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Part I: Barrier options pricing under
constraints (sum up)
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Financial market

* X d-risky assets

t
X; = XO—I—/Odiag [(Xs]o(s, Xs)dWs , t<T

* Wealth process: ¢ c K dt x dP —a.s. and

t t
Y, = y+ /O Yepldiag [Xs] L dXs = y+ /O Ysglo(s, Xs)dWs ,

©® Super-hedging problem: 71 = exit time from [0,T) x O

v(0,Xg) = inf {y cR : YTWb > g(7,X;) for some ¢ € IC}



Vanilla options: Explosion of the hedge in BS

e Black and Scholes model: o is constant

t
X, = Xo—l—/odiag[XS]adWS < T

e If no contraints: Y; = v (¢, X3)

dYy = YiprodWy = do(t, Xy) = ve(t, Xy) XpodWy

=4 ¢t — XtUZE(ta Xt)/’l)(t, Xt)



...Vanilla options : Explosion of the hedge in B

Example 1. Digital option in dimension 1

o g(x) = le>k

o X; = Xoe—JQT/Q—I—JWT
o 9(X7) = g(Wr) = lyy,>z With & = [In(x/Xg) + 0°T/2]/o.

o 0(t,w) = v(t, Xoe_azt/Q'l'aw) = P[Wp— Wy >k —w]



...\Vanilla options : Explosion of the hedge in B

Example 1. Digital option in dimension 1

e Hedge: ¢t = Xpvz(t, Xt) /v(t, Xt) = vw(t, We) Jo(t, We).

o u(t,w) = fr_(& — w) = (26(T — £))2 exp(—[& — w]2/[2(T — £)])
o O(t,w) > 1/2 if w >R’

e For k <W; < k+C(T — t)% but T — ¢ very small:

¢t = Dw(t, Wy)/o(t, Wy) very large !



...Vanilla options : Explosion of the hedge in B

Example 2. Up-and-out call in dimension 1

e O =(0,U) and g(t,z) = [z — k] T1,—p1l,.y: similar problem when
approaches {T,U} if U > k.
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...Vanilla options : Explosion of the hedge in B

Usual practice
e For Vanilla option: smoothing of the payoff ok
e For Barrier options: move the barrier not so simple

= use portfolio constraint to rationalize these practices.



Formal Derivation of the PDE

* Y, = o(t, X;) and

dY; = Yipio(t, Xp)dW; > do(t, Xy)
Lo(t, Xi)dt + Du(t, X;) diag [X¢]o(t, X¢)dW;

where
0] 1 5
Lo(t,x) = av(t,x)—l—ETrace[a(t,x)D v(t, )]

and a(t,z) = diag [z] o(t,z)o(t,z) diag [z]
* ¢, € K = diag [X;] Du(t, X;) /v(t, X;) € K.

* min 5(p)v — p'diag [z] Dv > 0 with
1) (. (p)v — p'diag [z] Dv >

6(p) =sup&-p
¢eK



PDE characterization

* Inside the domain

min{—Lv , ir;)f (5(,0)1) — p'diag [«] Dv)}

* On the time boundary {T} x O

min{v — g, ir;)f (5(,0)1) — p'diag [«] Dv)}

* On the spacial boundary [0,T) x 00

min{v — g, ir[l)f ((5(/0)'0 — pldiag [z] D’U)}



PDE characterization

* Inside the domain

min{—Lv , ir;)f (5(,0)2) — p'diag [«] Dv)}

* On the time boundary {T} x O

v(T,z) = g(x) .

* On the spacial boundary [0,7T) x 00

min{v — g, ir/]?f (5(/0)1) — pldiag [z] Dv)}



PDE characterization
(In BS model, under smoothness assumptions and g¢(t,-) = 0 for

t<T)

* Inside the domain

min{—Lv , ir;l)f (5(,0)1) — p'diag [«] Dv)} = 0.

* On the time boundary {T} x O

v(T,z) = g(x).

* On the spacial boundary [0,7T) x 00

min{v , ir;f (5(p)v — p'diag [z] Dv)} = 0.



