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Abstract

Within a Markovian complete financial market, we consider the problem of

hedging a Bermudan option with a given probability. Using stochastic target and

duality arguments, we derive a backward algorithm for the Fenchel transform of

the pricing function. This algorithm is similar to the usual American backward

induction, except that it requires two additional Fenchel transformations at each

exercise date. We provide numerical illustrations.
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1 Introduction

We study the problem of hedging a claim of Bermudan style with a given probability p.

More precisely, we want to characterize the minimal initial value vp�, pq of an hedging
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portfolio for which we can find a financial strategy such that, with a probability p, it

remains above the exercise value of the Bermudan option at any possible exercise date.

This problem is referred to as quantile hedging, and it was popularized by Föllmer

and Leukert [12, 13] . For claims of European type, they explained how the so-

called quantile hedging price can be computed explicitly when the market is complete,

by using duality arguments or the Neyman-Pearson lemma. A similar question was

studied in Bouchard et al. [6] but in a Markovian setting. They showed that, even

in incomplete markets and for general loss functions, one can characterize the pricing

function as the solution of a non-linear parabolic second order differential equation, by

using tools developed in the context of stochastic target problems by Soner and Touzi

[16]-[17]. When the market is complete, they also observed that taking a Legendre-

Fenchel transform in the equation reduces the computation of the price to the resolution

of a linear parabolic second order differential equation, which can be solved explicitly

by using the Feynman-Kac formula.

As far as super-hedging is concerned, the pricing of a Bermudan option reduces to

a backward sequence of pricing problems for European claims. It is therefore natural

to ask whether a similar result holds for the quantile hedging price, and whether one

can extend the closed-form solutions of [12] and [6] to Bermudan options.

This paper answers to the positive. Namely, we provide a backward induction

algorithm for the Fenchel transform w of the quantile hedging price vp�, pq, with respect

to the parameter p which prescribes the probability of hedging, see (2.21) and Theorem

2.1. The algorithm (2.21) is in a sense very similar to the one used for the pricing of

Bermudan options. However it is written on the Fenchel transform w, rather than v,

and it involves two additional Fenchel transformations at each exercise date.

To derive this, we first build on the original idea of [6] which consists in increasing

the state space in order to reduce to a stochastic target problem of American type,

as studied in Bouchard and Vu [8]. We then follow a very different route. Instead of

appealing to stochastic target technics, we derive from this formulation a first dynamic

programming algorithm for v, see Proposition 2.3, which relates to a series of optimal

control of martingale problems. This is in the spirit of Bouchard et al. [5]. This

dynamic programming principle suggests a backward algorithm for the computation of

the Fenchel transform. It is defined in (2.21). We analyze it in details in Section 3.2:

the main difficulty consists in controlling the propagation of the differentiability and the

growth properties of the corresponding value function, backward in time. Then, as in

[6, 12], a martingale representation argument allows us to show, by backward induction,

that the algorithms in (2.21) and Proposition 2.3 provides the Fenchel transform of one
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another.

Before concluding this introduction, we would like to point out that a similar prob-

lem has been studied recently by Jiao et al. [14] in the form of general lookback-style

contraints. They provide an alternative formulation in terms of an optimal control of

martingales problem. This has to be compared with [5] and our Proposition 2.3. No

Markovian structure is required, but they do not provide an explicit algorithm as we

do. Moreover, the smoothness conditions they impose on their loss functions are not

satisfied in the quantile hedging case. They also study the case of several constraints

in expectation set (independently) at the different exercise times, which is close to the

P&L matching problems of Bouchard and Vu [7].

Finally, in this paper, we focus on the quantile hedging problem for sake of simplicity.

It is an archetype of an irregular loss function, and it should be clear that a similar

analysis can be carried out for a wide class of (more regular) loss functions. Also note

that we only use probabilistic arguments, as opposed to PDE technics as in [6], which

opens the door to the study of more general non Markovian settings. We leave this for

future research.

Notations: Let d be a positive integer. Any vector x of Rd is seen as a column

vector. Its norm and transpose are denoted by |x| and xJ. We set Md :� Rd�d and

denote by MJ the transpose of M PMd, while Tr rM s is its trace. For ease of notations,

we set Od
� :� p0,8qd.

We fix a finite time horizon T ¡ 0. Let ψ : pt, x, pq P r0, T s � Od
� � R ÞÑ ψpt, x, pq.

If it is smooth enough, we denote by Btψ and Bpψ its derivative with respect t and p,

and by Bxψ its Jacobian matrix with respect to x, as a row vector. The Hessian with

respect to x is B2
xxψ, B2

ppψ is the second order derivative with respect to p, and B2
xpψ

is the vector of cross second order derivatives. We denote by ψ7 its Fenchel transform

with respect to the last argument,

ψ7pt, x, qq :� sup
pPR

ppq � ψpt, x, pqq , (1.1)

and define

corψs , the closed convex envelope of ψ with respect to its last argument.

If ψ is convex with respect to its last variable, we denote by D�
p ψ and D�

p ψ its corre-

sponding right- and left-derivatives. We refer to [15] for the various notions related to

convex analysis.

We fix a complete probability space pΩ,F,Pq supporting a d-dimensional Brownian

motion W . We denote by F � pFtq0¤t¤T the usual augmented Brownian filtration. All
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over the paper, inequalities between random variables have to be understood in the

P-a.s. sense.

2 Problem formulation and main results

2.1 Financial market and hedging problem

Our financial market consists in a non-risky asset, whose price process is normalized to

unity, and d risky assets X � pX1, ..., Xdq whose dynamics are given by

Xt,x
s � x�

» s
t
µpr,Xt,x

r qdr �

» s
t
σpr,Xt,x

r qdWr , (2.1)

given the initial data pt, xq P r0, T s �Od
�. To ensure that the above is well-defined, we

assume that

µ : r0, T s �Od
� Ñ Rd and σ : r0, T s �Od

� ÑMd are Lipschitz continuous , (2.2)

and that the unique strong solution to (2.1) takes its values in Od
� when the initial data

lies in Od
�.

In order to enforce the absence of arbitrage and the completeness of the financial market,

we also impose that

σ is invertible , λ :� σ�1µ is bounded (2.3)

and Lipschitz continuous in space .

The Lipschitz continuity condition is not required to define the risk neutral measure1

Qt,x :�
1

Qt,x,1T

� P with
1

Qt,x,q
:�

1

q
E
�
�

» �

t
λps,Xt,x

s qJdWs



, q ¡ 0 , (2.4)

but will be used in some of our forthcoming arguments.

In this model, an admissible financial strategy is a d-dimensional predictable process ν

such that

EQt,x
�» T

t
|νJs σps,X

t,x
s q|2ds

�
  8 , (2.5)

and the corresponding wealth process remains non-negative

Y t,x,y,ν :� y �

» �

t
νJr dXt,x

r ¥ 0 , on rt, T s ,

1E denotes here the Doléans-Dade exponential.
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given the initial data pt, xq of the market and the initial dotation y ¥ 0. We denote

by Ut,x,y the collection of admissible financial strategies. As usual, each νit should be

interpreted as the number of units of asset i in the portfolio at time t.

