
Optimal control under uncertainty and Bayesian
parameters adjustments: Application to trading

algorithms

N. Baradel∗, B. Bouchard†, N. M. Dang‡

April 13, 2016

Abstract

We propose a general framework for the optimal control/design of trading algorithms
in situations where market conditions or impact parameters are uncertain. Given a
prior on the distribution of the unknown parameters, we explain how it should evolve
according to the classical Bayesian rule after each sequence of trades. Taking these pro-
gressive prior-adjustments into account, we characterize the optimal policy through a
quasi-variational parabolic equation, which can be solved numerically. From the math-
ematical point of view, we indeed treat a quite general impulse control problem with
unknown parameters, and the derivation of the dynamic programming equation seems
to be new in this context. The main difficulty lies in the nature of the set of controls
which depends in a non trivial way on the initial data through the filtration itself.
Typical examples of application are discussed.
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1 Introduction
When trading at a high frequency level, several market parameters become of major im-
portance. It can be the nature of the market impact of aggressive orders, or the time to be
executed when entering a book order queue, see e.g. [15] and the references therein. However,
the knowledge of these execution conditions is in general not perfect. One can try to estimate
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them but they remain random and can change from one market/platform to another one, or
depending on the current market conditions. Most importantly, they can only be estimated
by actually acting on the market. We therefore face the typical problem of estimating a
reaction parameters (impact/execution time) while actually controlling a system (trading)
that depends on these parameters.

Such problems have been widely studied in the discrete time stochastic optimal control
literature, see e.g. [10] for references. One fixes a certain prior distribution on the unknown
parameter, and re-evaluate it each time an action is taken, by applying the standard Bayesian
rule to the observed reactions. The optimal strategy generically results from a compromise
between acting on the system, to get more information, and being not too aggressive, be-
cause of the uncertainty on the real value of the parameters. If the support of the initial
prior contains the true value of the parameters, one can expect (under natural identification
conditions) that the sequence of updated priors actually converges to it in the long range.

It is a-priori much more difficult to handle in a continuous time framework with continuous
time monitoring, as it leads to a filtering problem, leaving on an infinite dimensional space.
However, optimal trading under market impact can very naturally be considered in the
impulse form, as robots send orders in a discrete time manner. In a sense, we are back
to a discrete time problem which dimension can be finite (depending on the nature of the
uncertainty), although interventions on the system may occur at any time.

In this paper, we thus consider a general impulse control problem with an unknown
parameter, under which an initial prior law is set. Given this prior, we aim at maximizing a
certain gain functional. We show that the corresponding value function can be characterized
as the unique viscosity solution (in a suitable class) of a quasi-variational parabolic equation,
for which a convergent numerical scheme is constructed. To better fit with market practices,
we allow for (possibly) not observing immediately the effect of an impulse. This applies for
instance to trading robots that are launched for a certain time period and whose impact will
be observed only at the end of this period, or to dark pools in which nothing is observed but
the execution time.

The study of such non-classical impulse control problems seems to be new in the literature.
From the mathematical point of view, the main difficulty consists in establishing a dynamic
programming principle. The principal reason lies in the choice of the filtration. Because of the
uncertainty on the parameter driving the dynamics, the only natural filtration to which the
control policy should be adapted is the one generated by the controlled process himself. This
implies in particular that the set of admissible controls depends heavily (and in a very non
trivial way) on the initial state of the system at the starting time of the strategy. Hence, no
a priori regularity nor good measurability properties can be expected to construct explicitly
measurable almost optimal controls, see e.g. [5], or to apply a measurable selection theorem,
see e.g. [16]. We therefore proceed differently. The (usually considered as) easy part of the
dynamic programming can actually be proved, as it only requires a conditioning argument.
It leads as usual to a sub-solution characterization. We surround the difficulty in proving the
second (difficult) part by considering a discrete time version of our initial continuous time
control problem. When the time step goes to 0, it provides a super-solution of the targeted
dynamic programming equation. Using comparison and the natural ordering on the value
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functions associated to the continuous and the discrete time model, we show that the two
coincide at the limit.

We consider two examples of applications. In the first one, aggressive orders are send
in a model with immediate and resilient impact. The unknown are the parameters of the
impact and liquidity costs functions. In the second one, we only consider limit orders. The
unknown is the distribution of the time to be executed. In both situations, the problems
can be solved numerically without much difficulties and we provide numerical illustrations
showing the dependence of the optimal strategies on the current priors.

The rest of the paper is organized as follows. The model is described in Section 2. In
Section 3, we provide the PDE characterization of the value function and an example of
numerical scheme. Proofs are collected in Section 5. Section 4 is dedicated to two examples
of application.

2 The impulse problem with parameters adjustment
All over this paper, C([0, T ],Rd) is the space of continuous functions from [0, T ] into Rd

which start at 0 at the origin. Recall that it is a Polish space for the sup-norm topology. We
denote by W (ω) = ω the canonical process and let P be the Wiener measure.
We also consider a Polish space (U,B(U)) that will support an unknown parameter υ. We
denote by M a locally compact subset of the set of Borel probability measures on U endowed
with the topology of weak convergence. In particular, it is Polish. A prior on the unknown
parameter υ will be an element m ∈M.
To allow additional randomness in the measurement of the effects of actions on the system,
we consider another Polish space E on which is defined a family (εi)i≥0 of i.i.d. random
variables with common measure Pε on E. On the product space Ω := C([0, T ],Rd)×U×EN,
we consider the family of measures {P ×m × P⊗Nε : m ∈M} and denote by Pm an element
of this family whenever m ∈ M is fixed. The operator Em is the expectation associated to
Pm. Note that W , υ and (εi)i≥0 are independent under each Pm.
For m ∈ M given, we let Fm = (Fmt )t≥0 denote the Pm-augmentation of the filtration
F = (Ft)t≥0 defined by Ft = σ((Ws)s≤t, υ, (εi)i≥0) for t ≥ 0. Hereafter, all the random
variables are considered with respect to the probability space (Ω,FmT ) with m ∈M given by
the context, and where T is a fixed time horizon.

2.1 The controlled system

Let A ⊂ [0, T ]×Rd be a (non-empty) compact set. Given N ∈ N and m ∈M, we denote by
Φ◦,mN the collection of sequences of random variables φ = (τi, αi)i≥1 on (Ω,FmT ) with values in
R+×A such that (τi)i≥1 is a non-decreasing sequence of Fm-stopping times satisfying τj > T
Pm − a.s. for j > N . We set

Φ◦,m :=
⋃
N≥1

Φ◦,mN .
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An element φ = (τi, αi)1≤i≤N ∈ Φ◦,m will be our impulse control and we write αi in the form

αi = (`i, βi) with `i ∈ [0, T ] and βi ∈ Rd Pm − a.s.

More precisely, the τi’s will be the times at which an impulse is made on the system (e.g. a
trading robot is launched), βi will model the nature of the order send at time τi (e.g. the
parameters used for the trading robot), and `i will stand for the maximal time length during
which no new intervention on the system can be made (e.g. the time prescribed to the robot
to send orders on the market). Later on we shall impose more precise non-anticipativity
conditions.

From now on, we shall always use the notation (τφi , α
φ
i )i≥1 with αφi = (`φi , β

φ
i ) to refer to a

control φ ∈ Φ◦,m.

We allow for not observing nor being able to act on the system before a random time ϑφi
defined by

ϑφi := $(τφi , X
φ

τφi −
, αφi , υ, εi),

where Xφ is the controlled state process that will be described below, and

$ : R+ × Rd ×A× U× E→ [0, T ] is measurable, such that $(t, ·) ≥ t for all t ≥ 0. (2.1)

In the case where the actions consist in launching a trading robot at τφi during a certain time
`φi , we can naturally take ϑφi = τφi + `φi . If the action consists in placing a limit order during
a maximal duration `φi , ϑ

φ
i is the time at which the limit order is executed if it is less than

τφi + `φi , and τ
φ
i + `φi otherwise.

We say that φ ∈ Φ◦,m belongs to Φm if

ϑφi ≤ τφi+1 and τφi < τφi+1 Pm-a.s. for all i ≥ 1,

and define

N φ :=
[
∪i≥1[τφi , ϑ

φ
i )
]c
. (2.2)

We are now in position to describe our controlled state process. Given some initial data
z := (t, x) ∈ Z := [0, T ] × Rd, and φ ∈ Φm, we let Xz,φ be the unique strong solution on
[t, 2T ] of

X = x+

(∫ ·
t

1Nφ(s)µ (s,Xs) ds+

∫ ·
t

1Nφ(s)σ (s,Xs) dWs

)
+
∑
i≥1

1{t≤ϑφi ≤·}
[F (τφi , Xτφi −

, αφi , υ, εi)−Xτφi −
]. (2.3)

In the above, the function

(µ, σ, F ) : R+ × Rd ×A× U× E 7→ Rd ×Md × Rd is measurable.
The map (µ, σ) is continuous, and Lipschitz with linear growth

in its second argument, uniformly in the first one.
(2.4)
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In the above, Md stands for the set of d × d matrices. This dynamics means the following.
When no action is currently made on the system, i.e. on the intervals in N φ, the system
evolves according to a stochastic differential equation driven by the Brownian motion W :

dXs = µ (s,Xs) ds+ σ (s,Xs) dWs on N φ.

When an impulse is made at τφi , we freeze the dynamics up to the end of the action at time
ϑφi . This amounts to saying that we do not observe the current evolution up to ϑφi . At the
end of the action, the state process takes a new value

Xϑφi
= F (τφi , Xτφi −

, αφi , υ, εi), i ≥ 1.

The fact that F depends on the unknown parameter υ and the additional noise εi models the
fact the correct model is not known with certainty, and that the exact value of the unknown
parameter υ can (possibly) not be measured precisely just by observing (ϑφi −τ

φ
i , Xϑφi

−Xτφi −
).

In order to simplify the notations, we shall now write:

Zz,φ := (·, Xz,φ) and Zz,◦ := (·, Xz,◦) (2.5)

in which Xz,◦ denotes the solution of (2.3) for φ such that τφ1 > T and satisfying Xz,◦
t = x.

