and bounded and that there exists some

r ∈ (0,1) for which⋃
0≤λ≤r

B (x− λγ(x), λr) ⊂ Oc for all x ∈ ∂O .

Then, for all ψ ∈ C([0, T ],Rd) satisfying ψ(0) ∈ Ō, there exists

(φ, η) ∈ C([0, T ], Ō)×BV([0, T ],R+) such that

φ(t) = ψ(t) +
∫ t
0
γ(φ(s))dη(s) , η(t) =

∫ t
0

1{φ(s)∈∂O}d|η|(s) , t ≤ T .

��� Moreover, (φ(t), η(t)) ∈ σ(ψ(s), s ≤ t) for all t ≤ T , and uniqueness

holds if ψ ∈ BV([0, T ],Rd).
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• Lemma (Dupuis and Ishii) Let X be a continuous semimartingale

with values in Ō. Assume that Y is a continuous semimartingale

with values in Ō satisfying for t ≤ T

Y (t) = X(0) +
∫ t
0
µ(X(s))ds+

∫ t
0
σ(X(s))dW (s) +

∫ t
0
γ(Y (s))dL(s) ,

where L is an element of BVF(R+) such that

L(t) =
∫ t
0

1{Y (s)∈∂O} d|L|(s) , t ≤ T .

Let X ′ be an other continuous semimartingales with values in Ō and

assume that (Y ′, L′) satisfies the same properties as (Y, L) with X ′

in place of X. Then, there is a contant C > 0 such that

E
[
sup
s≤t

|Y (s)− Y ′(s)|2 +
∫ t
0

∣∣∣Y (s)− Y ′(s)
∣∣∣2 d(L+ L′)(s)

]

≤ C

(
|X(0)−X ′(0)|2 +

∫ t
0

E
[

sup
0≤s≤u

|X(s)−X ′(s)|2
]
du

)
, t ≤ T .



...Existence of the controlled reflected SDE

• Corollary (Dupuis and Ishii) Fix (t, x) ∈ [0, T ] × Ō. Then, there

exists a unique continuous adapted process (X,L) such that L ∈
BVF(R+) and

X(s) = x+
∫ s
t
µ(X(r))dr+

∫ s
t
σ(X(r))dW (r) +

∫ s
t
γ(X(r))dL(r)

L(s) =
∫ s
t

1{X(r)∈∂O} d|L|(r) , t ≤ s ≤ T .
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...Existence of the controlled reflected SDE

• Extension of Dupuis and Ishii’s result by playing on their “test

function”.

• We fix an open bounded set O ⊂ Rd and γ ∈ C(Rd+`,R) such that

γ ∈ C2(Rd+`,Rd) , |γ| = 1

∃ r ∈ (0,1) s.t.
⋃

0≤λ≤r
B (x− λγ(x, e), λr) ⊂ Oc for all (x, e) ∈ ∂O × R` .

• Given a compact set E ⊂ R`, we denote by E the set of E-valued

cadlag adapted processes with bounded variation and a.s. a finite

number of jumps.

��� Given a compact set A ⊂ R`, we denote by A the set of predictable

processes with values in A.



...Existence of the controlled reflected SDE

��� Theorem Let the above conditions hold. Fix (t, x) ∈ [0, T ]×Ō and
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...Existence of the controlled reflected SDE

• Theorem Let the above conditions hold. Fix (t, x) ∈ [0, T ]×Ō and

β = (α, ε) ∈ A× E. Then, there exists a unique continuous adapted

process (X,L) such that L is non-decreasing, belongs to BVF(R+)

and

X(s) = x+
∫ s
t
µ(X(r), βr)dr+

∫ s
t
σ(X(r), βr)dW (r) +

∫ s
t
γ(X(r), εr)dL(r)

L(s) =
∫ s
t

1{X(r)∈∂O} d|L|(r) , t ≤ s ≤ T .

If: µ and σ are Lipschitz continuous in X uniformly in the other

variables.