We now fix a finite collection of times

Tt :� tt0 � 0 ¤ � � � ¤ ti ¤ � � � ¤ tn � T uX pt, T s ,

together with non-negative payoff functions

x P Od
� ÞÑ gpti, xq, Lipschitz continuous for all i ¤ n . (2.6)

The quantile hedging problem consists in finding the minimal initial wealth vpt, x, pq

which ensures that the stream of Bermudan payoffs tgps,Xt,x
s q, s P Ttu can be hedged

with a given probability p

vpt, x, pq :� inf Γpt, x, pq , (2.7)

where

Γpt, x, pq :�
!
y ¥ 0 : D ν P Ut,x,y s.t. P

��
sPTt St,x,y,νs

�
¥ p

)
,

with St,x,y,νs :� Ω1tt¥su � 1tt sutY
t,x,y,ν
s ¥ gps,Xt,x

s qu .

Observe that vpt, �q must be interpreted as a continuation value, i.e. the price at time t

knowing that the option has not been exercised on r0, ts. In particular, vpT, �q � 0. For

p � 1, vpt, �, 1q coincides with the continuation value of the super-hedging price of the

Bermudan option. In this complete market, it satisfies the usual dynamic programming

principle

vpt, x, 1q � EQt,xrpv_gqpti�1, X
t,x
ti�1

, 1qs , for t P rti, ti�1q , i   n . (2.8)

Above and in the following, we use the notation

gpt, x, pq :� gpt, xq1t0 p¤1u �81tp¡1u , for p P R .

Note that Γ can also be formulated in terms of stopping times, see the Appendix for

the proof.

Proposition 2.1. For pt, x, pq P r0, T s �Od
� � r0, 1s,

Γpt, x, pq � ty ¥ 0 : D ν P Ut,x,y s.t. PrSt,x,y,ντ s ¥ p, @ τ P Ttu
� ty ¥ 0 : D ν P Ut,x,y s.t. PrSt,x,y,ντ̂ν

s ¥ pu1tt T u � R�1tt�T u ,
(2.9)

in which Tt is the set of stopping times with values in Tt, and τ̂ν :� mints P Tt : Y t,x,y,ν
s  

gps,Xt,x
s qu ^ T .
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Remark 2.1. The function p ÞÑ vp�, pq is non-decreasing. It takes the value 0 if p ¤

pminpt, xq where

pminpt, xq :� Prgps,Xt,x
s q1ts T u � 0 for all s P Tts . (2.10)

To avoid trivial statements, we assume that pminpt, �q   1, for t   T , which implies

vpt, x, 1q ¡ 0 , for t   T . (2.11)

Moreover, it follows from (2.6) that we can find C ¡ 0 such that gps, xq ¤ Cp1�
°d
i�1 x

iq,

for x P Od
�, s P T0. This implies that we can restrict to strategies ν such that

0 ¤ Y t,x,y,ν ¤ Cp1� |Xt,x|q , (2.12)

by possibly adopting a buy-and-hold strategy after the first time when the wealth

process hits the right-hand side term, recall that Xt,x has positive components. In

particular,

0 ¤ vpt, x, pq ¤ Cp1� |x|q . (2.13)

2.2 Equivalent formulation as a stochastic target problem

The first step in our analysis consists in reducing the problem to a stochastic target

problem of American type as studied in [8]. As in [6], we first increase the dimension

of the controlled process by introducing the family of martingales

P t,p,α :� p�

» �

t
αJs dWs ,

where α is a square integrable predictable process. The process P t,p,α will be later on

interpreted as the conditional probability of success. It is therefore natural to restrict

to the class of controls such that

P t,p,α P r0, 1s , on rt, T s .

We denote by At,p the set of predictable square integrable processes such that the above

holds, and set Ût,x,y,p :� Ut,x,y �At,p.

Proposition 2.2. Fix pt, x, pq P r0, T s �Od
� � r0, 1s, then

Γpt, x, pq �
!
y ¥ 0 : D pν, αq P Ût,x,y,p s.t. Y t,x,y,ν ¥ gp�, Xt,x, P t,p,αq on Tt

)
. (2.14)
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Proof. At time T both sets are R� by definition of TT . We now fix t   T . Let Γ̄pt, x, pq

denote the right-hand side in (2.14) and let y be one of his elements. Fix pν, αq P Ût,x,y,p
such that Y t,x,y,ν ¥ gp�, Xt,x, P t,p,αq on Tt. Then, St,x,y,ν � tP t,p,α ¡ 0u on Tt. Since

P t,p,α P r0, 1s and therefore 1tP t,p,α¡0u ¥ P t,p,α, this implies

P

�£
sPTt

St,x,y,νs

�
¥ P

�£
sPTt

tP t,p,αs ¡ 0u

�
¥ E

�
�P t,p,αT

¹
sPTtztT u

1tP t,p,αs ¡0u

�
� .

The process P t,p,α being a martingale, for s P Tt, tP t,p,αs � 0u � tP t,p,αT � 0u. Hence

P

�£
sPTt

St,x,y,νs

�
¥ E

�
P t,p,αT

�
� p .

Therefore, y P Γpt, x, pq and this argument proves that Γ̄pt, x, pq � Γpt, x, pq.

We now fix y P Γpt, x, pq and choose ν P Ut,x,p such that p1 :� P
��

sPTt St,x,y,νs

�
¥ p. By

the martingale representation theorem, we can find α P At,p1 such that

1�
sPTt St,x,y,νs

� P t,p
1,α

T ¥ P t,p,αT .

By possibly replacing α by the constant process 0 after the first time after t at which

P t,p,α reaches the level 0, we can assume that α P At,p. Moreover, the above implies

1St,x,y,νs
¥ P t,p,αT , s P Tt ,

which by taking conditional expectation and using the fact that P t,p,α is a martingale

leads to 1St,x,y,ν ¥ P t,p,α on Tt. The latter is equivalent to Y t,x,y,ν ¥ gp�, Xt,x, P t,p,αq

on Tt. Hence, y P Γ̄pt, x, pq. l

2.3 Dynamic programming and dual backward algorithm

With the formulation obtained in Proposition 2.2 at hand, one can now derive a first

dynamic programming algorithm. Its proof is postponed to the Appendix.

Proposition 2.3. Fix 0 ¤ i ¤ n� 1 and pt, x, pq P rti, ti�1q �Od
� � r0, 1s,

vpt, x, pq � inf
αPAt,p

EQt,x
�
pv_gq

�
ti�1, X

t,x
ti�1

, P t,p,αti�1

	�
. (2.15)

As a consequence, there exists C ¡ 0 such that

|vpt, x, pq � vpt, x1, pq| ¤ Cp1� |x| � |x1|q|x� x1| , (2.16)

for all pt, pq P r0, T s � r0, 1s and x, x1 P Od
�.
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Remark 2.2. We shall see in Section 3 that pv_gq can be replaced by its convex envelope

with respect to p in (2.15). This phenomenon was already observed in [5] and [6].