This corresponds to the stochastic differential equation (2.3) in the absence of impulse. Note
in particular that

Zz,φ

ϑφ1
= z′(Zz,◦

τφ1 −
, αφ1 , υ, ε1) on {τφ1 ≥ t}, (2.6)

in which

z′ := ($,F ). (2.7)

From now on, we denote by Fz,m,φ = (F z,m,φs )t≤s≤2T the Pm-augmentation of the filtration
generated by (Xz,φ,

∑
i≥1 1[ϑφi ,∞)) on [t, 2T ]. We say that φ ∈ Φm belongs to Φz,m if (τφi )i≥1

is a sequence of Fz,m,φ-stopping times and αφi is F z,m,φ
τφi

-measurable, for each i ≥ 1. Hereafter
an admissible control will be an element of Φz,m.

2.2 Bayesian updates

Obviously, the prior m will evolve with time, as the value of the unknown parameter is
partially revealed through the observation of the impacts of the actions on the system: at
time t, one has observed {z′(Zz,φ

τφi −
, αφi , υ, εi) : i ≥ 1, ϑφi ≤ t}.

It should therefore be considered as a state variable, in any case, as his dynamics will naturally
appear in any dynamic programming principle related to the optimal control of Xz,φ, see
Proposition 5.2 below.
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Moreover, its evolution can be of interest in itself. One can for instance be interested by the
precision of our (updated) prior at the end of the control period, as it can serve as a new
prior for another control problem.

In this section, we describe how it is updated with time, according to the usual Bayesian
procedure.
Given z = (t, x) ∈ Z, u ∈ U and a ∈ A, we assume that the law of z′[z, a, u, ε1], recall (2.7),
is given by

q(·|z, a, u)dQ(·|z, a),

in which q(·|·) is a Borel measurable map and Q(·|z, a) is a dominating measure on Z for
each (z, a) ∈ Z×A.
For z = (t, x) ∈ Z, m ∈M and φ ∈ Φz,m, let M z,m,φ be the process defined by

M z,m,φ
s [C] := Pm[υ ∈ C|F z,m,φs ], C ∈ B(U), s ≥ t. (2.8)

As no new information is revealed in between the end of an action and the start of the next
one, the prior should remain constant on these time intervals:

M z,m,φ = M z,m,φ

ϑφi
on [ϑφi , τ

φ
i+1) , i ≥ 0, (2.9)

with the conventions ϑφ0 = 0 and M z,m,φ
0 = m. But, M z,m,φ should jump from each τi to each

ϑφi , i ≥ 1, according to the Bayes rule:

M z,m,φ

ϑφi
= M(M z,m,φ

τφi −
;Zz,φ

ϑφi
, Zz,φ

τφi −
, αφi ), i ≥ 1, (2.10)

in which

M(mo; z
′
o, zo, ao)[C] :=

∫
C

q(z′o|zo, ao, u)dmo(u)∫
U

q(z′o|zo, ao, u)dmo(u)
, (2.11)

for almost all (zo, z
′
o, ao,mo) ∈ Z2 ×A×M and C ∈ B(U).

Note that we did not explicit M z,m,φ on each [τi, ϑi) since the controller must wait the time
ϑi before being able to make another action. A partial information on υ through ϑi is known
as a right-censored observation of ϑi is revealed through the interval [τi, ϑi).
In order to ensure that M z,m,φ remains in M whenever m ∈M, we assume that

M(M; ·) ⊂M.

We formalize this in the next proposition.

Proposition 2.1. For all z = (t, x) ∈ Z, m ∈ M and φ ∈ Φz,m, the process M z,m,φ is M
valued and follows the dynamics (2.9)-(2.10) on [t, 2T ].
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Proof. We fix i ≥ 0. Let C be a Borel set of U and ϕ be a Borel bounded function on the
Skorohod space Dd+1 of càdlàg1 functions with values in Rd+1. Set ξφ :=

∑
i≥1 1[ϑφi ,∞) and

set δX i := Xz,φ

·∨ϑφi
−Xz,φ

ϑφi
. One can find a Borel measurable map ϕ̄ on D2d+1 such that

ϕ(Xz,φ
·∧s , ξ

φ
·∧s)1{ϑφi ≤s<τ

φ
i+1}

= ϕ̄(Xz,φ

·∧ϑφi
, δX i

·∧s, ξ
φ

·∧ϑφi
)1{ϑφi ≤s<τ

φ
i+1}

.

Then, the independence of υ with respect to σ(W·∨ϑφi
−Wϑφi

) given F z,m,φ
ϑφi

, and the fact that

τφi+1 is measurable with respect to the sigma-algebra generated by σ(W·∨ϑφi
−Wϑφi

) and F z,m,φ
ϑφi

imply that, for s ≥ 0,

Em
[
1{υ∈C}ϕ(Xz,φ

·∧s , ξ
φ
·∧s)1{ϑφi ≤s<τ

φ
i+1}

]
= Em

[
1{υ∈C}ϕ̄(Xz,φ

·∧ϑφi
, δX i

·∧s, ξ
φ

·∧ϑφi
)1{ϑφi ≤s<τ

φ
i+1}

]
= Em

[
M z,m,φ

ϑφi
[C]ϕ̄(Xz,φ

·∧ϑφi
, δX i

·∧s, ξ
φ

·∧ϑφi
)1{ϑφi ≤s<τ

φ
i+1}

]
= Em

[
M z,m,φ

ϑφi
[C]ϕ(Xz,φ

·∧s , ξ
φ
·∧s)1{ϑφi ≤s<τ

φ
i+1}

]
.

This shows that M z,m,φ
s [C]1{ϑφi ≤s<τ

φ
i+1}

= M z,m,φ

ϑφi
[C]1{ϑφi ≤s<τ

φ
i+1}

Pm − a.s.

It remains to compute M z,m,φ

ϑφi
. Note that (2.3) implies that (Xz,φ

τφi −
, ξφ

τφi −
) = (Xz,φ

ϑφi −
, ξφ

ϑφi −
).

Let ϕ be as above, and let ϕ̄ be a Borel measurable map on Dd+1 × R+ × Rd such that

ϕ(Xz,φ

·∧ϑφi
, ξφ
·∧ϑφi

) = ϕ̄(Xz,φ

·∧τφi −
, ξφ
·∧τφi −

, ϑφi , X
z,φ

ϑφi
)

= ϕ̄(Xz,φ

·∧τφi −
, ξφ
·∧τφi −

, z′[τφi , X
z,φ

τφi −
, αφi , υ, εi]).

Then, since εi is independent of F z,m,φ
τφi

and has the same law as ε1,

Em
[
1{υ∈C}ϕ(Xz,φ

·∧ϑφi
, ξφ
·∧ϑφi

)
]

= Em
[
1{υ∈C}ϕ̄(Xz,φ

·∧τφi −
, ξφ
·∧τφi −

, z′[τφi , X
z,φ

τφi −
, αφi , υ, εi])

]
= Em

[∫
1{υ∈C}ϕ̄(Xz,φ

·∧τφi −
, ξφ
·∧τφi −

, z′)q(z′|Zz,φ

τφi −
, αφi , υ)dQ(z′|Zz,φ

τφi −
, αφi ))

]
= Em

[∫
ϕ̄(Xz,φ

·∧τφi −
, ξφ
·∧τφi −

, z′)

(∫
C

q(z′|Zz,φ

τφi −
, αφi , u)dM z,m,φ

τφi −
(u)

)
dQ(z′|Zz,φ

τφi −
, αφi ))

]
.

Let us now introduce the notation

Mi[C](z′) := M(M z,m,φ

τφi −
; z′, Zz,φ

τφi −
, αφi ).

1continue à droite et limitée à gauche (right continuous with left limits)
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Then,

Em
[
1{υ∈C}ϕ(Xz,φ

·∧ϑφi
, ξφ
·∧ϑφi

)
]

= Em
[∫

ϕ̄(Xz,φ

·∧τφi −
, ξφ
·∧τφi −

, z′)Mi[C](z′)q(z′|Zz,φ

τφi −
, αφi , υ)dQ(z′|Zz,φ

τφi −
, αφi ))

]
= Em

[
ϕ(Xz,φ

·∧ϑφi
, ξφ
·∧ϑφi

)Mi[C](Zz,φ

ϑφi
)
]
.

This concludes the proof. �

Remark 2.1. Note from (2.11) that M z,m,φ remains absolutely continuous with respect to m
over time.

Remark 2.2. For later use, note that the above provides the joint conditional distribution
of (Zz,φ

ϑφi
,M z,m,φ

ϑφi
) given F z,m,φτi

. Namely, for Borel sets B ∈ B([t, T ],Rd) and D ∈ B(M), a
simple application of Fubini’s Lemma implies that

P[(Zz,φ

ϑφi
,M z,m,φ

ϑφi
) ∈ B ×D|F z,m,φ

τφi −
] = k(B ×D|Zz,φ

τφi −
,M z,mφ

τφi −
, αφi ) (2.12)

in which

k(B ×D|zo,mo, ao) :=

∫
U

∫
B

1D(M(mo; z
′, zo, ao))q(z′|zo, ao, u)dQ(z′|z, a)dmo(u), (2.13)

for (zo,mo, ao) ∈ Z×M×A.

2.3 Gain function

Given z = (t, x) ∈ Z and m ∈M, the aim of the controller is to maximize the expected value
of the gain functional

φ ∈ Φz,m 7→ Gz,m(φ) := g(Zz,φ
T[φ],M

z,m,φ
T[φ] , υ, ε0),

in which T[φ] is the end of the last action after T :

T[φ] := sup{ϑφi : i ≥ 1, τφi ≤ T} ∨ T.

As suggested earlier, the gain may not only depend on the value of the original time-space
state process Zz,φ

T[φ] but also on M z,m,φ
T[φ] , to model the fact that we are also interested by the

precision of the estimation made on υ at the final time. One also allows for terminating the
last action after T . However, since g can depend on T[φ] through Zz,φ

T[φ], one can penalize the
actions that actually terminates strictly after T .

Hereafter, the function g is assumed to be measurable and bounded2 on Z×M× U× E.
2Boundedness is just for sake of simplicity. Much more general frameworks could easily be considered.
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Given φ ∈ Φz,m, the expected gain is

J(z,m;φ) := Em [Gz,m(φ)] ,

and

v(z,m) := sup
φ∈Φz,m

J(z,m;φ)1{t≤T} + 1{t>T}Em [g(z,m, υ, ε0)] (2.14)

is the corresponding value function. Note that v depends on m through the set of admissible
controls Φz,m and the expectation operator Em, even if g does not depend on M z,m,φ

T[φ] .