PDE characterization
(In BS model, under smoothness assumptions and g¢(t,-) = 0 for

t<T)

* Inside the domain

—Lv(t,z) = O.

* On the time boundary {T} x O

v(T,z) = g(x).

* On the spacial boundary [0,7T) x 00

ir;f ((5(,0)'0 — p/diag [z] D’U) = 0.



PDE characterization
(In BS model, under smoothness assumptions and g¢(t,-) = 0 for

t<T)

* Inside the domain

—Lv(t,z) = O.

* On the time boundary {T} x O

v(T,z) = g(x).

* On the spacial boundary [0,7T) x 00

ir;f (5(p)v — p/diag [z] Dv) = 0.

©® Neumann boundary condition with control on the direction of
reflection |



Part II: Interpretation in terms of
reflected process



Barrier options: Shortselling constraints in BS

e Schmock U., S. E. Shreve and U. Wystup (2002). Valuation of ex-
otic options under shortselling constraints. Finance and stochastics,

6, 143-172.



Barrier options: Shortselling constraints in BS

e Schmock U., S. E. Shreve and U. Wystup (2002). Valuation of ex-
otic options under shortselling constraints. Finance and stochastics,

6, 143-172.

e Starting point: dual formulation of Cvitanic J. and I. Karatzas
(1993)* and Foéllmer H. and D. Kramkov (1997) T

*Hedging contingent claims with constrained portfolios. Annals of Applied Prob-
ability, 3, 652-681.

fOptional decomposition under constraints. Probability Theory and Related
Fields, 109, 1-25.
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...Barrier options: Shortselling constraints in B

* Set of dual variables: K: the set of bounded adapted processes
9 taking values in K = dom(é).

* “Super-martingale measures’” : Associate the P-equivalent prob-
ability measure QY

dQv
dP
and denote by EY the associated expectation operator.

— o3 o loX) T 0 [2dtA+ [y (o(t, X)) dWy
r
* Discounting factor: &Y :=e~ Jo 8(Be)dt

o Dual formulation: W% =W — [jo(t, X¢) ™ 19:dt

d(EPYE) = EPY: (Vi — 5(91)) dt + EPVidlo (t, X)dWY (¢ € K = 0'¢p < 6(¥)



...Barrier options: Shortselling constraints in B

* Set of dual variables: K: the set of bounded adapted processes
9 taking values in K = dom(é).

* “Super-martingale measures’” : Associate the P-equivalent prob-
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dQv
dP
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...Barrier options: Shortselling constraints in B

* Set of dual variables: K: the set of bounded adapted processes
9 taking values in K = dom(é).

* “Super-martingale measures’” : Associate the P-equivalent prob-
ability measure QY

dQv
dP
and denote by EY the associated expectation operator.

5 [ 1o (6, X0) 710y Pdt+ [T (o (,X0) L0y AWy

* Discounting factor: &Y := e Jod(9)dt

© Dual formulation: (assume g > 0 uniformly)

v(0,Xg) = supE’ [efg(T,XT)} .
ver



...Barrier options: Shortselling constraints in B

® A simple case: 1-dim. BS model with K = [—«a,0), O = (0,U),
g(t,z) = [z — k] Tli=plcp:

T T
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...Barrier options: Shortselling constraints in B

* A simple case: 1-dim. BS model with K = [~a, ), O = (0,U),
g(t,z) = [z — k] Tli=plcp:

T T
v(0,Xg) = supE e~ Jo ﬁtdtg(T,XTe_fo vedtyq

9>0

S
{sups<r Xse Jo et

<U}
o Extension and solution: Extend the class of dual variables to
obtain existence
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with R the set of non-decreasing continuous adapted processes with
¢o = 0.



...Barrier options: Shortselling constraints in B

* A simple case: 1-dim. BS model with K = [~a, ), O = (0,U),
g(t,z) = [z — k] Tli=plcp:

T T
v(0,Xg) = supE e~ Jo ﬁtdtg(T,XTe_fo Dedtyq

9>0

ﬁt dt

S
{sups<7 Xse Jo <U}

o Extension and solution: Extend the class of dual variables to
obtain existence

v(0, Xg) = sup]E[e—a¢Tg(T,XTe—¢T)1
R

be {SUDSST X3€¢S<U}]

with R the set of non-decreasing continuous adapted processes with
¢o = 0.