Note that this provides a first way to compute the value function v. Indeed, standard

arguments should lead to a characterization of v as a viscosity solution on each interval

rti, ti�1q, i   n of2

sup
aPRd

"
�Btϕ� aJλBpϕ�

1

2

�
Tr

�
σσJB2

xxϕ
�
� 2Tr

�
aJσJB2

xpϕ
�
� |a|2B2

ppϕ
�*

� 0 , (2.17)

with the boundary condition

vpti�1�, �q � pv_gqpti�1, �q . (2.18)

However, the fact that the control a P Rd in the above is not bounded renders the use

of numerical schemes delicate in practice.

This can actually be simplified by considering the Fenchel transform v7 of v, see (1.1)

in the notations section.

Indeed, as already observed in [6] in the case n � 1, a formal change of variable argument

in (2.17) suggests that the dual function v7 should be a viscosity solution of the linear

partial differential equation

�Btϕ�
1

2

�
TrrσσJB2

xxϕs � 2qTr
�
λJσJB2

xqϕ
�
� |λ|2q2B2

qqϕ
�
� 0 , (2.19)

on the different time steps, with the boundary conditions obtained by taking the Fenchel

transform in (2.18):

v7pti�1�, �q � pv_gq7pti�1, �q . (2.20)

By the Feynman-Kac representation this corresponds to the following backward algo-

rithm#
wpT, x, qq :� q �81tq 0u ,

wpt, x, qq :� EQt,x
�
pw7_gq7pti�1, X

t,x
ti�1

, Qt,x,qti�1
q
�
, for t P rti, ti�1q , i   n ,

(2.21)

in which Qt,x,q is defined in (2.4).

The main result of this paper shows that this algorithm actually allows to compute the

value function v.

Theorem 2.1. v � w7 on r0, T s �Od
� � r0, 1s.

2A precise statement would require a relaxation of the operator, see [6].
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The proof of this result is the object of the subsequent sections. Although it is in the

spirit of [6], our proof is different and more involved. The main difficulty comes from

the induction. At each time step, we have to verify that pw7_gq behaves in a sufficiently

nice way. In the one step case, [6] has only to consider the terminal payoff g. Moreover,

we only use probabilistic arguments as opposed to PDE arguments.

Clearly, the algorithm (2.21) provides a way to compute the value function easily. One

can for instance use the fact that w � v7 is the unique viscosity solution (2.19) with

the boundary conditions (2.20). Let us make this statement more precise.

Definition 2.1. We say that a lower-semicontinuous function u is a viscosity super-

solution of the system (S) if, on each rti, ti�1q � Od
� � p0,8q, i   n, it is a viscosity

super-solution of (2.19) with the boundary conditions

lim inf
t1Òti,px1,q1qÑpx,qq

upt1, x1, q1q ¥ pu7_gq7pti, x, qq for px, qq P Od
� � p0,8q , i   n ,

lim inf
t1ÒT,px1,q1qÑpx,qq

upt1, x1, q1q ¥ g7pT, x, qq for px, qq P Od
� � p0,8q .

We define accordingly the notion of sub-solution for upper-semicontinuous functions.

A function is a viscosity solution if its lower- (resp. upper-) semicontinuous envelope is

a viscosity super- (resp. sub-) solution.

Note that in the above definition we have to understand u as being �8 on r0, T s�Od
��

p�8, 0q to compute the Fenchel transforms involved in the time boundary conditions.

We now provide a version of the comparison principle for (S) which pertains for the

usual extensions of the Black and Scholes model. The assumptions used below are here

to avoid the boundary of Od
� - when this is not the case, one has to specify additional

boundary conditions.

Proposition 2.4. The function w is continuous on r0, T q�Od
��p0,8q, non-negative,

has a linear growth in its x and q variable and is a viscosity solution of (S). Moreover,

if there exists two functions σ̄ and µ̄ such that σp�, xq � diagrxsσ̄p�, xq and µp�, xq �

diagrxsµ̄p�, xq, then u1 ¥ u2 on r0, T q�Od
��p0,8q whenever u1 and u2 are respectively

a super- and a subsolution of (S), which are non-negative and have a polynomial growth

in their x and q variables on r0, T q �Od
� � p0,8q.

The proof is postponed to the Appendix. Given the latter, it is not difficult to follow the

arguments of [3] to construct a convergent finite difference scheme for the resolution of

pSq. Alternatively, one could also use quantization methods to tackle the approximation

of w, see [1, 2], or a regression based Monte-Carlo method, see the survey paper [9] and

the references therein.
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2.4 Examples of application

In this section, we present two examples of application. The numerical results are ob-

tained using the following procedure which is based on the above algorithm to compute

w � v7: for i ¤ n� 1,

1) Compute the value of pw7_gq7pti�1, �q by approximating the Fenchel-Legendre trans-

form numerically.

2) Solve the PDE (2.19)-(2.20) for w, using e.g. finite difference methods, on rti, ti�1s�

Od
� � R�.

We now fix T � 1 and Tt :�
 
t0 � 0, t1 �

1
3 , t2 �

2
3 , t3 � 1

(
X pt, t3s, t P r0, T s. We

work in a Black-Scholes setting with market parameters: d � 1, σpt, xq � 0.25x,

λpt, xq � 0.2.

For our first numerical application, we consider a put option, i.e. gpt, xq � rK � xs�,

with strike K � 30.

In figure 1, we plot the functions v and v7 at t � t0. In figure 2(a-b-c), we plot for

different values of x the function v and corv _ gs. This shows the rather complicated

behaviour of the transformation v ÞÑ corv _ gs, as predicted by Proposition 3.3 (b)

below. With the notation of this proposition, figure 2(a) corresponds to the case A1,

figure 2(b) corresponds to the case A3 and figure 2(c) corresponds to the case A2.

Because of the interest rate being set to 0 and the payoff being convex, we always have

vpt, x, 1q ¥ gpt, xq. Figure 2(d) shows the decrease of value for v, when p decreases.

(a) (b)

Figure 1: Surface of vpt, x, pq and v7pt, x, qq at t � t0.
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(a) (b)

(c) (d)

Figure 2: (a)-(c): plots of vpt, x, �q and corv_ gspt, x, �q at t � t1 and for different values

of x. (d): plot of vpt, �, pq at t � t1 and for different values of p.

In our second example, we consider a put spread option with strikes 20 and 30, i.e.

gpt, xq � r30� xs� � r20� xs�. The numerical results are displayed in Figure 3 and 4.

It may happen here that vpt, x, 1q   gpt, xq, see figure 4(a).
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(a) (b)

Figure 3: Surface of vpt, x, pq and v7pt, x, qq at t � t0.

(a) (b)

Figure 4: (a): plot of vpt, x, �q and corv_gspt, x, �q at t � t1 and for x � 22. (b): plot of

vpt, ., pq at t � t1 and for different values of p.

We conclude this section with the following remark on the behaviour of v near p �1.

Remark 2.3. (a) We know from the identification v � w7 and Proposition 3.2 (b) that

p ÞÑ vpt, x, pq is convex and continuous on r0, 1s.