3 Value function characterization and numerical approx-
imation

3.1 The dynamic programming quasi-variational equation

The aim of this section is to provide a characterization of the value function v. As usual,
it should be related to a dynamic programming principle. In our setting, it should read as
follows: Given z = (t, x) ∈ Z and m ∈M, then

v(z,m) = sup
φ∈Φz,m

Em[v(Zz,φ
θφ
,M z,m,φ

θφ
)], (3.1)

for all collection (θφ, φ ∈ Φz,m) of Fz,m,φ-stopping times with values in [t, 2T ] such that

θφ ∈ N φ ∩ [t,T[φ]] Pm − a.s. ,

recall the definition of N φ in (2.2).
Let us comment this. First, one should restrict to stopping times such that θφ ∈ N φ. The
reason is that no new impulse can be made outside of N φ, each interval [τφi , ϑ

φ
i ) is a latency

period. Second, the terminal gain is evaluated at T[φ], which in general is different from T .
Hence, the fact that θφ is only bounded by T[φ].
A partial version of (3.1) will be proved in Proposition 5.2 below and will be used to provide
a sub-solution property. As already mentioned in the introduction, we are not able to prove
a full version (3.1). The reason is that the value function v depends on z = (t, x) ∈ Z and
m ∈ M through the set of admissible controls Φz,m, and more precisely through the choice
of the filtration Fz,m,φ, which even depends on φ itself. This makes this dependence highly
singular and we are neither in position to play with any a-priori smoothness, see e.g. [5], nor
to apply a measurable selection theorem, see e.g. [16].

We continue our discussion, assuming that (3.1) holds and that v is sufficiently smooth.
Then, it should in particular satisfy

v(z,m) ≥ Em[v(Zz,◦
t+h,m)]
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whenever z = (t, x) ∈ [0, T ) × Rd and 0 < h ≤ T − t (Zz,◦ is defined after (2.5)). This
corresponds to the sub-optimality of the control consisting in making no impulse on [t, t+h].
Applying Itô’s lemma, dividing by h and letting h go to 0, we obtain

−Lv(z,m) ≥ 0

in which L is the Dynkin operator associated to Xz,◦,

Lϕ := ∂tϕ+ 〈µ,Dϕ〉+
1

2
Tr[σσ>D2ϕ].

On the other hand, it follows from (3.1) and Remark 2.2 that

v(z,m) ≥ sup
a∈A

Em[v(z′[z, a, υ, ε1],M(m; z′[z, a, υ, ε1], z, a))] = Kv(z,m)

where

Kϕ := sup
a∈A
Kaϕ with Kaϕ :=

∫
ϕ(z′,m′)dk(z′,m′|·, a) for a ∈ A. (3.2)

As for the time-T boundary condition, the same reasoning as above implies

v(T, ·) ≥ KTg and v(T, ·) ≥ Kv(T, ·),

in which

KTg(·,m) =

∫
U

∫
E

g(·,m, u, e)dPε(e)dm(u). (3.3)

By optimality, v should therefore solve the quasi-variational equations

min {−Lϕ , ϕ−Kϕ} = 0 on [0, T )× Rd ×M (3.4)
min {ϕ−KTg, ϕ−Kϕ} = 0 on {T} × Rd ×M, (3.5)

in the sense of the following definition (given for sake of clarity).

Definition 3.1. We say that a lower-semicontinuous function U on R+×Rd×M is a viscosity
super-solution of (3.4)-(3.5) if for any z◦ = (t◦, x◦) ∈ Z, m◦ ∈ M, and ϕ ∈ C1,2,0([0, T ] ×
Rd ×M) such that minZ×M(U − ϕ) = (U − ϕ)(z◦,m◦) = 0 we have[

min {−Lϕ , ϕ−KU}1{t◦<T} + min {ϕ−KTg, ϕ−KU}1{t◦=T}
]

(z◦,m◦) ≥ 0.

We say that a upper-semicontinuous function U on R+ × Rd ×M is a viscosity sub-solution
of (3.4)-(3.5) if for any z◦ = (t◦, x◦) ∈ Z, m◦ ∈M and ϕ ∈ C1,2,0([0, T ]×Rd×M) such that
maxZ×M(U − ϕ) = (U − ϕ)(z◦,m◦) = 0 we have[

min {−Lϕ , ϕ−KU}1{t◦<T} + min {ϕ−KTg, ϕ−KU}1{t◦=T}
]

(z◦,m◦) ≤ 0.

We say that a continuous function U on R+×Rd×M is a viscosity solution of (3.4)-(3.5) if
it is a super- and a sub-solution.

10



To ensure that the above operator is continuous, we assume from now on that, on R+×Rd×M,

KTg is continuous, and Kϕ is upper- (resp. lower-) semicontinuous,
for all upper- (resp. lower-) semicontinuous bounded function ϕ. (3.6)

A sufficient condition for (3.6) to hold is that k defined in (2.13) is a continuous stochastic
kernel, see [16, Proposition 7.31 and 7.32 page 148].
Finally, we assume that comparison holds for (3.4)-(3.5).

Assumption 3.1. Let U (resp. V ) be a upper- (resp. lower-) semicontinuous bounded viscos-
ity sub- (resp. super-) solution of (3.4)-(3.5). Assume further that U ≤ V on (T,∞)×Rd×M.
Then, U ≤ V on Z×M.

See Proposition 3.1 below for a sufficient condition. We are now in position to state the main
result of this paper.

Theorem 3.1. Let Assumption 3.1 hold. Then, v is continuous on Z×M and is the unique
bounded viscosity solution of (3.4)-(3.5).

The proof is postponed to Section 5.

Proposition 3.1. A sufficient condition for Assumption 3.1 to hold is: There exists a con-
tinuous function Ψ on [0, 2T ]× Rd ×M satisfying:

(i) Ψ(.,m) ∈ C1,2([0, T )× Rd), for all m ∈M.

(ii) %Ψ ≥ LΨ on [0, T ]× Rd ×M for some constant % > 0,

(iii) Ψ−KΨ ≥ δ on [0, T ]× Rd ×M for some δ > 0,

(iv) Ψ ≥ KT [g̃] on [T,∞)× Rd ×M with g̃(t, .) := e%tg(t, .) and % is defined in (ii),

(v) Ψ− is bounded.

The idea of the proof is the same as in [4, Proposition 4.12]. Note that their condition H2
(v) is not required here because we only consider bounded sub and super-solutions and we
take a different approach. To avoid it, we slighlty reinforce the hypothesis H2 (iii) and asked
for Ψ− to be bounded.
The proof is postponed to Section 6.

3.2 An example of numerical scheme

When the comparison result of Assumption 3.1 holds, one can easily derive a convergent
finite different scheme for (3.4)-(3.5).

We consider here a simple explicit scheme based on [6, 7]. We let h0 be a time-discretization
step so that T/h0 is an integer, and set Th0 := {th0j := jh0, j ≤ T/h0}. The space Rd
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is discretized with a space step h1 on a rectangle [−c, c]d, containing Nx
h1

points on each
direction. The corresponding finite set is denoted by Xh1

c .
The first order derivatives ∂tϕ and (∂ϕ/∂xi)i≤d are approximated by using the standard
up-wind approximations:

∆h0
t ϕ(t, x,m) := h−1

0 (ϕ(t+ h0, x,m)− ϕ(t, x,m))

∆h0
h1,i
ϕ(t, x,m) :=

{
h−1

1 (ϕ(t+ h0, x+ eih1,m)− ϕ(t, x,m)) if µi(x) ≥ 0
h−1

1 (ϕ(t, x,m)− ϕ(t+ h0, x− eih1,m)) if µi(x) < 0,

in which ei is i-th unit vector of Rd.
As for the second order term, we use the fact that each point x ∈ Rd can be approximated
as a weighted combination

x =
∑

x′∈Ch1 (x)

x′ω(x′|x)

of the points x′ lying on the corners Ch1(x) of the cube formed by the partition of Rd it belongs
too. Then, given another small parameter h2 > 0, we approximate Tr[σ(x)σ(x)>D2ϕ(t, x,m)]
by Th2

h0,h1
[ϕ](t, x,m) defined as

(h2d)−1

d∑
i=1

[ϕ]h1(t+ h0, x+
√
h2σ

i(x),m) + [ϕ]h1(t+ h0, x−
√
h2σ

i(x),m)

− 2h−1
2 ϕ(t, x,m)

in which σi is the i-th column of σ and

[ϕ]h1(t, x,m) :=
∑

x′∈Ch1 (x)

ω(x′|x)ϕ(t, x′,m)

is a piecewise linear approximation of ϕ. In the case where only the first row σ1· of σ is not
identically equal to 0, one can use the usual simpler approximation

(h1)−1‖σ1·‖2
(
ϕ(t+ h0, x+

√
h1e1,m) + ϕ(t+ h0, x−

√
h1e1,m)

)
− 2(h1)−1‖σ1·‖2ϕ(t, x,m).

Similarly, we approximate Kϕ by

Kh0,h1ϕ(t, x,m) := sup
a∈A

∫
[ϕ]h1(max(t+ h0, t

′), x′,m′)dk(t′, x′,m′|t, x,m, a).

Letting h := (h0, h1, h2), and setting

Lhϕ := ∆h0
t ϕ+

∑
i≤d

µi∆h0
h1,i
ϕ+

1

2
Th2
h0,h1

[ϕ], (3.7)

12



our numerical scheme consists in solving

min
{
−Lhϕ , ϕ−Kh1ϕ

}
= 0 on (Th0 \ {T})× (Xh1

c \ ∂Xh1
c )×M, (3.8)

min{ϕ−KTg , ϕ−Kh1ϕ} = 0 on {T} × (Xh1
c \ ∂Xh1

c )×M, (3.9)
ϕ−KTg := 0 on ([0, T ]× ∂Xh1

c ×M) ∪ ((T, 2T ]× Rd ×M). (3.10)

We specify here a precise boundary condition on ∂Xh1
c but any other (bounded) boundary

condition could be used.
This scheme is always convergent as (h2, h1/h2, h0/h1)→ 0 and c→∞. The proof requires
the following additional lemma.