= ¢* = local time which causes reflection of X on U.



...Barrier options: Shortselling constraints in B

* A simple case: 1-dim. BS model with K = [~a, ), O = (0,U),
g(t,z) = [z — k] Tli=plcp:

T T
v(0, Xg) = supE |e=@Jo Oty xme—Jo Prdtyq

9>0

S
{sups<r Xse Jo Yt

& Dual formulation in terms of reflected process:

fU(Oy XO) — K [e_a¢Tg(T7 XTG_QST)]_{SUDSST Xse—¢§<U}]

= ¢* = local time which causes reflection of X on U.



Part III: Optimal control of reflection for
SDES



Problem formulation

® Controlled SDE: Given a ‘“control” process 8 = («a,¢), let

(X%€ L) be a continuous adapted process with L%¢ € BVp(R4)
non-decreasing satisfying

X(s) = o+ [ p(X@)B)dr+ [ o(X(r), B)dW () + [ A(X(), er)dL(r)

L(S) — /t 1{X(T)€8(9} d|L|(’I“) , t S S S T .D



Problem formulation

* Controlled SDE: Given a ‘“control” process 8 = («a,¢), let
(X%€ L) be a continuous adapted process with L%¢ € BVp(R4)
non-decreasing satisfying

X(s) = a+ /:u(X(T),ﬁr)dr+ /:U(X(?“),ﬁr)dW(T)-l- /:wX(r),er)dL(r)

L(S) — /t 1{X(T)€8(9} d|L|(’I“) , t S S S T .D

&® Control problem:

uw(t,z) = (Sup)J(t,:Iz;a,e)
where
QL€ QL€ I QL€ QL€
J(t,z;a,€) = E [ﬁt,gg (Tg (X755 (1)) + /t Bin () f (X5 (s), als), e(s)) ds]

= S X (), (r)ALE ()

By ()



Lions P.-L. and A-S. Sznitman (1984). Stochastic Differential
Equations with Reflecting Boundary Conditions, Comm. Pure Appl.
Math.

Dupuis P. and H. Ishii (1993). SDEs with oblique reflection on
nonsmooth domains. The Annals of Probability.

Ding D. (2000). A note on stochastic optimal control of reflected
diffusions with jumps. Applied Mathematics and Mechanics.

Kushner H.-J. (1996). A numerical method for reflected diffu-
sions: Control of the reflection directions and applications. Applied
Mathematics and Optimization.
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...Problem formulation

* EXistence of (X®€¢ L*€) 7
* Dynamic programming for v 7

© PDE characterization ?



EXistence of the controlled reflected SDE

® Theorem (Dupuis and Ishii Fix v € C?(R%,R%) with |y| = 1.
Assume that O is open and bounded and that there exists some
r € (0,1) for which

) B(z—Xy(z),Ar) C O¢ for all z € 00 .
0<A<r



EXistence of the controlled reflected SDE

o Theorem (Dupuis and Ishii Fix v € C2(R% R%) with |y| = 1.
Assume that O is open and bounded and that there exists some
r € (0,1) for which

) B(z—XMy(z),Ar) C O° for all z € O .
0<A<r

® Then, for all ¥ € C([0,T],R%) satisfying ¥(0) € O, there exists
(¢,m) € C([0,T],0) x BV([0,T],R) such that

6®) = 9@ + [ AGNdn(s) , n(®) = [ 1gapcaopdinl(s) Lt <T.



EXistence of the controlled reflected SDE

o Theorem (Dupuis and Ishii Fix v € C2(R% R%) with |y| = 1.
Assume that O is open and bounded and that there exists some
r € (0,1) for which
) B(z—XMy(z),Ar) C O° for all z € O .
0<A<r
Then, for all ¢ € C([0,T],R%) satisfying ¥(0) € O, there exists
(¢,m) € C([0,T), D) x BV([0,T],R,) such that

6®) = 9@ + [ AGNdn(s) , n(®) = [ 1papeaopdinl(s) Lt <T.

