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The Market

e A numéraire; QY =1 USUAL CASE : m=0

e Q1 ..., Q% subject to transaction costs (e.g. foreign currencies).

Bid-Ask spread price of @7 in terms of Q% [r¥— , 7]

= g—z;(l—k)\ji)_l and 9T = g—Z(l—l—Aij)

Efficient frictions: A9 + X! >0 & 79~ % g™
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e Assumption: local volatility of P independent of Q.

dP;

dQ¢

diag[P]op(t, Pr)dW;

diag[Qilog(t, P, Qr)dW;
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Dynamics
e S = (P, Q) solves: dS; = diag[S¢]o(t, St)dW4.
e Portfolio: z' = initial amount in Q*, X} = amount in Q* at t¢.

e Portfolio dynamic:

t d | . .
X0 = xo+/ b - APy + Z/ dLf® — (14 A%)aLd|
0 = Jo
. . t X1 . d .t g g g
xi = gﬂ+/ 2T 4Qi + Z/ AL} — (14 AV)dLY| fori>0.
0 QL =070
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Hedging Problem
e Contingent claim: ¢(S7) = (¢°(Sp), ..., ¢%(S7))

e Remark: The solvency region is

. d .. o o e
K::{xeﬂl"'d : aaeM}jd, 2+ Y (o — (1 4+ 1)) > 0 V0 <i<
j=0

e Super-replication price:
s . @, L : _
p(0,Sp) = inf {w clR : 3(¢,L) € A, X" —g(S7) € K with z = wlo} ,

where wlg = (w,0,...,0) € RT?
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Closed form solution

Theorem: (General case) If m > 1, then
p(0,80) = min{we R : 3(¢,L) € AP, X3 — g(Sp) € K with z = wlg
where
ABPH = {(p, L) e A : Ly =Lpforall 0<t<T} .
e Closed form solution

p(0,8) = E[C(Pp;A)|+ sup & - diag[A1Qo

where C(Pp; A) = sup G (Pp,z)—A-z.
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Closed form solution

e If we forget transaction costs at O and T

p(0,S) = E [C(PT; A)] + A - Qo
where C(Pp; A) = sup G(Ppr,z)—A-z.
2€(0,00)4

and G is the concave enveloppe of g with respect to Q.

e Optimal strategy:

- L =A, A" = quantity of Q' held.
= It remains to hedge g(Pr, Q1) — A - Qr
- ¢ chosen to hedge C(Pr; A) > g(Ppr, Q) — A - Qp with P.
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Idea of the proof (forgetting transaction costs at
O and T)

o 1. Show that p(0, Sp) > sup,cy/ E [g(PT,Zéﬁ)} =: (0, Py, Qp)

where ZI' = Qg + J{ diag[ZE] pus dWs .

e 2. Show that v is concave in Qg

e 3. Show that v(0, Py, Qo) = sup,cy/ E [G(PT,Z{,ﬁ)]

e 4. v(0, Py,Qq) > sup,v(0, Py, z) — A - (2 —Qq), with A € v,(0, Py, Qp)
* 5. p(0,80) > sup.sup,ey E |G(Pp, Z;")| — A - (2 = Qo)

e 6. p(0,S0) > sup,sup,cy E [G(PT, Z7M) — A ZZZ:“] + A - Qo

7. p(0,5y) > E[sup, G(Pr,z) —A-z]|+ A -Qy ¢



Closed form solution

e If we forget transaction costs at O and T

p(0,S) = E [C(PT; A)] + A - Qo
where C(Pp; A) = sup G(Ppr,z)—A-z.
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Example
em=d=1, o(t,s) = o € M? invertible, ¢°(Pr,Qr) = ([PT - K]+1{QT>K})

e Hedging price : minasgE [[PT ~K— Af(]ﬂ + (1 4+ 29 AQ,

with K := K /(1 + \19).

e Hedging strategy:

2. If P[Pr— K > 0] > (14 X91)Qy/K then A solves

“RE[Lp gonky) @ +2DQ0 =0

= hedges [Pp— K — AK]T : ¢y = B |Prlop S piagy | Fi| /P L=A.