Lemma 3.1. If (un)n≥1 is a bounded sequence of functions on Z ×M and (zn,mn)n≥1 is a
sequence in Z×M that converges to (z◦,m◦), then

lim inf
n→∞

(h0, h1)→ (0, 0)

Kh0,h1un(zn,mn) ≥ Ku◦(z◦,m◦) ,where u◦ := lim inf
n→∞

(z′,m′)→ ·

un(z′,m′),

and

lim sup
n→∞

(h0, h1)→ (0, 0)

Kh0,h1un(zn,mn) ≤ Ku◦(z◦,m◦) ,where u◦ := lim sup
n→∞

(z′,m′)→ ·

un(z′,m′).

Proof. We first rewrite

Kh0,h1un(zn,mn) = sup
a∈A

∫
un,h(z

′,m′)dk(z′,m′|zn,mn, a) (3.11)

where un,h(z′,m′) := [un]h1(max(tn + h0, t
′), x′,m′). Let ūn◦,h◦ be the lower-semicontinuous

envelope of infn≥n◦,h≤h◦ un,h. From (3.11), we get, for n ≥ n◦ and h ≤ h◦,

Kun,h(zn,mn) ≥ Kūn◦,h◦(zn,mn),

and, by (3.6), passing to the limit inf as (n, h)→ (+∞, 0) leads to

lim inf
(n,h)→(+∞,0)

Kun,h(zn,mn) ≥ Kūn◦,h◦(z◦,m◦).

Moreover, ūn◦,h◦ ↑ u◦ point-wise. The required result is then obtained by monotone conver-
gence.

Proposition 3.2. Let vh denote the solution of (3.8)-(3.9)-(3.10). If Assumptions 3.1 holds,
then vh → v as (h2, h1/h2, h0/h1)→ 0.

Proof. Using Lemma 3.1, one easily checks that our scheme satisfies the conditions of [3,
Theorem 2.1.]. In particular, |vh| ≤ sup |g| < ∞. Then, the convergence holds by the same
arguments as in [3, Theorem 2.1.], it suffices to replace their assertion (2.7) by Lemma 3.2
stated below. �
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Remark 3.1. We did not discuss in the above the problem of the discrete approximation of
M. Applications will typically be based on a parameterized family M = {mθ, θ ∈ Θ}, for a
subset Θ of a finite dimensional space. We can then further approximate Θ by a sequence of
finite sets to build up a numerical scheme.

We conclude this section with the technical lemma that was used in the above proof.

Lemma 3.2. Let (un)n≥1 be a sequence of lower semi-continuous maps on Z×M and define
u◦ := lim inf(z′,m′,n)→(·,∞) un(z′,m′) on Z ×M. Assume that u◦ is locally bounded. Let ϕ be
a continuous map and assume that (z◦,m◦) is a strict minimal point of u◦ − ϕ on Z ×M.
Then, one can find a bounded open set B of [0, T ] × Rd and a sequence (zk,mk, nk)n≥1 ⊂
B ×M × N such that nk → ∞, (zk,mk) is a minimum point of unk − ϕ on B ×M and
(zk,mk, unk(zk,mk))→ (zo,m◦, u◦(zo,mo)).

Proof. Since M is assumed to be locally compact, it suffices to repeat the arguments in the
proof of [2, p80, Proof of Lemma 6.1]. �

4 Applications to optimal trading
This section is devoted to the study of two examples of application. Each of them corresponds
to an idealized model, the aim here is not to come up with a good model but rather to show
the flexibility of our approach, and to illustrate numerically the behavior of our backward
algorithm.

4.1 Immediate impact of aggressive orders with dynamic resilience

We consider first a model in which the impact of each single order sent to the market is taken
into account. It means that αi represents the number of shares bought exactly at time τi, so
that `i = 0, for each i. This corresponds to A = {0} ×B in which B ⊂ R+ is a compact set
of values of admissible orders. Therefore, one can identify A to B in the following, and we
will only write b for a = (0, b) ∈ A and βi for αi = (`i, βi).
Our model can be viewed as a scheduling model or as a model for illiquid market. The first
component of X represents the stock price. We consider a simple linear impact: when a
trade of size βi occurs at τi, the stock price jumps by

X1
ϑi

= X1
τi− + βi(υ + εi)/2

in which υ ∈ R is the unknown linear impact parameter, (εi)i≥1 is a sequence of independent
noises following a centered Gaussian distribution with standard deviation σε. The coefficient
1/2 in the dynamics of X1 stands for a 50% proportion of immediate resilience.
It evolves according to a Brownian diffusion between two trades and has a residual resilience
effect:

dX1
t = σdW 1

t + dX4
t and dX4

t = −ρX4
t dt, (4.1)
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where σ, ρ > 0 and X1
0 ∈ R are constants. The process X4 represents the drift of X1 due to

the non immediate resilience and X4
0 = 0. When a trade occurs, it jumps according to

X4
ϑi

= X4
τi− + βi(υ + εi)/2.

We call it spread hereafter. This is part of the deviation from the un-impacted dynamic.
The third component, which describes the total cost, evolves as

X2
ϑi

= X2
τi− +X1

τi−βi + (υ + εi)
β2
i

2
.

Finally, the last component is used to keep track of the cumulative number of shares bought:

X3
ϑi

= X3
τi− + βi.

We are interest in the cost of buying N shares, and maximize the criteria

−Em[eηL(XT ,υ) ∧ C]

where η > 0 is a risk aversion parameter, C > 0, and

L(XT , υ) := X2
T +X1

T (N −X3
T ) + (υ + ε0)

(N −X3
T )2

2

represents the total cost after setting the total number of shares bought to N at T .
If the prior law m on υ is a Gaussian distribution, then q(·|t, x, b, u) is a Gaussian density
with respect to

dQ(x′|t, x, b) = dx1′dδx2+bx1′ (x
2′)dδx3+b(x

3′)dδx4+(x1′−x1)(x
4′)

and the transition map

M(m; t′, x′, t, x, b)[C] =

∫
C

q(x′|t, x, b, u)dm(u)∫
R q(x′|t, x, b, u)dm(u)

,

maps Gaussian distributions into Gaussian distributions, which, in practice, enables us to
restrict M to the set of Gaussian distributions. More precisely, if (mυ(τi−), συ(τi−)) are the
mean and the standard deviation of Mτi−, then the values corresponding to the posterior
distribution Mϑi are

συ(ϑi) = 1{συ(τi−)6=0}

(
1

συ(τi−)2
+

1

σ2
ε

)− 1
2

,

mυ(ϑi) = mυ(τi−)1{συ(τi−)=0} +

(
X1
ϑi
−X1

τi−

σ2
ε

+
mυ(τi−)

συ(τi−)2

)
1{συ(τi−)6=0}.

Comparing to the general result of the previous section, we add a boundary condition
v(t, x1, x2, N, x4) = 1 and restrict the domain of X3 to be {0, . . . , N}. Since this param-
eter x3 is discrete this does not change the nature of our general results.
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Note also that the map Ψ(t, x,m) = N − x3 defined on [0, T ] × R2 × {0, . . . , N} × R ×M
actually satisfies the conditions of Proposition 3.1.

We now discuss a numerical illustration. We consider 30 seconds of trading and N = 25
shares to buy. We take η = 1, x0 = 100 and σ = 0.4x0 which corresponds to a volatility of
40% in annual terms. The trading period is divided into intervals of 1 second-length. The
size of an order βi ranges in {1, 2, 3, 4, 5}. We take σε = 10−4 and ρ such that the spread
X4 is divided by 3 every second if no new order is sent. We start with a prior given by
a Gaussian distribution with mean mυ(0) and standard deviation σv(0). Finally, we take
C = 10200 which makes this threshold parameter essentially inefficient while still ensuring
that the terminal condition is bounded.
In Figure 1, we plot the optimal strategy for συ(0) = 5.10−4 and mv(0) = 5.10−2 in terms of
(X2, X3). Clearly, the level of spread X4 has a significant impact: when it is large, it is better
to wait for it to decrease before sending a new order. This can also be observed in Figure 2
which provides a simulated path corresponding to an initial prior (mv(0) = 2.10−2, συ(0) =
10−3): after 15 seconds the algorithm alternates between sending an order and doing nothing,
i.e. waiting for the spread to be reduced at the next time step. On the top right graph, we
can also observe that the low mean of the initial prior combined with a zero initial resilience
leads to sending an order of size 3 at first, then the mean of the prior is quickly adjusted to
a higher level and the algorithm slows down immediately.

4.2 Random execution times: application to strategies using limit-
orders

In this section, we consider a limit-order trading model. X1 now represents a mid-price (of
reference) and, between two trades, has the dynamic

dX1
t = σdW 1

t . (4.2)

An order is of the form (`, β) in which ` is the maximal time we are ready to wait before
being executed, while β is the price at which the limit order is sent3. For simplicity, each
order corresponds to buying one share.
We assume that the time θ it takes to be executed follows an exponential distribution of
parameter ρ(υ,X1

τ − β), given the information at time τ . One can send a new order only
after ϑ := τ + ` ∧ θ.
Hence, given a flow of orders φ = (τi, `i, βi)i≥1, the number X3 of shares bought evolves
according to

X3 = X3
ϑi

on [ϑi, τi+1)

X3
ϑi

= X3
τi− + 1{θi≤`i},

in which ϑi := τi+`i∧θi. Each θi follows an exponential distribution of parameter ρ(υ,X1
τi
−βi)

given F z,m,φτi− . As in the previous model, X3 is restricted to {0, . . . , N}. The total cost X2 of

3Dark pool strategies could be considered similarly, in this case, β would rather describe the choice of the
trading plateform
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Figure 1: Evolution of β in terms of (X3, X4) at time 0s (top), 15s (left) and 25s (right), for
(mυ, συ) = (5.10−2, 5.10−4).
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Figure 2: Evolution of β (top left), price before (circles) and after (triangles) the impact
(top right), mυ (bottom left), συ (bottom right), with time in second. The true value of υ is
5.10−2. x-axis: time in seconds.
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buying the shares has the dynamics

X2 = X2
ϑi

on [ϑi, τi+1)

X2
ϑi

= X2
τi− + βi1{θi≤`i}.