® Moreover, (¢(t),n(t)) € o(y(s),s <t) for all t < T, and uniqueness
holds if ¥ € BV([0, T],R?).



...EXistence of the controlled reflected SDE

e Lemma (Dupuis and Ishii) Let X be a continuous semimartingale
with values in ©. Assume that Y is a continuous semimartingale
with values in O satisfying for t < T

t t t
Y(t) = X(0)+ /O w(X (s))ds + /O (X (s))dW (s) + /O y(Y (8))dL(s) ,
where L is an element of BVp(R4) such that

t
L(t)z/o 1y (syeooy dILI(s) , t<T.
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Let X’ be an other continuous semimartingales with values in © and
assume that (Y’/, L") satisfies the same properties as (Y, L) with X’
in place of X.



...EXistence of the controlled reflected SDE

e Lemma (Dupuis and Ishii) Let X be a continuous semimartingale
with values in ©. Assume that Y is a continuous semimartingale
with values in O satisfying for t < T

t t t
Y(t) = X(0)+ /O w(X (s))ds + /O (X (s))dW (s) + /O y(Y (8))dL(s) ,
where L is an element of BVp(R4) such that

t
L(t)z/o 1y (syeooy dILI(s) , t<T.

Let X’/ be an other continuous semimartingales with values in © and
assume that (Y’/, L") satisfies the same properties as (Y, L) with X’
in place of X. Then, there is a contant C > 0 such that

E [sup Y (s) = Y'(s)|? + /t Y (s) - Y’(s)f d(L + L’)(s)]
s<t 0

t
<C <|X(O) — X'(0)|? +/O E [oiug X (s) — X’(s)|2] du> L t<T.



...EXistence of the controlled reflected SDE

e Corollary (Dupuis and Ishii) Fix (¢t,z) € [0,T] x O. Then, there
exists a unique continuous adapted process (X,L) such that L €
BV]F(R+) and

X(s) = a+ [ wX@E)dr+ [ o(XE)AW @) + [ 1(X@))dL()

L(s) = /tl{X(ﬂeaO} dL|(r) , t<s<T.



...EXistence of the controlled reflected SDE

©® Extension of Dupuis and Ishii’'s result by playing on their ‘“test
function™.
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e Extension of Dupuis and Ishii's result by playing on their *‘test
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U
0<A<r



...EXistence of the controlled reflected SDE

e Extension of Dupuis and Ishii's result by playing on their *‘test
function™ .

o We fix an open bounded set ©® ¢ R? and v € C(R%*T* R) such that

v € C2RITERY) | |y =1
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U
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© Given a compact set E C R¢, we denote by £ the set of E-valued
cadlag adapted processes with bounded variation and a.s. a finite
number of jumps.



...EXistence of the controlled reflected SDE

e Extension of Dupuis and Ishii's result by playing on their *‘test
function™ .

o We fix an open bounded set ©® ¢ R? and v € C(R%*T* R) such that

v € C2RITERY) | |y =1

Jr e (0,1) s.t. B (z — My(z,e),\r) C ©O¢ for all (z,e) € 0O x RE .

U
0<X<r

e Given a compact set E C Re, we denote by £ the set of EF-valued
cadlag adapted processes with bounded variation and a.s. a finite
number of jumps.

® Given a compact set A C ]Rig, we denote by A the set of predictable
processes with values in A.



...EXistence of the controlled reflected SDE

© Theorem Let the above conditions hold. Fix (¢,z) € [0,T] x © and
8= (a,e) € Ax E. Then, there exists a unique continuous adapted

process (X, L) such that L is non-decreasing, belongs to BVp(Ry)
and

X(s) = o+ [ a(X(),B)dr + [ o(X(1),8:)dW () + [ 7(X (1), e )dL(r)

L(s) = /tl{X@G@O} dLI(r) , t<s<T.