(b) Nothing prevents D�
p vp�, 1q to be equal to �8. This can be checked by direct

calculation in the European case and the Black-Scholes setting using the explicit formula

[12, Equation (3.15)].
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3 Proof of the backward dual representation

From now on, we extend v to r0, T s �Od
� � R by setting

vp�, pq � 0 if p   0 and vp�, pq � �8 if p ¡ 1 . (3.1)

Using the convention inf H � �8, this extension is consistent with (2.7).

3.1 The backward algorithm as a lower bound

We first show that the backward algorithm (2.21) actually provides a lower bound for

the value function v.

Proposition 3.1. v ¥ w7 on r0, T s �Od
� � r0, 1s.

Proof. First note that vpT, �q � 0 � w7pT, �q, by definition. Thus, pv _ gqpT, �q �

pw7_ gqpT, �q. We now assume that v ¥ w7 on rti�1, T s�Od
��r0, 1s for some i ¤ n� 1.

Then, pv_gq7pti�1, �q ¤ pw7_gq7pti�1, �q and therefore

pv_gq
�
ti�1, X

t,x
ti�1

, P t,p,αti�1

	
¥ P t,p,αti�1

qQt,x,1ti�1
� pv_gq7

�
ti�1, X

t,x
ti�1

, qQt,x,1ti�1

	
¥ P t,p,αti�1

qQt,x,1ti�1
� pw7_gq7

�
ti�1, X

t,x
ti�1

, qQt,x,1ti�1

	
.

Fix t P rti, ti�1q. Taking the expectation on both sides and recalling (2.21), we obtain

EQt,x
�
pv_gq

�
ti�1, X

t,x
ti�1

, P t,p,αti�1

	�
¥ pq � wpt, x, qq .

Taking first the supremum over q P R in the right-hand side and then the infimum over

α P At,p in the left-hand side, we get from Proposition 2.3 that vpt, x, pq ¥ w7pt, x, pq.

l

3.2 Representation and differentiability of the backward dual algo-

rithm

This section is devoted to the study of the function pw7_gq7 which appears in the dual

algorithm (2.21) and of its Fenchel transform pw7_gq77. We first provide a decomposition

in simple terms in Proposition 3.3. They only contain w, g and auxiliary functions that

are easy to handle, see (3.3)-(3.4) below. In view of (2.21), this will then allow us to

study the subdifferential of wpti, �q in terms of the subdifferential of wpti�1, �q. This

analysis is reported in Lemma 3.2. These results will be of important use in the final

proof of Theorem 2.1 as it will require to find a particular value p in the subdifferential

13



of wpti, �q and then to apply a martingale representation argument between elements of

the subdifferential of pw7_gq7 at ti�1 and p at ti, see the proof of Theorem 3.1.

We start with properties that stem directly from the definition of w and standard results

in convex analysis. The proof is postponed to the Appendix.

Proposition 3.2. For all pt, xq P r0, T s �Od
�:

(a) The functions q P R ÞÑ wpt, x, qq is a proper convex non-decreasing and non-negative

function. Moreover, wp�, 0q � 0 and wp�, qq � 8 for q   0.

(b) The function p P R ÞÑ w7pt, x, pq and q P R ÞÑ pw7_gq7pt, x, qq are convex, non-

negative, non-decreasing and continuous on their domains. Finally, w7p�, 0q � 0, pw7_

gq7p�, 0q � 0 and pw7_gq7p�, qq � �8 for q   0.

The next result is key to get the representation of pw7_ gq7 and pw7_ gq77. Recall that

gpt, x, pq � gpt, xq1t0 p¤1u �81tp¡1u.

Lemma 3.1. Let p1 ¥ 0 and f be a non-decreasing convex function such that fp0q � 0,

f ¥ gpt, x, �q on rp1,8q, f ¤ gpt, x, �q on p�8, p1s.

(a) The convex envelope of f _ g is given by

pf_gq77ppq �corf_gsppq � pq11t0¤p p1u � fppq1tp1¤p¤1u �81p1,8q ,

with q1 � gpt, xq{p11tp1¡0u.

(b) Moreover, we have

pf_gq7p�, qq � p1rq � q1s
�1tq¤D�

p fpp1qu � f 7pqq1tq¡D�
p fpp1qu , q ¥ 0 ,

which is a closed proper convex function. In particular, it is continuous at D�
p fpp1q

when 0   D�
p fpp1q   �8.

Proof.

1. The left-hand side identity in (a) follows from see [15, Theorem 12.2]. We set

ϕ : p ÞÑ pq11tp¡0u _ fppq, which is convex. By assumption, we already know that

fppq ¤ gpt, x, pq � 0 for p ¤ 0. Since fp0q � 0 and fpp1q � gpt, xq, we have by convexity

that fppq ¤ pq1, p P r0, p1s, which implies ϕppq1tp¤p1u � pq11t0¤p p1u, for p ¤ p1. Since

fppq ¤ pq1 for p P r0, p1s and fpp1q � p1q1, we compute that D�
p fpp1q ¥ q1. By

convexity, we also have fppq ¥ fpp1q � D�
p fpp1qpp � p1q ¥ pq1 for p ¥ p1 and then

ϕ1rp1,8q � f1rp1,8q. In particular, we observe that ϕ ¤ f_g. It is straightforward to

check that any candidate for the convex envelope of f_g is below ϕ. The above shows

also that D�
p fpp1q ¡ 0 whenever q1 ¡ 0.

2. Let us now observe that f 7pqq   8, for q ¥ 0, since fp�, pq � gp�, pq � 8 for

14



p ¡ 1 _ p1. It follows that the subdifferential of f 7 at non-negative q is non empty.

The proof of (b) follows from calculations based on the following results from convex

analysis, see e.g. [11, Chapter I Proposition 5.1]. Let ψ be a proper function on R, then

q is in the subdifferential of ψ at p if and only if

ψ7pqq � ψppq � pq . (3.2)

(i) At p � 0, the subdifferential of pf_gq77 � corf_gs is equal to r0, q1s. This follows

directly from the characterisation of the convex envelope of f_g given in (a). Using

the above equality with ψ � pf_gq77, we then have for q P r0, q1s

pf_gq77p0q � pf_gq7pqq � 0� q ùñ pf_gq7pqq � 0 ,

since pf_gq77p0q � 0 by our assumption, namely fp0q � 0 � gp�, 0q and g ¥ 0.

(ii) The subdifferential of pf_gq77 � corf_gs at p1 is equal to D :� rq1, D
�
p fpp1qs if

D�
p fpp1q   �8 or rq1,�8q otherwise. This follows again directly from (a). We recall

from the Step 1. that fpp1q � q1p1. Then, using (3.2) with ψ � pf_gq77 and (a), we

have for q P D

pf_gq77pp1q � pf_gq7pqq � p1q ùñ pf_gq7pqq� p1q � fpp1q � p1pq � q1q� p1rq � q1s
� .

(iii) If q ¡ D�
p fpp1q, an element p of the subdifferential of f 7 at q satisfies

fppq � f 7pqq � pq .