We want to maximize

−E
[
eX

2
T[φ]

+1.02(N−X3
T[φ]

)+ 5.102

2
(N−X3

T[φ]
)2 ∧ C

]
,

in which 1.02 is the best ask (kept constant) and 5.102 is an impact coefficient. This corre-
sponds to the cost of liquidating instantaneously the remaining shares (N − x3)+ at T . This
model is a version of [1], [12], [14], see also [13].

Direct computations show that the prior process M evolves according to

M = Mϑi on [ϑi, τi+1)

Mϑi = M1(Mτi−;Zϑi , Zτi−, αi)1{θi≤`i} + M2(Mτi−;Zϑi , Zτi−, αi)1{θi>`i}

in which

M1(m; t′, x′, t, x, l, b)[B] :=

∫
B
ρ(u, x1 − b)e−ρ(u,x1−b)t′dm(u)∫

R+ ρ(u, x1 − b)e−ρ(u,x1−b)t′dm(u)

and

M2(m; t′, x′, t, x, l, b)[B] :=

∫
B
e−ρ(u,x1−b)ldm(u)∫

R+ e−ρ(u,x1−b)ldm(u)

for all Borel set B.
In the case where M is the convex hull of a finite number of Dirac masses, then the weights
associated to M can be computed explicitly.

Here again, the map Ψ(t, x,m) = N − x3 satisfies the conditions of Proposition 3.1.

We now consider a numerical illustration. We take C = 10200. The time horizon is T = 15
minutes. To simplify, we fix the reference mid-price to be X1 ≡ 1 (i.e. σ = 0) and restrict to
` = 1, i.e. an order is sent each minute. We take N = 10. One can send limit buy orders in
the range B := {0.90, 0.92, 0.94, 0.96, 0.98}.
As for the intensity of the execution time, we use an exponential form as in [12]: ρ(u, x1−b) =
λ(u)e−20(0.98−b) in which λ(u) = − ln(1− u). This means that the probability to be executed
at the price 0.98 within one minute is u. Orders are sent each minute, but we use a finner
time grid in order to take into account that it can be executed before this maximal time-
length. The original prior is supported by two Dirac masses at u = 0.3 and u = 0.8. The
corresponding probabilities of being executed within one minute are plotted in Figure 3.
Our time step corresponds to 15 seconds, so that every 15 seconds the controller can launch
a new order if the previous one has been executed before the maximal 1 minute time-length.
In Figure 4, we plot the difference, in logarithms, between the value functions obtained
in the latter case and for a time step of 1 minute (in which case a new order cannot be
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Figure 3: Solid: u = 0.8. Dashed: u = 0.3

Figure 4

launched before one minute). Clearly, the possibility of launching new orders in advance is
an advantage.
In Figure 5, we plot the optimal policy at time t = 0 and t = 7.5 minutes. As expected, the
algorithm is more aggressive when the probability of having υ = 0.8 is higher.
In Figure 6, we plot a simulated path. The red and black lines and points correspond to the
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same realization of the random variables at hand, but for different values of the real value of
υ. Black corresponds to the most favorable case υ = 0.8, while red corresponds to υ = 0.8 for
the first 7.5 minutes and υ = 0.3 for the remaining time. The initial prior is P[υ = 0.8] = 9%.
Again, the algorithm adapts pretty well to this shock on the true parameter. We also see
that it is more aggressive when the prior probability of being in the favorable case is high.
The difference in total cost is not important because of the number of shares already bought
before the shock, only two shares remain to be bought at T in the less favorable case.
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Figure 5: Top: t = 0. Bottom: t = 7.5 minutes
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Figure 6: Black crosses and solid lines: υ = 0.8. Red circles and dashed lines: υ = 0.8 before
t = 7.5 minutes and υ = 0.3 after. x-axis= time in minutes.
.
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5 Proof of the viscosity solution characterization
This part is dedicated to the proof of the viscosity solution characterization of Theorem
3.1. We start with the sub-solution property, which is the more classical part. As for the
super-solution property, we shall later on introduce a discrete time version of the model that
will provide a natural lower bound. We will then show that the sequence of corresponding
value functions converges to a super-solution of our quasi-variational equation as the time
step goes to 0. By comparison, we will finally identify this (limit) lower bound to the original
value function, thus showing that the later is also a super-solution.

5.1 Sub-solution property

We start with the sub-solution property and show that it is satisfied by the upper-semicontinuous
enveloppe

v∗(z,m) := lim sup
(z′,m′)→(z,m)

v(z′,m′) , (z,m) ∈ R+ × Rd ×M,

recall (2.14).

Proposition 5.1. v∗ is a viscosity subsolution of (3.4)-(3.5).

The proof is rather standard. As usual, it is based on the partial dynamic programming
principle contained in Proposition 5.2 below, that can be established by adapting standard
lines of arguments, see e.g. [5]. For this part, the dependency of the filtration on the initial
data is not problematic as it only requires a conditioning argument. Before to state it, let us
make an observation.

Remark 5.1. Note that, given z = (t, x) ∈ Z, the process Xz,◦ defined in (2.5) is predictable
with respect to the P-augmentation of the raw filtration Ft,W generated by (W·∨t −Wt). By
[9, Lemma 7, Appendix I], it is indistinguishable from a Ft,W -predictable process. Using this
identification, Xz,◦

s (ω) = Xz,◦
s (ωt,s) for s ≥ t, with ωt,s := ωt∨·∧s − ωt. Similarly, τφ1 and αφ1

can be identified to Borel measurable maps on C([0, T ];Rd) that depends only on ωt,τ
φ
1 (ωt,T ) so

that (Zz,φ

ϑφ1
,M z,m,φ

ϑφ1
) can be seen as a Borel map on C([0, T ];Rd)×U×E, while (Zz,φ

τφ1 −
,M z,m,φ

τφ1 −
)

can be seen as a Borel map on C([0, T ];Rd) that only depends on ωt,τ
φ
1 (ωt,T ), recall (2.6), (2.9)

and (2.10). Iterating this argument, we also obtain that (Zz,φ
T[φ],M

z,m,φ
T[φ] ) is equal, up to Pm-null

sets, to a Borel map on C([0, T ];Rd)× U× EN , for some N ≥ 1 that depends on φ.

We use the notations introduced in (2.5), (3.2) and (3.3) in the following.

Proposition 5.2. Fix (z,m) ∈ Z×M, and let θ be the first exit time of Zz,◦ from an Borel
set B ⊂ Z containing (z,m). Then,

v(z,m) ≤ sup
φ∈Φz,m≥t

Em[f(Zz,◦
θ ,m)1{θ<τφ1 }

+Kα
φ
1 f(Zz,◦

τφ1 −
,m)]1{θ≥τφ1 }

] (5.1)
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in which z := (t, x), Φz,m
≥t := {φ ∈ Φz,m : τφ1 ≥ t} and

f(z′,m′) := v∗(z′,m′)1{t′<T} +KTg(z′,m′)1{t′≥T} (5.2)

for z′ = (t′, x′) ∈ A and m′ ∈M.

Proof. Let N ≥ 1 be such that τφi > T for i ≥ N . By right continuity of (Zz,φ,M z,m,φ) and
upper-semicontinuity of f and Kf on [0, T )×Rd×M, see (3.6), it suffices to prove the result
for the projections on the right of θ and τφ1 on a deterministic time grid. Then, it is enough to
consider the case where (θ, τφ1 ) ≡ (s, s′) ∈ [t, T ]2, by arguing as below and conditioning by the
values taken by (θ, τφ1 ) on the grid. In the following, we use regular conditional expectation
operators. We shall make use of Remark 5.1. In particular, we write φ(ω, u, (ei)i≤N) to
denote the Borel map (ω, u, (ei)i≤N) ∈ C([0, T ];Rd)×U×EN 7→ {(τφi , α

φ
i )(ωt,T , u, (ej)j≤i−1),

i ≤ N} associated to φ. If s < s′, we have Pm-a.s.

Em[Gz,m(φ)|F z,m,φs ](ω, u, (ei)i≥1) = Em[GZz,◦s (ωt,s),m(φωt,s)]

= Em[KTg(X
Zz,◦s (ωt,s),φωt,s
T ,M

Zz,◦s (ωt,s),m,φωt,s
T )]

in which KT is defined in (3.3) and

φωt,s : (ω′, u, (ei)i≤N) ∈ C([s, T ];Rd)× U× EN 7→ φ(ωt,s + ω′·∨s − ω′s, u, (ei)i≤N)

is an element of ΦZz,◦s (ωt,s),m,φωt,s . It follows that

Em[Gz,m(φ)|F z,m,φs ]1s<s′ ≤ f(Zz,◦
s ,m)1s<s′ Pm − a.s.

Similarly, if s ≥ s′, we have Pm-a.s.

Em[Gz,m(φ)|F z,m,φs′− ](ω, u, (ei)i≤N) = Em[Gξ(ωt,s
′
,υ,ε1,α

φ
1 (ωt,s

′
))(φωt,s′ )]

with

ξ(ωt,s
′
, υ, ε1, α

φ
1 (ωt,s

′
)) =

(
·,M(m; ·, Zz,◦

s′−(ωt,s
′
), αφ1 (ωt,s

′
))
)
◦ z′(Zz,◦

s′−(ωt,s
′
), αφ1 (ωt,s

′
), υ, ε1),

recall the notations in (2.7) and (2.11). Hence, Pm-a.s.,

Em[Gz,m(φ)|F z,m,φs′− ](ω, u, (ei)i≤N) ≤ Em[f(ξ(ωt,s
′
, υ, ε1, α

φ
1 (ωt,s

′
)))] = Kα

φ
1 (ωt,s

′
)f(Zz,◦

s′−(ωt,s
′
),m),

in which a ∈ A 7→ Ka is defined in (3.2). �

Proof of Proposition 5.1 As already mentioned, the proof is standard, we provide it for
completeness. Let ϕ be a (bounded) C1,2,0 function and fix (z◦,m◦) ∈ Z×M such that

0 = (v∗ − ϕ)(z◦,m◦) = max
Z×M

(v∗ − ϕ). (5.3)

We use the notation z◦ = (t◦, x◦) ∈ [0, T ]× Rd.
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Step 1. We first assume that t◦ < T . Let us suppose that

min {−Lϕ , ϕ−Kv∗} (z◦,m◦) > 0,

and work towards a contradiction to Proposition 5.2. Let dM be a metric compatible with
the weak topology and let ‖ · ‖Z be the Euclidean norm on Z. We define

ϕ̄(z′,m′) := ϕ(z′,m′) + ‖z′ − z◦‖4
Z + dM(m′,m◦).