��� Remark: If Y is an Ito process with values in a compact then

existence also holds for

X(s) = x+
∫ s
t
µ(X(r), βr)dr+

∫ s
t
σ(X(r), βr)dW (r) +

∫ s
t
γ(X(r), εr, Yr)dL(r)

L(s) =
∫ s
t

1{X(r)∈∂O} d|L|(r) , t ≤ s ≤ T .
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X(s) = x+
∫ s
t
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t
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∫ s
t
γ(X(r), εr)dL(r)
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t
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Problem formulation (bis)

* Controlled reflected SDE: Given β = (α, ε) ∈ A× E

X(s) = x+
∫ s
t
µ(X(r), βr)dr+

∫ s
t
σ(X(r), βr)dW (r) +

∫ s
t
γ(X(r), εr)dL(r)

L(s) =
∫ s
t

1{X(r)∈∂O} d|L|(r) , t ≤ s ≤ T .

��� Control problem: u(t, x) := sup(α,ε) J(t, x;α, ε) where

J(t, x;α, ε) := E
[
β
α,ε
t,x (T )g

(
X
α,ε
t,x (T )

)
+
∫ T
t
β
α,ε
t,x (s)f

(
X
α,ε
t,x (s), α(s), ε(s)

)
ds

]
,

β
α,ε
t,x (s) := e

−
∫ s
t ρ(X

α,ε
t,x (r),ε(r))dLα,εt,x(r) ,

with ρ, g, f are continuous, ρ ≥ 0, ρ is C1 with Lipschitz first deriva-

tive in its first variable, uniformly in the second one, and Lipschitz

in its second variable, uniformly in the first one.
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Path regularity

• Eb = elements of E with essentially bounded variation.

��� Proposition For all (α, ε) ∈ A × Eb, there is some constant C > 0

such that, for all t ≤ t′ ≤ T and x, x′ ∈ Ō,

E
[

sup
t′≤s≤T

|Xα,ε
t,x (s)−X

α,ε
t′,x′(s)|

2
]
≤ C

(
|x− x′|2 + |t′ − t|

)
,

E
[∫ T
t′
|Xα,ε

t,x (s)−X
α,ε
t′,x′(s)|

2d(Lα,ε
t′,x′(s) + L

α,ε
t,x(s))

]
≤ C

(
|x− x′|2 + |t′ − t|

)
,

E
[

sup
t≤s≤t′

|X(s)− x|2
]1
2
+ E

[
L
α,ε
t,x(t

′)
]
≤ C |t′ − t|

1
2 ,

E
[

sup
t′≤s≤T

| ln(βα,εt,x (s))− ln(βα,ε
t′,x′(s))|

]
≤ C

(
|x− x′|2 + |t′ − t|

)1
2 .
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Dynamic programming

Lemma The following holds.

(i) J(·;α, ε) is continuous on [0, T ]× Ō for all (α, ε) ∈ A× Eb.

(ii) sup
ε∈Eb

J(t, x;α, ε) = sup
ε∈E

J(t, x;α, ε) for all α ∈ A and (t, x) ∈ [0, T ]×

Ō.

(iii) u is lower semicontinuous on [0, T ]× Ō.

Lemma Fix (t, x) ∈ [0, T )× Ō. For all [t, T ]-valued stopping time θ,

we have

u(t, x) = sup
(α,ε)∈A×E

E
[
β
α,ε
t,x (θ)u

(
θ,X

α,ε
t,x (θ)

)
+
∫ θ
t
β
α,ε
t,x (s)f

(
X
α,ε
t,x (s), α(s), ε(s)

)
ds

]
.