If: u and o are Lipschitz continuous in X uniformly in the other
variables.



...EXistence of the controlled reflected SDE

e Theorem Let the above conditions hold. Fix (t,z) € [0,T] x O and
8= (a,¢) € Ax E. Then, there exists a unique continuous adapted
process (X, L) such that L is non-decreasing, belongs to BVr(Ry)
and

X(s) = o+ [ p(X@),B)dr+ [ o(X(r), 8)dW () + [ A(X (@), er)dL(r)

L(s) = /tl{X(T)an} dL|(r) , t<s<T.

If: u and o are Lipschitz continuous in X uniformly in the other
variables.

® Remark: If Y is an Ito process with values in a compact then
existence also holds for

X(s) = o+ [ p(X@),B)dr + [ o(X(r), B)aW () + [ A(X(r),er, Yi)dL

L(s) = /t1{X(r)€aO} dL|(r) , t<s<T.



Problem formulation (bis)

© Controlled reflected SDE: Given 8= (a,e) € A X &
X(s) = o+ [ w(X(),B)dr + [ o(X(),8)dW () + [ 7(X (1), &r)dL(r)

L(s) = /tl{X(T)eaO} dL|(r) , t<s<T.



Problem formulation (bis)

* Controlled reflected SDE: Given 8 = (a,e) € A X &
X(s) = o [ p(X@),B)dr+ [ o(X(r), 8)dW () + [ A(X (@), en)dL(r)

L(s) = /tl{X(T)an} dL(r) , t<s<T.

© Control problem: u(t,z) := SUP(4.¢) J(t,x; o, €) where

Q€ a L€ T QL€ L€
J(t, 7 a,€) = E[ﬁt,m)g (X)) + /t Biw () f (X (s), als), e(s)) ds]
BE(s) 1= e Ji PXEE (M )ALiZ(r)

with p, g, f are continuous, p > 0, p is C1 with Lipschitz first deriva-
tive in its first variable, uniformly in the second one, and Lipschitz
in its second variable, uniformly in the first one.



Path regularity

o EY = elements of & with essentially bounded variation.



Path regularity

o £ = elements of £ with essentially bounded variation.

® Proposition For all (a,¢) € A X é’b, there is some constant C > 0
such that, for all t<¢ < T and z,z’ € O,

E[ sup X5 (s) — X% ,<s>|2 < Cflz—aP+ ' —¢) ,
t/<s<T
[/ | X (3) t’ /(3)|2d(Lt/ /(3)+L (3)> < C(|33_33/|2+|t/—t|> ;
: '. 1
| sup 1X() - af? +E[LEW)] < -t
t<s<t/ ’
1
E | sup_ [In(B()) —In(B 5 (s >>| < C(le—a' P41t —)? .




Dynamic programming

Lemma The following holds.

(i) J(-; a,€) is continuous on [0,T] x O for all (a,¢e) € A x E°.



Dynamic programming

Lemma The following holds.
(i) J(-; a,€) is continuous on [0,T] x O for all (a,¢e) € A x E°.

(ii) sup J(¢t,z; a,€) =sup J(t,z; a,€) for all « € A and (¢,z) € [0,T] X
ecED ec

0.



Dynamic programming

Lemma The following holds.
(i) J(-;a,€) is continuous on [0,7] x O for all (a,¢€) € A x EP.

(ii) sup J(t,z; o, ) = sup J(t,z; o, ¢) for all o € A and (t,z) € [0,T] X
ec&d eef

0.

(iii) w is lower semicontinuous on [0,7T] x O.



Dynamic programming

Lemma The following holds.
(i) J(-;a,€) is continuous on [0,7] x O for all (a,¢€) € A x EP.

(ii) sup J(t,z; o, ) = sup J(t,z; o, ¢) for all o € A and (t,z) € [0,T] X
ec&d eef

.
(iii) w is lower semicontinuous on [0,7T] x O.