We first note that p ¥ p1 necessarily. Indeed, by [11, Chapter I Corollary 5.2], q P

rD�
p fppq, D

�
p fppqs while q ¡ D�

p fpp1q. Recall that f � pf_gq77 on rp1,8q. We then

deduce from the previous equality that

pf_gq77ppq � f 7pqq � pq ùñ f 7pqq� pq � pf_gq77ppq ¤ pf_gq7pqq .

Observing that the reverse inequality follows from f ¤ f_g, we get f 7pqq � pf_gq7pqq

for q P pD�
p fpp1q,�8q. l

We are now in position to provide the decomposition of pw7 _ gq7 and pw7 _ gq77. It

basically follows from the application of the previous lemma to f � w7.

Proposition 3.3. For pt, x, pq P r0, T s �Od
� �R, we define the following ‘facelift’ of g

g̃pt, x, pq � qgpt, xqp1t0¤p¤1u �81tp¡1u ,

with

qgpt, xq :�
gpt, xq

pgpt, xq
1tpgpt,xq¡0u and pgpt, xq :� sup

 
p P R |w7pt, x, pq � gpt, xq

(
^ 1 .

Then,
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(a) The function p ÞÑ pw7_gq77p�, pq is continuous on its domain and

pw7_gq77 � corw7_gs � w7_g̃ . (3.3)

(b) For all q P R�:

pw7_gq7p�, qq � rq � gp�qs� 1A1p�q � wp�, qq1A2p�q � κp�, qq1A3p�q , (3.4)

where

κp�, qq :� pgp�q rq � qgp�qs
� 1tq q̄p�qu � wp�, qq1tq¥q̄p�qu ,

with q̄p�q :� D�
p w

7 p�, pgp�qq and the subsets of r0, T s�Od
�: A1 :�

 
g ¡ 0, w7p�, 1q ¤ g

(
,

A2 :� tg � 0u, A3 :�
 
g ¡ 0, w7p�, 1q ¡ g

(
.

Remark 3.1. (a) It follows from Proposition 3.2 that w7p�, 0q � 0. Hence, gpt, xq ¡ 0

implies pgpt, xq ¡ 0 and

qgpt, xq �
gpt, xq

pgpt, xq
1tgpt,xq¡0u so that qgpt, xq � 0 if and only if gpt, xq � 0 .

(b) The decomposition on A1, A2 and A3 will prove useful in the sequel, see e.g. proof

of Lemma 3.2(c) below.

(c) On A3, we have q̄ ¡ 0 since w7p�, pgp�qq ¥ g ¡ 0 and w7p�, 0q � 0, see Proposition

3.2.

Proof of Proposition 3.3. The identities in (3.3) are immediate consequences of

Lemma 3.1(a), Proposition 3.2(b) and of the definition of pg. We now prove (3.4).

For pt, xq P A1, we have w7pt, x, �q ¤ g and therefore pw7_gq7pt, x, �q � g7pt, x, �q �

r� � gpt, xqs� on R�. For pt, xq P A2, we have that w7 ¥ g by Proposition 3.2(b) and

the result follows directly. On A3, the expression is exactly the one given by Lemma

3.1(b). l

We can now turn to the study of the subdifferential of w. Recall the definition of pmin

in (2.10).

Lemma 3.2. Fix 0 ¤ i ¤ n� 1 and pt, xq P rti, ti�1q �Od
�. Then:

(a) D�
q wpt, x, �q ¥ 0 if q ¥ 0 and D�

q wpt, x, �q ¥ 0 if q ¡ 0.

(b) limqÒ8D
�
q wpt, x, qq � 1.

(c) D�
q wpt, x, 0q � pminpt, xq.

Moreover,

D�
q wpt, x, qq � E

�
D�
q pw

7_gq7pti�1, X
t,x
ti�1

, qQt,x,1ti�1
qq
�

for q ¡ 0 , and (3.5)

D�
q wpt, x, qq � E

�
D�
q pw

7_gq7pti�1, X
t,x
ti�1

, qQt,x,1ti�1
qq
�

for q ¥ 0 . (3.6)
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Proof. The proof is based on an induction argument. Our assumptions guarantee

that (a)-(b)-(c) are valid at T . Let us assume that it holds true on rti�1, T s for some

i ¤ n� 1.

In view of Proposition 3.3, we obtain for q ¥ 0 and j ¤ n that

D�
q pw

7_gq7ptj , x, qq � 1tq¥gptj ,xqu1A1ptj , xq �D�
q wptj , x, qq1A2ptj , xq

�D�
q κptj , x, qq1A3ptj , xq ,

with

D�
q κptj , x, qq � pgptj , xq1tqgptj ,xq¤q q̄ptj ,xqu �D�

q wptj , x, qq1tq¥q̄ptj ,xqu .

For q ¡ 0, we have

D�
q pw

7_gq7ptj , x, qq � 1tq¡gptj ,xqu1A1ptj , xq �D�
q wptj , x, qq1A2ptj , xq

�D�
q κptj , x, qq1A3ptj , xq ,

with

D�
q κptj , x, qq � pgptj , xq1tqgptj ,xq q q̄ptj ,xqu �D�

q wptj , x, qq1tq¡q̄ptj ,xqu .

Using our induction hypothesis, we have limqÒ8D
�
q κpti�1, x, qq � 1, which ensures that

limqÒ8D
�
q pw

7_ gq7pti�1, x, qq � 1. By the convexity of pw7_ gq7, this implies that

D�
q pw

7_gq7pti�1, x, qq ¤ 1. In view of (2.21), a dominated convergence argument then

leads to (3.5)-(3.6) and limqÒ�8D
�
q wpt, x, qq � 1.

We now use our induction hypothesis again to observe from the decomposition above

that

D�
q pw

7_gq7pti�1, x, qq ¥ 0 , q ¡ 0 , and D�
q pw

7_gq7pti�1, x, qq ¥ 0 , q ¥ 0 .

Recalling (3.5)-(3.6), this shows that D�
q wpt, x, qq ¥ 0 for q ¡ 0 and D�

q wpt, x, qq ¥ 0

for q ¥ 0.

It remains to prove (c). From Remark 3.1 (a) and (c), the above decomposition implies

that D�
q pw

7_gq7pti�1, x, 0q � D�
q wpti�1, x, 0q1tgpti�1,xq�0u. By our induction hypoth-

esis, the last term is D�
q pw

7_gq7pti�1, x, 0q � pminpti�1, xq1tgpti�1,xq�0u. This identity

combined with (3.6) provides

D�
q wpt, x, 0q � E

�
pminpti�1, X

t,x
ti�1

q1!
gpti�1,X

t,x
ti�1

q�0
)
�
� pminpt, xq ,

in which the last identity is a direct consequence of the definition of pmin in (2.10). l

Remark 3.2. Note that the subdifferential of wpt, x, �q at 0 is p�8, pminpt, xqs, since

wpt, x, qq � 8 for q   0 and D�
q wpt, x, 0q � pminpt, xq. See (a) of Proposition 3.2 and

(c) of Lemma 3.2.
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3.3 The backward algorithm as an upper-bound

Our final proof will proceed by backward induction on the time steps. Part of the

induction hypothesis is:

Hypothesis (Hi�1). The following holds

(i) The functions vpti�1, �q and corv_gspti�1, �q are continuous on Od
� � r0, 1s.