PDE characterization

��� Set

La,eϕ :=
∂

∂t
ϕ+ 〈µ(·, a, e), Dϕ〉+

1

2
Tr

[
σ(·, a, e)σ(·, a, e)′D2ϕ

]
+ f(·, a, e)

Heϕ := ρ(·, e)ϕ− 〈γ(·, e), Dϕ〉 ,
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∂t
ϕ+ 〈µ(·, a, e), Dϕ〉+

1

2
Tr

[
σ(·, a, e)σ(·, a, e)′D2ϕ

]
+ f(·, a, e)

Heϕ := ρ(·, e)ϕ− 〈γ(·, e), Dϕ〉 ,

��� Define

K+ϕ :=


min

(a,e)∈A×E
(−La,eϕ− f(·, a, e)) on [0, T )×O

min
(a,e)∈A×E

max {−La,eϕ− f(·, a, e) , Heϕ} on [0, T )× ∂O

ϕ− g on {T} × Ō



PDE characterization

• Set

La,eϕ :=
∂

∂t
ϕ+ 〈µ(·, a, e), Dϕ〉+

1

2
Tr

[
σ(·, a, e)σ(·, a, e)′D2ϕ

]
+ f(·, a, e)

Heϕ := ρ(·, e)ϕ− 〈γ(·, e), Dϕ〉 ,

��� Define

K+ϕ :=


min

(a,e)∈A×E
(−La,eϕ− f(·, a, e)) on [0, T )×O

min
(a,e)∈A×E

max {−La,eϕ− f(·, a, e) , Heϕ} on [0, T )× ∂O

ϕ− g on {T} × Ō

and

K−ϕ :=



min
(a,e)∈A×E

(−La,eϕ− f(·, a, e)) on [0, T )×O

min
(a,e)∈A×E

min {−La,eϕ− f(·, a, e) , Heϕ} on [0, T )× ∂O

ϕ− g on {T} × O
min {ϕ− g , Heϕ} on {T} × ∂O .
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of K+ϕ = 0 (resp. a subolution of K−ϕ = 0).

Proposition The function u is a (discontinuous) viscosity solution of

Kϕ = 0.

��� Proposition Let v (resp. w) be a bounded upper-semicontinuous

viscosity subsolution (resp. lower-semicontinuous viscosity superso-

lution) of Kϕ = 0. Assume that v ≥ 0 on [0, T ]× ∂O and

ê ∈ argmin{ρ(x, e) , e ∈ E}

is independent of x ∈ ∂O. Then, v ≤ w on [0, T ]× Ō.



...PDE characterization

Definition A super- (resp. sub-) solution of Kϕ = 0 is a supersolution

of K+ϕ = 0 (resp. a subolution of K−ϕ = 0).

Proposition The function u is a (discontinuous) viscosity solution of

Kϕ = 0.

Proposition Let v (resp. w) be a bounded upper-semicontinuous

viscosity subsolution (resp. lower-semicontinuous viscosity superso-

lution) of Kϕ = 0. Assume that v ≥ 0 on [0, T ]× ∂O and

ê ∈ argmin{ρ(x, e) , e ∈ E}

is independent of x ∈ ∂O. Then, v ≤ w on [0, T ]× Ō.

��� Remark Works also if w ≥ 0 on [0, T ] × ∂O or if there exists a

non-negative subsolution (in particular if f, g ≥ 0).



Part IV: Dual formulation for the hedging
price



BS model

��� Up-and-out barrier option with shortselling constraints

St,x(s) = x+
∫ s
t

diag
[
St,x(r)

]
Σ dW (r)

K :=
d∏

i=1

[−mi,∞)

O∗ := O ∩ (0,∞)d =

x ∈ (0,∞)d :
d∑

i=1

xi < κ

 , κ > 0 .



BS model

• Up-and-out barrier option with shortselling constraints

St,x(s) = x+
∫ s
t

diag
[
St,x(r)

]
Σ dW (r)

K :=
d∏

i=1

[−mi,∞)

O∗ := O ∩ (0,∞)d =

x ∈ (0,∞)d :
d∑

i=1

xi < κ

 , κ > 0 .