Lemma Fix (¢t,x) € [0,T) x O. For all [t,T]-valued stopping time 9,
we have

Q€ Q€ 0 Q€ Q€
uta)= sup [ﬁt,x (0)u (6, X750)) + [ B ()f (X75(9), a(s), () ds]



PDE characterization

& Set
o 1
LY = — o+ (4 a,e), Dp) + ST [0(a,e)a(,a,€)' D3| + f(: a,€)
He¢ = p(,e)o—(v(e),Dyp),



PDE characterization

e Set
a,e 0 1 I 2
LY = — o+ (4 a,e), Dp) + ST [0(a,e)a(,a,€)' D3| + f(: a,€)
Hp = p(,e)p—(v(,e), Dy) ,
® Define
' min  (=£%% — f(-,a, on [0,T)xO
Lin (L = f(ae) 0,7)
K = min  max{—-L%% — f(-,a,e) , H on [0,T) x 00
4 il { o — f(-,a,e) P} [0,T) _
k w—g on {7} xO




PDE characterization

e Set
a,e . 0 1 I 2
L™ Y .= agp + <:UJ('70'7 €)7D90> + ETr [O’(‘,CL, 6)0’(',&,6) D 90} + f('va'a 6)
Hee = p(,e)p—(v(:e), Dyp) ,
® Define
’ o LS f(a,6) on [0,T)x 0O
Kyp = ¢ min  max{—L"— f(,ae), Hg} on [0,7)x 00
k ©—g on {T}xO
and
' (@ ef;’leing(—ﬁa’ecp — f(-,a,e)) on [0,T)xO
Ko o= | min min{—£%% — f(ae), Mg} on [0,T) x 00
©—g on {7} xO
\ min{p — g, H ¢} on {T} xd0.




...PDE characterization

® Definition A super- (resp. sub-) solution of Ky = 0 is a superso-
lution of K4 = 0 (resp. a subolution of KX_¢ = 0).



...PDE characterization

Definition A super- (resp. sub-) solution of ¢y = 0 is a supersolution
of Ky1p =0 (resp. a subolution of K_¢ = 0).

® Proposition The function « is a (discontinuous) viscosity solution
of Ky = 0.



...PDE characterization

Definition A super- (resp. sub-) solution of ¢y = 0 is a supersolution
of Ky1p =0 (resp. a subolution of K_¢ = 0).

Proposition The function u is a (discontinuous) viscosity solution of
Ko = 0.

® Proposition Let v (resp. w) be a bounded upper-semicontinuous
viscosity subsolution (resp. lower-semicontinuous viscosity superso-
lution) of Ky = 0. Assume that v > 0 on [0,T] x 00 and

e € argmin{p(x,e), e € £}
is independent of x € 80. Then, v < w on [0,T] x O.



...PDE characterization

Definition A super- (resp. sub-) solution of ¢y = 0 is a supersolution
of Ky1p =0 (resp. a subolution of K_¢ = 0).

Proposition The function u is a (discontinuous) viscosity solution of
Ko = 0.

Proposition Let v (resp. w) be a bounded upper-semicontinuous
viscosity subsolution (resp. lower-semicontinuous viscosity superso-
lution) of Ky = 0. Assume that v > 0 on [0,T] x 00 and

e € argmin{p(x,e), e € £}
is independent of x € 80. Then, v < w on [0,T] x O.

® Remark Works also if w > 0 on [0,T] x 0O or if there exists a
non-negative subsolution (in particular if f,g > 0).



Part IV: Dual formulation for the hedging
price



BS model

© Up-and-out barrier option with shortselling constraints

Stx(s) = z+ /tsdiag [St,m(r)] > dW(r)
d
K = ]] [—m?, 00)
1=1

O*

d .
Oﬂ(O,oo)dZ{xG(O,oo)d : Za:z</<;} , k> 0.
1=1



e Up-and-out barrier option with shortselling constraints

Sto(s) = gc—l—/:diag Sta(r)| X dW ()
d c
K = ]][-m' o)
1=1
d
O* = 0N (0,00)% = {xE(O,oo)d ; Z:ci</<;} , k>0.
1=1

® Proposition If there exists a “smooth” solution ¥ to

—Ly(t,z) =0 on [0,T) x OF

mli"{n (6(e)vy(t,z) — (e, diag [x] Dy (t,z))) = 0 on [0,T) x dO*
ecnq

Y =g on {T} x OF
such that lim )Dw(t’,a:’) = Dg(x) almost everywhere on OF

(ta') — (T, x

(t',z') € [0,T) x OF
then ¥ = v.