(ii) corv_gspti�1, �, 0q � 0 and corv_gspti�1, �, 1q � pv_gqpti�1, �, 1q.

(iii) For all x P Od
�, the map q P R� ÞÑ q � pw7_gq7pti�1, x, qq is non-decreasing,

continuous and converges to pv_gqpti�1, x, 1q as q Ñ8.

Before turning to the final argument, we provide three additional results that hold at

any time t P rti, ti�1q whenever Hi�1 is in force.

3.3.1 Bounds and limits for w7

Our first additional result concerns the behaviour of w7. It shows that w7pti, x, 1q �

vpti, x, 1q. The last assertion will be used in the proof of Lemma 3.4 below to show that

(iii) of Hi holds if (iii) of Hi�1 does.

Lemma 3.3. Let (iii) of Hi�1 hold. Fix pt, xq P rti, ti�1q � Od
�. Then, w7pt, x, �q is

non-negative, continuous on its domain p�8, 1s and

0 ¤ w7pt, x, �q ¤ w7pt, x, 1q � vpt, x, 1q on p�8, 1s .

Moreover, the map q P R ÞÑ q � wpt, x, qq is non-decreasing, continuous on R� and

converges to vpt, x, 1q as q Ñ8.

Proof. The continuity and non-negativity of w7pt, x, �q are stated in (b) of Proposition

3.2. We now observe that (2.21) implies that

δpqq :� q � wpt, x, qq � EQt,x
�
qQt,x,1ti�1

� pw7_gq7pti�1, X
t,x
ti�1

, qQt,x,1ti�1
q
�
,

which shows that q ÞÑ δpqq is non-decreasing since (iii) of Hi�1 holds. Applying the

monotone convergence Theorem, (iii) of Hi�1 and (2.8), we obtain that q P R� ÞÑ

q � wpt, x, qq is continuous and that

lim
qÑ8

δpqq � EQt,x
�
pv_gqpti�1, X

t,x
ti�1

, 1q
�
� vpt, x, 1q .

This implies that w7pti, x, 1q � supq¥0 δpqq ¥ limqÑ8 δpqq � vpt, x, 1q, while w7pt, x, pq ¥

limqÑ8pqpp� 1q � δpqqq � 8 for p ¡ 1. The fact that w7pti, x, 1q ¤ vpt, x, 1q has been

proved in Proposition 3.1. l
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3.3.2 Convexification in the dynamic programming algorithms

As already mentioned in Remark 2.2, one can expect that v _ g can be replaced by its

convex envelope, with respect to p, in (2.15). The Hypotheses (i)-(ii) of Hi�1 ensure this,

see Proposition 3.4 below. We shall prove a similar result for w7 later on in Theorem

3.1. Note that the two identities (3.7) and (3.9) below already suggest that the equality

v � w7 at ti�1 should iterate at ti, since we already know from Proposition 3.1 that

v ¥ w7.

Proposition 3.4. Let (i)-(ii) of Hi�1 hold. Then, for all t P rti, ti�1q and px, pq P

Od
� � r0, 1s, we have

vpt, x, pq � inf
αPAt,p

EQt,x
�
corv_gs

�
ti�1, X

t,x
ti�1

, P t,p,αti�1

	�
. (3.7)

Moreover, (ii) of Hi holds.

Proof. We fix pt, xq P rti, ti�1q �Od
�. Assuming that (3.7) is true, we deduce that (ii)

of Hi holds, since At,p � t0u for p P t0, 1u leading to P t,p,αti�1
� p in that case. By (ii)

of Hi, the same argument combined with Proposition 2.3 implies that (3.7) is valid for

p P t0, 1u.

It remains to prove (3.7) for 0   p   1. In view of Proposition 2.3, this reduces to

showing that

inf
αPAt,p

EQt,x
�
corv_gs

�
ti�1, X

t,x
ti�1

, P t,p,αti�1

	�
¥ inf

αPAt,p
EQt,x

�
pv_gq

�
ti�1, X

t,x
ti�1

, P t,p,αti�1

	�
,

the reverse inequality being straightforward. We argue as in the [5, Proof of Proposition

3.3]. It follows from the Caratheodory theorem that we can find two maps pλj , πjq :

px, pq P Od
� � r0, 1s ÞÑ pλj , πjqpx, pq P Od

� � r0, 1s, j ¤ 2, such that

°2
j�1 πjpx, pq � 1 , p �

°2
j�1 πjpx, pqλjpx, pq

and corv_gspti�1, x, pq �
°2
j�1 πjpx, pqpv_gqpti�1, x, λjpx, pqq .

(3.8)

We claim that they can be chosen in a measurable way. More precisely, (i) of Hi and [4,

Proposition 7.49] imply that they can be chosen to be analytically measurable. We can

then appeal to [4, Lemma 7.27] to obtain a Borel-measurable version which coincides

a.e. for the pull-back measure of pXt,x
ti�1�ε

, P t,p,αti�1�ε
q, for α P At,p and 0   ε   ti�1 � t

fixed. This is this version that we use in the following.

We now let ξ be a Fti�1-measurable random variable such that

Prξ � λjpX
t,x
ti�1�ε

, P t,p,αti�1�ε
q|Fti�1�εs � πjpX

t,x
ti�1�ε

, P t,p,αti�1�ε
q .
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Then, Erξ|Fti�1�εs � P t,p,αti�1�ε
by the above construction, and we can then find αε P At,p

such that P t,p,αεti�1�ε
� P t,p,αti�1�ε

and P t,p,αεti�1
� ξ. Recalling (3.8), we obtain

EQt,x
�
corv_gs

�
ti�1, X

t,x
ti�1�ε

, P t,p,αti�1�ε

	�
� EQt,x

�
pv_gq

�
ti�1, X

t,x
ti�1�ε

, P t,p,αεti�1

	�
¥ inf

α1PAt,p
EQt,x

�
pv_gq

�
ti�1, X

t,x
ti�1

, P t,p,α
1

ti�1

	�
� ∆pεq ,

with ∆pεq � �CEQt,x
�
p1� |Xt,x

ti�1�ε
| � |Xt,x

ti�1
|q|Xt,x

ti�1�ε
�Xt,x

ti�1
|
�
, recall (2.6) and (2.16).

Moreover, since 0 ¤ corv_gspti�1, x, �q ¤ v_gpti�1, x, �q ¤ Cp1� |x|q, using (i) of Hi�1,

we can pass to the limit to obtain

EQt,x
�
corv_gs

�
ti�1, X

t,x
ti�1

, P t,p,αti�1

	�
¥ inf

α1PAt,p
EQt,x

�
pv_gq

�
ti�1, X

t,x
ti�1

, P t,p,α
1

ti�1

	�
.

l

Since our final result is v � w7, the same convexification should appear in the dual

algorithm. As already mentioned, it will actually allow us to show that v � w7 at ti if

this true at ti�1.