If the above holds, then
min {−Lϕ̄ , ϕ̄−Kv∗} (z◦,m◦) > 0.

By our continuity assumption (3.6), we can find ι, η > 0, such that

min {−Lϕ̄ , ϕ̄−Kv∗} ≥ η on Bι, (5.4)

in which

Bι := {(z′,m′) ∈ Z×M : ‖z′ − z◦‖4
Z + dM(m′,m◦) < ι} ⊂ [0, T )× Rd ×M.

Note that, after possibly changing η > 0, we can assume that

(v∗ − ϕ̄) ≤ −η on (Bι)
c. (5.5)

In the following, we let (z,m) ∈ Bι be such that

|v(z,m)− ϕ̄(z,m)| ≤ η/2, (5.6)

recall (5.3). As above, we write z = (t, x) ∈ [0, T ]×Rd. Fix φ ∈ Φz,m. We write (τi, αi, ϑi)i≥1,
Z and M for (τφi , α

φ
i , ϑ

φ
i )i≥1, Zz,φ and M z,m,φ. Let θ be the first time when (Z,M) exits Bι.

Without loss of generality, one can assume that τ1 ≥ t. Define

χ := θ1{θ<τ1} + 1{θ≥τ1}ϑ1.

In view of (5.4), (5.5) and (5.6),

Em[v∗(Zχ,Mχ)] = Em[v∗(Zϑ1 ,Mϑ1)1{χ 6=θ} + v∗(Zθ,Mθ)1{χ=θ}]

≤ Em[Kv∗(Zτ1−,Mτ1−)1{χ 6=θ} + v∗(Zθ,Mθ)1{χ=θ}]

≤ Em[ϕ̄(Zθ∧τ1−,Mθ∧τ1−)]− η
≤ ϕ̄(z,m)− η
≤ v(z,m)− η/2.

Since χ < T , this contradicts Proposition 5.2 by arbitrariness of φ.
Step 2. We now consider the case t◦ = T . We assume that

min {ϕ−Kv∗ , ϕ−KTg} (z◦,m◦) > 0,
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and work toward a contradiction. Let us define

ϕ̄(t′, x′,m′) := ϕ̄(t′, x′,m′) + C(T − t′) + ‖(t′, x′)− z◦‖4
Z + dM(m′,m◦)

and note that, for C large enough,

min {−Lϕ̄ , ϕ̄−Kv∗ , ϕ̄−KTg} (z◦,m◦) > 0.

Then, as in Step 1, we can find ι, η > 0, such that

min {−Lϕ̄ , ϕ̄−Kv∗ , ϕ̄−KTg} ≥ η on Bι,

in which

Bι := {(t′, x′,m′) ∈ (T − ι, T ]×M : ‖x′ − x◦‖4
Rd + dM(m′,m◦) < ι}.

After possibly changing η > 0, one can assume that

(v∗ − ϕ̄) ≤ −η on (Bι)
c.

Let (t, x,m) ∈ Bι be such that

|v(t, x,m)− ϕ̄(t, x,m)| ≤ η/2.

One can assume that t < T . Otherwise, this would mean that

v∗(z◦,m◦) = lim sup
(T,x′,m′)→(z◦,m◦)

v(T, x′,m′) = lim sup
(T,x′,m′)→(z◦,m◦)

KT (T, x′,m′) = KTg(z◦,m◦),

recall (3.6), and there is nothing to prove.
Given φ ∈ Φz,m, with z := (t, x), let (τ1, ϑ1, Z = (·, X),M) be defined as in Step 1 with
respect to φ and (z,m), and consider

χ := θ1{θ<τ1} + 1{θ≥τ1}ϑ1,

where θ is the first exit time of (X,M) from {(x′,m′) ∈ Rd×M : ‖x′−x◦‖4
Rd +dM(m′,m◦) <

ι}. As in Step 1, the above implies that

Em[v∗(Zχ,Mχ)] ≤ v(z,m)− η/2,

which contradicts Proposition 5.2 by arbitrariness of φ. �

5.2 Discrete time approximation and dynamic programming

In this part, we prepare for the proof of the super-solution property. As already mentioned
above, we could not provide the opposite inequality in (5.1), with v∗ replaced by the lower-
semicontinuous envelope of v, because of the non-trivial dependence of Fz,m,φ with respect
to the initial data.
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Instead, we use the natural idea of approximating our continuous time control problem by a
sequence of discrete time counterparts defined on a sequence of time grids. In discrete time,
the dynamic programming principle can be proved along the lines of [16] for the corresponding
value functions (vn)n≥1. Passing to the limit as the time mesh vanishes provides a super-
solution v◦ of (3.4)-(3.5). As v∗ is a sub-solution of the same equation, Assumption 3.1 will
imply that v◦ ≥ v∗, while the opposite will hold by construction. Then, we will conclude
that v is a actually a super-solution, and is even continuous. This approach is similar to the
one used in [11] in the context of differential games.

We first construct the sequence of discrete time optimal control problems. For n ≥ 1, let
πn := {tnj , j ≤ 2n} with tnj := jT/2n, and let Φz,m

n be the set of controls φ = (τφi , α
φ
i )i≥1 in

Φz,m such that (τφi )i≥1 takes values in πn ∪ {t} ∪ [T,∞), if z = (t, x). The corresponding
value function is

vn(z,m) = sup
φ∈Φz,mn

J(z,m, φ), (z,m) ∈ Z×M.

We extend vn by setting

vn := KTg, on (T,∞)×M, (5.7)

Remark 5.2. Note that vn ≤ v ≤ v∗ by construction.

We first prove that vn satisfies a dynamic programming principle. This requires additional
notations. We first define the next time on the grid at which a new action can be made,
given that a is plaid:

sn,a[t, x] := min{s ∈ πn ∪ [T,∞) : s ≥ $(t, x, a, υ, εj) and s > t}.

Let ∂ denote a cemetery point that does not belong toA. Given a ∈ A∪{∂}, we make a slight
abuse of notation by denoting by (Z(t,x),a,M (t,x),m,a) the process defined as (Z(t,x),φ,M (t,x),m,φ)
for φ such that

(τφ1 , α
φ
1 ) =

{
(t, a) if a 6= ∂

(T + 1, a?) if a = ∂

in which a? ∈ A and τφi > T + 1 for i > 1. Then, we set

J̄(T, ·; a) := KTKag , v̄n(T, ·) := sup
a∈A∪{∂}

J̄(T, ·; a) on Rd ×M× (A ∪ {∂}),

with the convention that K∂ is the identity, and define by backward induction on the intervals
[tnj , T ), j = n− 1, · · · , 0,

J̄(z,m; a) := Em[v̄n(Zz,a
sn,a[z],M

z,m,a
sn,a[z])]

v̄n := sup
a∈A∪{∂}

J̄(·; a),

together with the extension

v̄n := KTg on (T,∞)× Rd ×M.
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Lemma 5.1. Fix ι > 0. Then, there exists a universally measurable map (z,m) ∈ Z×M 7→
ân,ι[z,m] ∈ A ∪ {∂} such that

J̄(·; ân,ι[·]) ≥ v̄n − ι, on Z×M.

Moreover, the map v̄n is upper semi-analitic.

Proof. Since KTg is assumed to be upper semi-analytic (indeed continuous), it follows from
[16, Proposition 7.48 page 180] that J̄ is upper semi-analytic on [tnn−1, T ]×Rd×M×(A∪{∂}).
Then, the required result holds on [tnn−2, T ]× Rd ×M by [16, Proposition 7.50 page 184]. It
is then extended to [0, T ]× Rd ×M by a backward induction. �

Proposition 5.3. v̄n = vn on Z×M. Moreover, given a random variable (ζ, µ) with values
in Z×M and ι > 0, there exists a measurable map (z,m) 7→ φι[z,m] such that

J(ζ, µ;φι[ζ, µ]) ≥ vn(ζ, µ)− ι Pm − a.s.

Proof. The proof proceeds by induction. Our claim follows from definitions on [tnn, T ] ×
Rd ×M. Assume that it holds on [tnj+1, T ]× Rd ×M for some j ≤ n− 1. For the following,
we fix z = (t, x) ∈ Z with t ∈ [tnj , t

n
j+1) and m ∈M.

Step 1: In this step, we first construct a suitable candidate to be an almost-optimal control.
Fix ε1, . . . , εn > 0, ε0 := 0, and set ε(i) := (ε0, ε1, . . . , εi). Let (ân,ι)ι>0 be as in Lemma 5.1,
and consider its extension defined by ân,ι = a? on (T,∞) × Rd ×M. Define rε(0)

1 := t and
φ
ε(1)
1 ∈ Φz,m

n by

(τ
φ
ε(1)
1

i , α
φ
ε(1)
1
i ) = (r

ε(0)
1 , ãn,ε1 [r

ε(0)
1 , x,m])1{i=1} + 1{i>1}(T + i, a?) , i ≥ 1.

where
ãn,ε1 [r

ε(0)
1 , x,m] := ân,ε1 [r

ε(0)
1 , x,m].

We then set

r
ε(1)
2 := minπn ∩ [ϑ

φ
ε(1)
1

1 , 2T ] ∩ (r
ε(0)
1 ,∞).

By Lemma 5.1 and [16, Lemma 7.27 page 173] applied to the pull-back measure of (Z
z,φ

ε(1)
1

r
ε(1)
2

,

M
z,m,φ

ε(1)
1

r
ε(1)
2

), we can find a Borel measurable map (t′, x′,m′) ∈ Z ×M 7→ ãn,ε22 [t′, x′,m′] ∈
A ∪ {∂} such that

ãn,ε2 [Z
z,φ

ε(1)
1

r
ε(1)
2

,M
z,m,φ

ε(1)
1

r
ε(1)
2

] = ân,ε2 [Z
z,φ

ε(1)
1

r
ε(1)
2

,M
z,m,φ

ε(1)
1

r
ε(1)
2

] Pm − a.s.