Dual formulation for the BS model

® Set B, :={ec K1 : & <-—n"1Vi<d}and & :=U,>1 En.



Dual formulation for the BS model

eSet BEp:={e€ Ky : e¢<—n"1Vi<d}and & :=Up,>1 En.

® v(x,e) .= diag [z] e/|diag [z] €|, p(xz,e) = §(e)/|diag [x] €]



Dual formulation for the BS model

eSet BEp:={e€ Ky : e¢<—n"1Vi<d}and & :=Up,>1 En.
e v(x,e) := diag [z] e/|diag [z] €|, p(x,e) = §(e)/|diag [x] €]

® For e € £y, we can define the solution (X¢, L¢) of
S S
X(s) = x+/t X (r)SdW (r) +/t V(X (r), &)dL(r)

L(s) = /tl{xmeao*} dL|(r) , t<s<T.



Dual formulation for the BS model

eSet BEp:={e€ Ky : e¢<—n"1Vi<d}and & :=Up,>1 En.
e v(x,e) := diag [z] e/|diag [z] €|, p(x,e) = §(e)/|diag [x] €]

e For e € &y, we can define the solution (X¢,Lf) of
S S
X(s) = x—l—/t X (r)SdW (r) +/t V(X (r), er)dL(r)

L(s) = /tl{X(T)EaO*} dLi(r) , t<s<T.

® and the control problem

T € € —
v(t,z) = SGUgDE [e‘ft P(Xia(s)e(8))dLiq(s)5 (Xte,az(T>)] , (t,z) € [0,T] x O*
€€lo



Dual formulation for the BS model

eSet BEp:={e€ Ky : e¢<—n"1Vi<d}and & :=Up,>1 En.
e v(x,e) := diag [z] e/|diag [z] €|, p(x,e) = §(e)/|diag [x] €]

e For e € &y, we can define the solution (X¢,Lf) of
S S
X(s) = x—l—/t X (r)SdW (r) +/t V(X (r), er)dL(r)

L(s) = /tl{X(T)EaO*} dLi(r) , t<s<T.

and the control problem

T € € —
v(t,z) = SGUgDE [e‘ft P(Xia(s)e(8))dli(s)5 (Xte,az(T>)] , (t,z) € [0,T] x O*
€€lo



Dual formulation for the BS model

© Optimal reflection problem:

u(0,Xo) = SUPE [3 (X%)
solves
i — Lo on [0,T)x O
0 = { minp(,e)p - v(-,e)'Dyp on [0,T) x 8O
L Y —g on {T}xO

with ~(z,e) := diag [x] e/|diag [z] e|, p(x,e) = §(e)/|diag [x] €]



Dual formulation for the BS model

* Optimal reflection problem:

u(0,X0) = SUPE[B5 (X{)]
solves
f — L on [0,T)xQO
0 = { minp(,e)p—7(e)'Dp on [0,T) x 00
L p—g on {T}xO

with ~(z,e) := diag [x] e/|diag [x] e|, p(x,e) = §(e)/|diag [z] €]

©® Super-hedging problem:
v(0,Xg) = inf {y eR YTy’¢ > g(X7)1,. .7 for some ¢ € IC}

solves

( — Lo on [0,T)x0O

ir;)f (p)p — p'diag[z] Do on [0,T) x 80O
©—g on {T}xO

o
[




Dual formulation for the BS model

© Equality of the value functions:
inf {y cR : YTy‘b > g(X7)1l,. .7 for some ¢ € IC} = SLépE 1859 (X5)]
where

X(s) = o+ [ X@EAWE) + [ 1(X(r), e)dL(r)

L(s) = /1t1{X(T)EaO*} dLI(r) , t<s<T.