Theorem 3.1. Let (iii) of Hi�1 hold. Fix 0 ¤ i ¤ n�1, pt, x, pq P rti, ti�1q�Od
��r0, 1s.

Then, there exists ᾱ P At,p such that

w7pt, x, pq � EQt,x
�
corw7_gs

�
ti�1, X

t,x
ti�1

, P t,p,ᾱti�1

	�
. (3.9)

Proof. Recall the definition of pmin in (2.10).

1. We first assume that p P ppminpt, xq, 1q. We know from Lemma 3.2 (b)-(c) that there

exists a q̃ P p0,8q such that p lies in the subdifferential of wpt, x, �q at q̃. Then, we can

find λ P r0, 1s such that p � λD�
q wpt, x, q̃q � p1� λqD

�
q wpt, x, q̃q. In view of (3.5)-(3.6),

this implies that

p � E
�
pλD�

q pw
7_gq7 � p1� λqD�

q pw
7_gq7q

�
ti�1, X

t,x
ti�1

, q̃Qt,x,1ti�1

	�
. (3.10)

It follows from Lemma 3.2 and its proof that the random variable in the expectation is

valued in r0, 1s. By the martingale representation Theorem, we can find ᾱ P At,p such

that

pλD�
q pw

7_gq7 � p1� λqD�
q pw

7_gq7q
�
ti�1, X

t,x
ti�1

, q̃Qt,x,1ti�1

	
� p�

» ti�1

t
ᾱJs dWs �: P t,p,ᾱti�1

.

For later use, note that the above implies

P t,p,ᾱti�1
q̃Qt,x,1ti�1

� pw7_gq7
�
ti�1, X

t,x
ti�1

, q̃Qt,x,1ti�1

	
� pw7_gq77

�
ti�1, X

t,x
ti�1

, P t,p,ᾱti�1

	
, (3.11)
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where we used (3.2) with ψ � pw7_gq7. On the other hand, we also have, again by (3.2)

with ψ � w,

wpt, x, q̃q � w7pt, x, pq � q̃p , (3.12)

and, by (2.21),

wpt, x, q̃q � EQt,x
�
pw7_gq7

�
ti�1, X

t,x
ti�1

, q̃Qt,x,1ti�1

	�
. (3.13)

Thus, inserting (3.10) and (3.13) into (3.12), and using (3.11), leads to

w7pt, x, pq � EQt,x
�
P t,p,ᾱti�1

q̃Qt,x,1ti�1
� pw7_gq7

�
ti�1, X

t,x
ti�1

, q̃Qt,x,1ti�1

	�
� EQt,x

�
pw7_gq77

�
ti�1, X

t,x
ti�1

, P t,p,ᾱti�1

	�
.

We conclude by appealing to (3.3).

2. We now assume that p P r0, pminpt, xqs. Since r0, pminpt, xqs belongs to the subdiffer-

ential of wpt, x, �q at 0, recall Remark 3.2, and pminpt, xq � D�
q wpt, x, 0q, recall Lemma

3.2, we can find λ P r0, 1s such that p � λD�
q wpt, x, 0q. We then proceed as above up

to obvious modifications.

3. We finally assume that p � 1. We know from Lemma 3.3 that w7pt, x, 1q � vpt, x, 1q.

Hence, (2.8) implies

w7pt, x, 1q � vpt, x, 1q � EQt,x
�
pv_gq

�
ti�1, X

t,x
ti�1

, 1
	�

.

As in the proof of Lemma 3.3, we deduce from (iii) of Hi�1that corw7_gspti�1, �, 1q �

pw7_gq77pti�1, �, 1q ¥ pv_gqpti�1, �, 1q. In view of Proposition 3.1, this leads to pv_

gqpti�1, x, 1q � corw7_gspti�1, x, 1q. l

3.4 Conclusion of the proof

To conclude the proof of Theorem 2.1, we need to prove the inequality v ¤ w7.

Proposition 3.5. v ¤ w7 on r0, T s �Od
� � r0, 1s.

Proof. We use a backward induction argument. We assume that Hi�1 holds and that

v � w7 and on rti�1, T s � Od
� � r0, 1s for some i ¤ n � 1. Since it is true for i � n by

construction, the proof will be completed if one can show that this implies that Hi holds

and that v � w7 on rti, T s �Od
� � r0, 1s.

Let us fix pt, x, pq P rti, ti�1q �Od
� � r0, 1s. Then, our induction hypothesis implies that

EQt,x
�
corv_gs

�
ti�1, X

t,x
ti�1

, P t,p,αti�1

	�
� EQt,x

�
corw7_gs

�
ti�1, X

t,x
ti�1

, P t,p,αti�1

	�
,
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for all α P At,p. It then follows from Theorem 3.1 and Proposition 3.4 that vpt, x, pq ¤

w7pt, x, pq. But, the reverse inequality is proved in Proposition 3.1. This shows that

v � w7 on on rti, T s � Od
� � r0, 1s. Then (i) of Hi is a consequence of Proposition 3.3

and Proposition 3.2. Proposition 3.4 implies (ii) of Hi. Regarding the validity of (iii)

of Hi, it is proved in Lemma 3.4 below. l

Lemma 3.4. The hypothesis Hi�1 implies (iii) of Hi.

Proof. It follows from (3.4) that

q � pw7_gq7pti, x, qq �
�
q � rq � gpti, xqs

�
�
1A1pti, xq

� pq � wpti, x, qqq1A2pti, xq �
�
q � κpti, x, qq

�
1A3pti, xq , (3.14)

in which

q � κpti, x, qq � pq � pgpti, xqrq � qgpti, xqs
�q1tq q̄pti,xqu � pq � wpti, x, qqq1tq¥q̄pti,xqu .

By Lemma 3.3, w7pti, x, 1q � vpti, x, 1q so that A2YA3 � tvp�, 1q ¡ gu, recall (2.11). In

particular, we observe that q̄   8 on A3. The fact that the right-hand side in (3.14)

converges to pv_gqpti, x, 1q as q Ñ 8 is then a consequence of Lemma 3.3 and the

definition of the pAiqi¤3.

It remains to show that each term in (3.14) is non-decreasing and continuous. From

Lemma 3.3, we know that q ÞÑ pq � wpti, x, qq is continuous and non-decreasing. The

first term in the right-hand side of (3.14) is continuous and non-decreasing as well.

Regarding the last term, we know that q ÞÑ κpti, x, qq is continuous, so that it suffices

to check the monotony on each sub-interval p�8, q̄pti, xqs and rq̄pti, xq,8q distinctly.

On the second interval, we have that q ÞÑ q � κpti, x, qq is non-decreasing by Lemma

3.3. This is also true on first interval since pgpti, xq ¤ 1. l

4 Appendix

We provide here the proofs of some technical results that were used in the proof of

Theorem 2.1.

Proof of Proposition 2.1 For t � T the sets in (2.9) are R� by definition of Tt and

Tt. For t   T , St,x,y,ντ̂ν
�

�
sPTt St,x,y,νs � St,x,y,ντ , for any τ P Tt, which proves (2.9) again.