��� Proposition If there exists a “smooth” solution ψ to

−Lψ(t, x) = 0 on [0, T )×O∗

min
e∈K̃1

(δ(e)ψ(t, x)− 〈e,diag [x]Dψ(t, x)〉) = 0 on [0, T )× ∂O∗

ψ = ĝ on {T} × Ō∗

such that lim
(t′, x′) → (T, x)

(t′, x′) ∈ [0, T )×O∗

Dψ(t′, x′) = Dĝ(x) almost everywhere on Ō∗ ,

then ψ = v.
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X(s) = x+
∫ s
t
X(r)ΣdW (r) +

∫ s
t
γ(X(r), εr)dL(r)

L(s) =
∫ s
t

1{X(r)∈∂O∗} d|L|(r) , t ≤ s ≤ T .
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• For ε ∈ E0, we can define the solution (Xε, Lε) of

X(s) = x+
∫ s
t
X(r)ΣdW (r) +

∫ s
t
γ(X(r), εr)dL(r)

L(s) =
∫ s
t

1{X(r)∈∂O∗} d|L|(r) , t ≤ s ≤ T .

��� and the control problem

v(t, x) := sup
ε∈E0

E
[
e
−
∫ T
t ρ(Xε

t,x(s),ε(s))dL
ε
t,x(s)ĝ

(
Xε
t,x(T )

)]
, (t, x) ∈ [0, T ]× Ō∗ .



Dual formulation for the BS model

• Set En := {e ∈ K̃1 : ei ≤ −n−1 ∀ i ≤ d} and E0 := ∪n≥1 En.

• γ(x, e) := diag [x] e/|diag [x] e|, ρ(x, e) = δ(e)/|diag [x] e|

• For ε ∈ E0, we can define the solution (Xε, Lε) of

X(s) = x+
∫ s
t
X(r)ΣdW (r) +

∫ s
t
γ(X(r), εr)dL(r)

L(s) =
∫ s
t

1{X(r)∈∂O∗} d|L|(r) , t ≤ s ≤ T .

and the control problem

v(t, x) := sup
ε∈E0

E
[
e
−
∫ T
t ρ(Xε

t,x(s),ε(s))dL
ε
t,x(s)ĝ

(
Xε
t,x(T )

)]
, (t, x) ∈ [0, T ]× Ō∗ .



Dual formulation for the BS model

��� Optimal reflection problem:

u(0, X0) := sup
ε

E
[
βεT ĝ

(
Xε
T
)]

solves

0 =


−Lϕ on [0, T )×O

min
e∈E

ρ(·, e)ϕ− γ(·, e)′Dϕ on [0, T )× ∂O
ϕ− ĝ on {T} × Ō

with γ(x, e) := diag [x] e/|diag [x] e|, ρ(x, e) = δ(e)/|diag [x] e|



Dual formulation for the BS model

* Optimal reflection problem:

u(0, X0) := sup
ε

E
[
βεT ĝ

(
Xε
T
)]

solves

0 =


−Lϕ on [0, T )×O

min
e∈E

ρ(·, e)ϕ− γ(·, e)′Dϕ on [0, T )× ∂O
ϕ− ĝ on {T} × Ō

with γ(x, e) := diag [x] e/|diag [x] e|, ρ(x, e) = δ(e)/|diag [x] e|

��� Super-hedging problem:

v(0, X0) := inf
{
y ∈ R : Y y,φτ ≥ g(Xτ)1τ<T for some φ ∈ K

}
solves

0 =


−Lϕ on [0, T )×O

inf
ρ
δ(ρ)ϕ− ρ′diag [x]Dϕ on [0, T )× ∂O

ϕ− ĝ on {T} × Ō



Dual formulation for the BS model

��� Equality of the value functions:

inf
{
y ∈ R : Y y,φτ ≥ g(Xτ)1τ<T for some φ ∈ K

}
= sup

ε
E
[
βεT ĝ

(
Xε
T
)]

where

X(s) = x+
∫ s
t
X(r)ΣdW (r) +

∫ s
t
γ(X(r), εr)dL(r)

L(s) =
∫ s
t

1{X(r)∈∂O∗} d|L|(r) , t ≤ s ≤ T .