We define φε(2)
2 by

(τ
φ
ε(2)
2

i , α
φ
ε(2)
2
i ) = (r

ε(1)
2 , ãn,ε2 [Z

z,φ
ε(1)
1

r
ε(1)
2

,M
z,m,φ

ε(1)
1

r
ε(1)
2

])1{i=2,r
ε(1)
2 ≤T} + (τ

φ
ε(1)
1

i , α
φ
ε(1)
1
i )1{i 6=2}∪{rε(1)2 >T},
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for i ≥ 1. We then define recursively for k ≥ 2

r
ε(k)
k+1 := inf πn ∩ [ϑ

φ
ε(k)
k
k , 2T ] ∩ (r

ε(k−1)
k ,∞)

(τ
φ
ε(k+1)
k+1

i , α
φ
ε(k+1)
k+1

i ) =(r
ε(k)
k+1, ã

n,εk+1 [Z
z,φ

ε(k)
k

r
ε(k)
k+1

,M
z,m,φ

ε(k)
k

r
ε(k)
k+1

])1{i=k+1,r
ε(k)
k+1≤T}

+ (τ
φ
ε(k)
k

i , α
φ
ε(k)
k
i )1{i 6=k+1}∪{rε(k)k+1>T}

,

for i ≥ 1, in which (t′, x′,m′) ∈ Z ×M 7→ ã
n,εk+1

k+1 [t′, x′,m′] ∈ A ∪ {∂} is a Borel measurable
map such that

ãn,εk+1 [Z
z,φ

ε(k)
k

r
ε(k)
k+1

,M
z,m,φ

ε(k)
k

r
ε(k)
k+1

] = ân,εk+1 [Z
z,φ

ε(k)
k

r
ε(k)
k+1

,M
z,m,φ

ε(k)
k

r
ε(k)
k+1

] Pm − a.s.

We finally set
φε := (τ

φ
ε(i)
i

i , α
φ
ε(i)
i
i )i≥1 ∈ Φz,m

n .

Step 2: We now prove that v̄n(z,m) ≥ vn(z,m). By the above construction and Lemma 5.1,

v̄n(z,m) ≥ J̄(z,m;α
φ
ε(1)
1

1 ) ≥ v̄n(z,m)− ε1.

Since vn(tk, ·) = v̄n(tk, ·) for k > j by our induction hypothesis, we obtain

v̄n(z,m) ≥ sup
a∈A∪{∂}

Em[vn(Zz,a

r
ε(1)
2

,M z,m,a

r
ε(1)
2

)]− ε1

≥ vn(z,m)− ε1,

in which the last inequality follows from a simple conditioning argument as in the proof of
Proposition 5.2. By arbitrariness of ε1 > 0, this implies that v̄n(z,m) ≥ vn(z,m).
Step 3: It remains to prove that v̄n(z,m) ≤ vn(z,m). Define

Y
ε(i−1)
i := (Zz,φε

r
ε(i−1)
i

,M z,m,φε

r
ε(i−1)
i

), i ≥ 1,

with Y ε(−1)
0 := (z,m), and observe that Y ε(i−1)

i and F z,m,φ
ε

r
ε(i−1)
i

only depend on ε(i − 1). Then,
for each i ≥ 0,

v̄n(Y
ε(i−1)
i ) = lim

εi↓0
Em[v̄n(Z

Y
ε(i−1)
i ,φ

ε(i)
i

r
ε(i)
i+1

,M
Y
ε(i−1)
i ,φ

ε(i)
i

r
ε(i)
i+1

)|F z,m,φ
ε

r
ε(i−1)
i

]]

= lim
εi↓0

Em[1{rε(i)i+1≤T}
v̄n(Z

Y
ε(i−1)
i ,φ

ε(i)
i

r
ε(i)
i+1

,M
Y
ε(i−1)
i ,φ

ε(i)
i

r
ε(i)
i+1

)|F z,m,φ
ε

r
ε(i−1)
i

]

+ lim
εi↓0

Em[1{rε(i)i+1>T}
g(Z

Y
ε(i−1)
i ,φ

ε(i)
i

r
ε(i)
i+1

,M
Y
ε(i−1)
i ,φ

ε(i)
i

r
ε(i)
i+1

, υ, ε0)|F z,m,φ
ε

r
ε(i−1)
i

] Pm − a.s.
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on {rε(i−1)
i ≤ T}. Since g is bounded, so is v̄n. The above combined with the dominated

convergence theorem then implies

v̄n(z,m) = lim
ε1↓0
· · · lim

εn↓0
Em[

n∑
i=0

1{rε(i)i+1>T≥r
ε(i−1)
i }g(Z

Y
ε(i−1)
i ,φ

ε(i)
i

r
ε(i)
i+1

,M
Y
ε(i−1)
i ,φ

ε(i)
i

r
ε(i)
i+1

, υ, ε0)]

= lim
ε1↓0
· · · lim

εn↓0
J(z,m;φε)

≤ vn(z,m),

which concludes the proof that v̄n = vn.
Step 4. The second assertion of the proposition is obtained by observing that, given a random
variable (ζ, µ) with values in Z×M, one can choose ãn,ε1 Borel measurable such that

ãn,ε1 [ζ, µ] = ân,ε1 [ζ, µ] Pm − a.s.

�
We are now in position to conclude that vn satisfies a dynamic programming principle.

Corollary 5.1. Fix z = (t, x) ∈ Z and m ∈M. Let (θφ, φ ∈ Φz,m
n ) be such that each θφ is a

Fz,m,φ-stopping time with values in [t, 2T ] ∩ (πn ∪ [T,∞)) such that

θφ ∈ N φ ∩ [t,T[φ]] Pm − a.s.

for φ ∈ Φz,m
n . Then,

vn(z,m) = sup
φ∈Φz,mn

Em[vn(Zz,φ
θφ
,M z,m,φ

θφ
)].

Proof. The inequality ≤ can be obtained trivially by a conditioning argument. Fix φ ∈ Φz,m
n .

By Proposition 5.3, we can find a Borel measurable map (z′,m′) 7→ φι[z′,m′] such that

J(Zz,φ
θφ
,M z,m,φ

θφ
;φι[Zz,φ

θφ
,M z,m,φ

θφ
]) ≥ vn(Zz,φ

θφ
,M z,m,φ

θφ
)− ι.

Let us now simply write φι for φι[Zz,φ
θφ
,M z,m,φ

θφ
]. Without loss of generality, one can assume

that τφ1 ≥ t and that τφ
ι

1 ≥ θφ. Let I := card{i ≥ 1 : τφi < θφ}. Then,

J(z,m; φ̃ι) ≥ Em[vn(Zz,φ
θφ
,M z,m,φ

θφ
)]− ι

in which
(τ φ̃

ι

i , α
φ̃ι

i ) = 1i≤I(τ
φ
i , α

φ
i ) + 1i>I(τ

φι

i−I , α
φι

i−I), i ≥ 1.

Send ι→ 0 leads to the required result. �

5.3 Super-solution property as the time step vanishes

We now consider the limit n→∞. Let us set

v◦(z,m) := lim inf
(t′,x′,m′,n)→(z,m,∞)

vn(t′, x′,m′),

for (z,m) ∈ R+ × Rd ×M.
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Remark 5.3. Note that (5.7) and (3.6) implies that v◦ = KTg on (T,∞)× Rd ×M.

Proposition 5.4. The function v◦ is a viscosity super-solution of (3.4)-(3.5).

Proof. Let nk →∞ and (zk,mk)→ (zo,m◦) be such that vnk(zk,mk)→ v◦(zo,mo).
Step 1. We first show that v◦(z◦,m◦) ≥ Kv◦(z◦,m◦). By Corollary 5.1 applied to vnk with a
control φk defined by

(τ ki , α
k
i ) = (tk, ak)1{i=1} +

∑
j>1

(T + j, a?)1{i=j}, i ≥ 1,

with ak ∈ A, we obtain

vnk(zk,mk) ≥ sup
ak∈A

∫
E[vnk(Z

z′,◦
s
nk
+ [z′]

,m′)]dk(z′,m′|zk,mk, ak)] = KE[vnk(Z
·,◦
s
nk
+ [·], ·)](zk,mk),

in which snk+ [t, x] := minπnk ∩ [t,∞). Let ϕk◦ be the lower-semicontinuous enveloppe of
inf{E[vnk(Z

·,◦
s
nk
+ [·], ·)], k ≥ k◦}. Then, for k ≥ k◦,

vnk(zk,mk) ≥
∫
ϕk◦(z

′,m′)dk(z′,m′|zk,mk, ak),

and, by (3.6), passing to the limit k →∞ leads to

v◦(z◦,m◦) ≥
∫
ϕk◦(z

′,m′)dk(z′,m′|z◦,m◦, a◦).

We shall prove in step 3 that limk◦→∞ ϕk◦ ≥ v◦. These maps are bounded, since g is.
Dominated convergence then implies that

v◦(z◦,m◦) ≥
∫

v◦(z
′,m′)dk(z′,m′|z◦,m◦, a◦).