Proof of Proposition 2.3. 1. We first show that (2.15) holds. Let v̄pt, x, pq denote

the right-hand side of (2.15) and set

Jpt, x, p, αq :� EQt,x
�
pv_gq

�
ti�1, X

t,x
ti�1

, P t,p,αti�1

	�
.
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Fix y and α P At,p such that y ¡ Jpt, x, p, αq. Then, it follows from the martingale

representation theorem that we can find ν P Ut,x,y such that

Y t,x,y,ν
ti�1

¡ pv_gq
�
ti�1, X

t,x
ti�1

, P t,p,αti�1

	
.

In particular, Y t,x,y,ν
ti�1

¥ g
�
ti�1, X

t,x
ti�1

, P t,p,αti�1

	
. Since, we also have Y t,x,y,ν

ti�1
¡ vpti�1, X

t,x
ti�1

,

P t,p,αti�1
q, it follows from the same arguments as in the proof of [8, Lemma 2.2] that we

can find a predictable process pν̃, α̃q which coincides with pν, αq on rt, ti�1s, in the

dt� dP-sense, and such that

Y t,x,y,ν̃
s ¥ g

�
s,Xt,x

s , P t,p,α̃s

�
, for all s P Tti�1 .

These processes are elements of Ût,x,y,p whenever ν̃ is square integrable in the sense of

(2.5), and α̃ is square integrable in the classical sense. To reduce to this case, we use

the fact that P t,p,α̃ is restricted to live in the interval r0, 1s while ν̃ can be modified so

that (2.12) holds. By the Itô isometry, this induces the required square integrability

property of the financial strategy, recall (2.2). Combining the above with Proposition

2.2 shows that v̄pt, x, pq ¥ vpt, x, pq.

Conversely, let us fix y ¡ vpt, x, pq. Then, it follows from the geometric dynamic

programming principle of [8, Theorem 2.1] that there exists pν, αq P Ût,x,y,p such that

Y t,x,y,ν
ti�1

¥ pv _ gq
�
ti�1, X

t,x
ti�1

, P t,p,αti�1

	
.

Since Y t,x,y,ν is a super-martingale under Qt,x, this implies that y ¥ Jpt, x, p, αq. The

fact that vpt, x, pq ¥ v̄pt, x, pq then follows from the arbitrariness of α.

2. We now prove the Lipschitz continuity property. Note that it is true for t � T , since

vpT, �q � 0 by construction. Let us assume that (2.16) holds on rti�1, T s for some i   n

and show that it is then also true on rti, T s. Let us fix pt, pq P rti, ti�1q � r0, 1s and

x, x1 P Od
�. It follows from (2.15) that |vpt, x, pq � vpt, x1, pq| is bounded from above by

sup
αPAt,p

EQt,x
����pv _ gq

�
ti�1, X

t,x
ti�1

, P t,p,αti�1

	
� pQt,x,1ti�1

{Qt,x
1,1

ti�1
qpv _ gq

�
ti�1, X

t,x1

ti�1
, P t,p,αti�1

	���� .
Since (2.16) holds for pv_ gqpti�1, �, pq, (2.6) holds, and v has linear growth, see (2.13),

we deduce that there exists C ¡ 0 such that the above is bounded by

C EQt,x
�
|Xt,x

ti�1
�Xt,x1

ti�1
|p1� |Xt,x

ti�1
| � |Xt,x1

ti�1
|q � |Qt,x,1ti�1

{Qt,x
1,1

ti�1
� 1| p1� |Xt,x1

ti�1
|q
�
.

In view of (2.2)-(2.3), this is controlled by |x� x1|p1� |x| � |x1|q up to a multiplicative

constant. l
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Proof of Proposition 2.4. The growth property on r0, T q�Od
��p0,8q follows from

Proposition 3.2 (which will be proved just below), Theorem 2.1, (3.1) and (2.13):

0 ¤ wpt, x, qq � sup
pPR

ppq � vpt, x, pqq � sup
pPr0,1s

ppq � vpt, x, pqq ¤ q .

Note that Theorem 2.1 implies that pw7_gq7pT, �q � g7. The fact that the lower- (resp.

upper-) semicontinuous envelope of w is a viscosity super- (resp. sub-) solution of (S)

is standard and we omit the proof. Continuity will then follow from the comparison

principle. The comparison can be proved by backward induction. It is well-known that

(2.19) admits a comparison principle in the class of functions with polynomial growth,

see e.g. [10]. Hence, the comparison holds on rtn�1, T q. Assume that it holds on rti�1, T q

and that pu7j1r0,T q_gq
7pti�1, �q has polynomial growth, for j � 1, 2, then it holds on rti, T q

too. Indeed u1pti�1, �q ¥ u2pti�1, �q implies pu71_gq
7pti�1, �q ¥ pu72_gq

7pti�1, �q. Hence, we

just have to prove that pu71_gq
7 has polynomial growth. By [15, Theorem 16.5], we have

pu7j_g
77q7 � coru77j ^ g7s. Hence 0 ¤ pu7j_gq

7 ¤ pu7j_g
77q7 � coru77j ^ g7s ¤ coruj ^ g7s.

Since the later has polynomial growth, the required property holds. l

Proof of Proposition 3.2. We proceed by backward induction on T0 Y t0u. Our

claims are straightforward from (2.21) at time T . Indeed, direct computations show

that w7pT, �, pq � 0�81tp¡1u. Hence, pw7_gq7pT, x, qq � g7pT, x, qq � rq � gpT, xqs� �

81tq 0u. The properties (a) and (b) hold.

We now assume that (a) and (b) are satisfied on rti�1, T s for some i ¤ n � 1 and fix

pt, xq P rti, ti�1q �Od
�. Then, the definition of w in (2.21) implies that wpt, x, �q is non-

negative, non-decreasing, convex and that wpt, x, 0q � 0 (it is in particular proper). It

takes the value �8 for q   0, by (2.21) and the fact that pw7 _ gq7pti�1, �, qq � �8

for q   0. Hence (a) holds on rti, T s. These two last assertions imply that w7p�, pq �

supq¥0 tpq � wp�, qqu and w7pt, �, pq � 0 for p ¤ 0. We know from [15, Theorem 12.2]

that it is closed, convex and continuous on the interior of its domain. Since w7 is

non-decreasing, by definition, we get from its closeness that it is continuous on its

domain. The fact that w7pt, �, �q ¥ w7pt, �, 0q � 0 also implies that pw7_ gqpt, x, �q

is non-negative; moreover, pw7_gqpt, �, 0q � 0. For q   0, we then compute pw7_

gq7pt, �, qq � supp¤1

 
pq � pw7_gqpt, �, pq

(
� �8. For q ¥ 0, we get pw7_gq7pt, �, qq �

suppPr0,1s
 
pq � pw7_gqpt, �, pq

(
¥ 0. Moreover, pw7_gq7pt, x, 0q � 0 and pw7_gq7pt, x, �q

non-decreasing on its domain r0,8q. By definition, pw7_gq7pt, x, �q is convex and then

continuous on the interior of its domain. Being non-decreasing and convex, it is also

right-continuous at 0. l
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