Step 2. Let ϕ be a (bounded) C1,2,0([0, T ]×Rd×M) function and (z◦,m◦) ∈ [0, T )×Rd×M
be a minimal point of v◦ − ϕ on Z ×M. Without loss of generality, one can assume that
(v◦ − ϕ)(z◦,m◦) = 0. Let B and (zk,mk, nk)n≥1 be as in Lemma 3.2. We write zk =
(tk, xk), z◦ = (t◦, x◦) ∈ [0, T ]× Rd. On the other hand, by considering the control φk defined
by

(τ ki , α
k
i ) = (T + i, a?), i ≥ 1,

we obtain from Corollary 5.1 that

vnk(zk,mk) ≥ Em[vnk(Z
zk,◦
tk+hk

,m)]

with hk ∈ T2−nk(N ∪ {0}) such that tk + hk < T if t◦ 6= T and tk + hk = T otherwise.
Let C > 0 be a common bound for (vn)n≥1 and ϕ. Then we can choose (hk)k≥1 such that

δk := (ϕ(zk,mk)− vnk(zk,mk)− 2C P[Zzk,◦
tk+hk

/∈ B])/hk → 0.
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This follows from standard estimates on the solution of sde’s with Lipschitz coefficients.
Then, if t◦ < T ,

0 ≥ h−1
k Em[ϕ(Zzk,◦

tk+hk
,mk)− ϕnk(zk,mk)] + δk = Em[h−1

k

∫ tk+hk

tk

Lϕ(Zzk,◦
s ,mk)ds] + δk,

sending k →∞ leads to Lϕ(z◦,m◦) ≤ 0.
If t◦ = T ,

vnk(zk,mk) ≥ Em[g(Zzk,◦
T ,mk, υ, ε0)] = Em[KTg(Zzk,◦

T ,mk)]

and passing to the limit leads to

ϕ(z◦,m◦) ≥ KTg(z◦,m◦),

recall (3.6). Finally, ϕ(z◦,m◦) ≥ Kϕ(z◦,m◦) by Step 1. �
Step 3: It remains to prove the claim used in Step 1. Let us set

ϕ̄k◦(z
′,m′) := inf

k≥k◦

{
E
[
vnk

(
Zz′,◦
s
nk
+

[z′],m′)
)]}

,

so that ϕk◦ is the lower-semicontinuous envelope of ϕ̄k◦ . Note that Zz′,◦
s
nk
+ [z′]

converges a.s. to
z as (z′, k) → (z,∞). Hence, for all ε > 0, there exist open neighborhoods Bε(z,m) and
B ε

2
(z,m) of (z,m), as well as kε ∈ N such that P[(Zz′,◦

s
nk
+ [z′]

,m′) /∈ Bε(z,m)] ≤ ε for k ≥ kε and
(z′,m′) ∈ B ε

2
(z,m). One can also choose kε and B ε

2
(z,m) such that

inf
k≥kε

vnk(z
′,m′) ≥ v◦(z,m

′)− ε

for all k ≥ kε and (z′,m′) ∈ B ε
2
(z,m). Let C > 0 be a bound for (|vn|)n≥1 and |v◦|, recall

that g is bounded. Then, for k◦ large enough and (z′,m′) ∈ B ε
2
(z,m),

ϕ̄k◦(z
′,m′) ≥ v◦(z,m)− ε− 2C sup

k≥k◦
P[(Zz′,◦

s
nk
+ [z′]

,m′) /∈ Bε(z,m)] ≥ v◦(z,m)− ε(1 + 2C).

Hence,
lim
k◦→∞

ϕk◦(z,m) = lim
k◦→∞

lim inf
(z′,m′)→(z,m)

ϕ̄k◦(z
′,m′) ≥ v◦(z,m),

since v◦ is lower-semicontinuous. �

5.4 Conclusion of the proof of Theorem 3.1

We can now conclude the proof of Theorem 3.1. We already know from Proposition 5.1 and
Proposition 5.4 that v∗ and v◦ are respectively a bounded viscosity sub- and super-solution
of (3.4)-(3.5). By (2.14), Remark 5.3 and (3.6), we also have v◦ ≥ v∗ on (0, T )×Rd×M. In
view of Assumption 3.1 and Remark 5.2, we obtain v◦ ≥ v∗ ≥ v◦. Hence, v is continuous on
Z×M and is a viscosity solution of (3.4)-(3.5). Uniqueness follows from Assumption 3.1.
�
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6 Proof of the sufficient condition for the comparison
We provide here the proof of Proposition 3.1.
Proof of Proposition 3.1. Step 1. As usual, we shall argue by contradiction. We assume
that there exists (z0,m0) ∈ Z ×M such that (U − V )(z0,m0) > 0, in which U and V
are as in Assumption 3.1. Recall the definition of Ψ, % and g̃ in Proposition 3.1. We set
ũ(t, x,m) := e%tU(t, x,m) and ṽ(t, x,m) := e%tV (t, x,m) for all (t, x,m) ∈ Z ×M. Then,
there exists λ ∈ (0, 1) such that

(ũ− ṽλ)(z0,m0) > 0, (6.1)

in which ṽλ := (1− λ)ṽ + λΨ. Note that ũ and ṽ are sub and supersolution on Z×M of

min {%ϕ− Lϕ, ϕ−Kϕ} = 0 (6.2)

associated to the boundary condition

min {ϕ−KT g̃, ϕ−Kϕ} = 0. (6.3)

Step 2. Let dM be a metric on M compatible with the topology of weak convergence. For
(t, x, y,m) ∈ Z×X×M, we set

Γε(t, x, y,m) := ũ(t, x,m)− ṽλ(t, y,m)− ε
(
‖x‖2 + ‖y‖2 + dM(m)

)
(6.4)

with ε > 0 small enough such that Γε(t0, x0, x0,m0) > 0. Note that the supremum of
(t, x,m) 7→ Γε(t, x, x,m) over Z ×X ×M is achieved by some (tε, xε, xε,mε). This follows
from the the upper semi-continuity of Γε and the fact that ũ,−ṽ,−Ψ are bounded from
above. Recall that M is locally compact. For (t, x, y,m) ∈ Z×X×M, we set

Θn
ε (t, x, y,m) := Γε(t, x, y,m)− n‖x− y‖2.

Again, there is (tεn, x
ε
n, y

ε
n,m

ε
n) ∈ Z×X×M such that

sup
Z×X×M

Θn
ε = Θn

ε (tεn, x
ε
n, y

ε
n,m

ε
n).

It is standard to show that, after possibly considering a subsequence,

(tεn, x
ε
n, y

ε
n,m

ε
n)→ (t̂ε, x̂ε, x̂ε, m̂ε) ∈ Z×X×M, n‖xεn − yεn‖2 → 0,

and Θn
ε (tεn, x

ε
n, y

ε
n,m

ε
n)→ Γε(t̂ε, x̂ε, x̂ε, m̂ε) = Γε(tε, xε, xε,mε),

(6.5)

see e.g. [8, Lemma 3.1].
Step 3. We first assume that, up to a subsequence,

(ũ−Kũ)(tεn, x
ε
n,m

ε
n) ≤ 0, for n ≥ 1.

It follows from the supersolution property of ṽ and Condition (iii) of Proposition 3.1 that

ũ(tεn, x
ε
n,m

ε
n)− ṽλ(tεn, yεn,mε

n) ≤ Kũ(tεn, x
ε
n,m

ε
n)−Kṽλ(tεn, yεn,mε

n)− λδ.
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Passing to the lim sup and using (6.5) and (3.6), we obtain

(ũ− ṽλ)(t̂ε, x̂ε, m̂ε) + λδ ≤ K(ũ− ṽλ)(t̂ε, x̂ε, m̂ε).

In particular, by (6.4),

Γε(t̂ε, x̂ε, x̂ε, m̂ε) + λδ ≤ K(ũ− ṽλ)(t̂ε, x̂ε, m̂ε).

Now let us observe that

sup
Z×M

(ũ− ṽλ) = lim
ε→0

sup
(t,x,m)∈Z×M

Γε(t, x, x,m)

= lim
ε→0

Γε(tε, xε, xε,mε) (6.6)

= lim
ε→0

Γε(t̂ε, x̂ε, x̂ε, m̂ε),

in which the last identity follows from (6.5). Combined with the above inequality, this shows
that

sup
Z×M

(ũ− ṽλ) + λδ ≤ lim
ε→0
K(ũ− ṽλ)(t̂ε, x̂ε, m̂ε),

which leads to a contradiction for ε small enough.

Step 4. We now show that there is a subsequence such that tεn < T for all n ≥ 1. If not,
one can assume that tεn = T and it follows from the boundary condition (6.3) and step
3 that ũ(T, xεn,m

ε
n) ≤ KT g̃(T, xεn,m

ε
n) for all n ≥ 1. Since, by (6.3) and Condition (iv) of

Proposition 3.1, ṽλ(T, yεn,mε
n) ≥ KT g̃(T, yεn,m

ε
n), it follows that ũ(T, xεn,m

ε
n)−ṽλ(T, yεn,mε

n) ≤
KT g̃(T, xεn,m

ε
n)−KT g̃(T, yεn,m

ε
n). Hence,

Γε(T, x
ε
n, y

ε
n,m

ε
n) ≤ KT g̃(T, xεn,m

ε
n)−KT g̃(T, yεn,m

ε
n).

Combining (3.6), (6.5) and (6.6) as above, we obtain sup(ũ− ṽλ) ≤ 0, a contradiction.

Step 5. In view of step 3 and 4, we may assume that

tεn < T and (ũ−Kũ)(tεn, x
ε
n,m

ε
n) > 0 for all n ≥ 1.

Using Ishii’s Lemma and following standard arguments, see Theorem 8.3 and the discussion
after Theorem 3.2 in [8], we deduce from the sub- and supersolution viscosity property of ũ
and ṽλ, and the Lipschitz continuity assumptions on µ and σ, that

%
(
ũ(tεn, x

ε
n,m

ε
n)− ṽλ(tεn, yεn,mε

n)
)
≤ C

(
n‖xεn − yεn‖2 + ε

(
1 + ‖xεn‖2 + ‖yεn‖2

))
,

for some C > 0, independent on n and ε. In view of (6.4) and (6.5), we get

%Γε(t̂ε, x̂ε, x̂ε, m̂ε) ≤ 2Cε
(
1 + ‖x̂ε‖2

)
. (6.7)

We shall prove in next step that the right-hand side of (6.7) goes to 0 as ε → 0, up to a
subsequence. Combined with (6.6), this leads to a contradiction to (6.1).
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Step 6. We conclude the proof by proving that ε‖x̂ε‖2 → 0 as ε → 0, up to a subsequence.
This is standard. First note that we can always construct a sequence (t̃ε, x̃ε, m̃ε)ε>0 such that

Γε(t̃ε, x̃ε, x̃ε, m̃ε)→ sup
Z×M

(ũ− ṽλ) and ε(‖x̃ε‖2 + dM(m̃ε))→ 0 as ε→ 0.

By (6.5), Γε(t̃ε, x̃ε, x̃ε, m̃ε) ≤ Γε(t̂ε, x̂ε, x̂ε, m̂ε). Hence,

sup
Z×M

(ũ− ṽλ) ≤ sup
Z×M

(ũ− ṽλ)− 2 lim inf
ε→0

ε‖x̂ε‖2.

�
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