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Abstract

We study a continuous-time financial market with continuous price
processes under model uncertainty, modeled via a family P of possible
physical measures. A robust notion NA1(P) of no-arbitrage of the
first kind is introduced; it postulates that a nonnegative, nonvanishing
claim cannot be superhedged for free by using simple trading strategies.
Our first main result is a version of the fundamental theorem of asset
pricing: NA1(P) holds if and only if every P ∈ P admits a martingale
measure which is equivalent up to a certain lifetime. The second main
result provides the existence of optimal superhedging strategies for
general contingent claims and a representation of the superhedging
price in terms of martingale measures.
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1 Introduction

We consider a financial market where stocks are traded in continuous time.
The (discounted) stock price process S is assumed to be continuous, but
its distribution in the sense of a stochastic model is not necessarily known.
Rather, the market is considered under a family P of probability measures:
each P ∈ P is understood as a possible model for the real-world dynamics
of S. Two fundamental questions are studied in this context: the absence
of arbitrage and its relation to linear pricing rules (fundamental theorem of
asset pricing), and the range of arbitrage-free prices (superhedging theorem).

We introduce a robust notion of market viability, called no-arbitrage of
the first kind and denoted NA1(P). Given a contingent claim f ≥ 0 at matu-
rity T , let vsimp(f) be the minimal initial capital necessary to superhedge f
simultaneously under all models P ∈ P,

vsimp(f) := inf
{
x : ∃H with x+H • ST ≥ f P -a.s. for all P ∈ P

}
.

In the above, we allow only simple trading strategies H, so that there are no
limitations related to defining the stochastic integral H • S—no semimartin-
gale assumption is made. Our condition NA1(P) then postulates that

vsimp(f) = 0 implies f = 0 P -a.s. for all P ∈ P.

To state the same in reverse, the price vsimp(f) should be strictly positive
if P{f > 0} > 0 holds for some P ∈ P. This condition corresponds to [26,
Definition 1.1] when P is a singleton; it will turn out to be a notion of market
viability that is well suited for model uncertainty in continuous time.

The main goal of the fundamental theorem is to deduce the existence of
martingale measures, or linear pricing rules, from the absence of arbitrage
opportunities. In the classical case [11, 13], this measure is equivalent to
the physical measure P . In the case of model uncertainty in a discrete-
time market, the fundamental theorem of [7] yields a family Q of martingale
measures such that each P ∈ P is dominated by a martingale measure;
the families P and Q are equivalent in the sense that they have the same
polar sets. In the present setting with continuous processes, we find a result
which is stronger in the sense that each P admits an equivalent martingale
measure Q. On the other hand, equivalence needs to be defined in a weaker
way: it is necessary to allow for a loss of mass in our martingale deflators;
thus, the measures Q may allocate mass outside the support of P. As a
result, the equivalence of measures holds only up to a random time ζ, and
so does the martingale property. More precisely, we suppose that our model
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is set on a canonical space Ω of paths which are continuous before possibly
jumping to a cemetery state, and ζ is the time of this jump. This “lifetime”
is infinite and thus invisible under all P ∈ P, but may be finite under some
Q ∈ Q. With these notions in place, our version of the fundamental theorem
then states that NA1(P) holds if and only if for every P ∈ P there exists
a local martingale measure Q such that Q and P are equivalent prior to ζ.
See Definition 3.3 and Theorem 3.4 for the precise statements.

A related setting is considered in [17] where S is the canonical process
in the space of continuous paths. Roughly speaking, the market model con-
sidered there corresponds to declaring all paths to be possible for the stock
price, or including all measures in P. There is, then, no necessity for a defi-
nition of arbitrage; in some sense, the absence of the latter is implicit in the
fact that all paths are possible. Nevertheless, the duality result stated in [17]
implies a conclusion in the direction of the fundamental theorem; namely,
it follows that there must exist at least one martingale measure under the
conditions of that result. A similar result on Skorokhod space is reported
in [18]. We also refer to [12] for a discussion of different notions of arbitrage
in the context of traded options. For versions of the robust fundamental the-
orem for discrete-time frictionless markets, see [1, 7, 8, 43]; for discrete-time
markets with transaction costs, see [2, 3, 6, 19].

The second main result of the present paper is a superhedging theorem
in our setting. Assume that NA1(P) holds and let f ≥ 0 be a contingent
claim, measurable at time T . Then, we establish the duality

sup
Q∈Q

EQ[f1ζ>T ]

= inf
{
x : ∃H with x+H • ST ≥ f P -a.s. for all P ∈ P

}
;

moreover, we construct an optimal superhedging strategy H—naturally, this
necessitates continuous trading. See Theorem 5.1 for the precise statement.

The line of argument in the proof is similar to [34] where it is assumed
that P consists of martingale measures in the first place. In the present case,
the martingale property holds only prior to ζ which necessitates a number of
additional considerations. Generally speaking, the superhedging theorem is
fairly well studied in the situation where P consists of martingale measures;
cf. [5, 16, 20, 30, 36, 38, 39, 41, 44, 45], among others, or when all paths
are considered possible for the stock and options are also traded; see, e.g.,
[10, 12, 17, 18, 23, 25]. We also refer to [1, 3, 7, 19, 35] for discrete-time
markets. Finally, in the forthcoming independent work [9], absence of a
duality gap will be established by functional analytic methods in a market
more general than ours, under a condition that is stronger than NA1(P).
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The remainder of this paper is organized as follows. The setup is detailed
in Section 2, where we also define NA1(P). In Section 3, we discuss our
version of the fundamental theorem of asset pricing. Section 4 provides
some technical results on prior-to-ζ equivalent martingale measures; these
are used in Section 5, where we study the superhedging theorem. Finally,
the Appendix collects auxiliary results on Föllmer’s exit measure and the
particular path space that are used in the body of this paper.

2 Setup

2.1 Measurable Space and Model Uncertainty

We first construct the underlying measurable space (Ω,F) used throughout
the paper. Let E be a Polish space and let dE be a complete metric consistent
with the topology of E. Adjoining an isolated “cemetery” state 4, we shall
work with Ē := E ∪ {4}. It is easy to see that Ē is again a Polish space
under the metric

dĒ(x, y) := 1 ∧ dE(x, y)1{4/∈{x,y}} + 1{4∈{x,y}}∩{x 6=y}, x, y ∈ Ē.

We then define Ω to be the space of all paths ω : R+ → Ē which start at a
given point x∗ ∈ E, are càdlàg on [0, ζ(ω)) and constant on [ζ(ω),∞), where

ζ(ω) := inf{t ≥ 0 : ωt = 4}

is the “lifetime” of ω. The function ζ takes values in (0,∞] since x∗ ∈ E and
the paths are right-continuous. It is shown in Lemma A.7 in the Appendix
that Ω carries a natural Polish topology.

We denote by B = (Bt)t∈R+ the canonical process, defined by Bt(ω) =
ωt, and by F = (Ft)t∈R+ its the natural filtration, Ft = σ(Bs, s ≤ t),
and finally F = σ(Bs, s ∈ R+). The set of F-stopping times is denoted
by T . The minimal right-continuous filtration containing F is denoted by
F+ = (Ft+)t∈R+ , while T+ is the set of all F+-stopping times. With these
notions in place, we observe that {ζ ≤ t} = {B(t) = 4} ∈ Ft for all t ∈ R+

and hence that ζ ∈ T .
To represent model uncertainty, we shall work with a (nonempty) fam-

ily P of probability measures on (Ω,F), rather than a single measure. Each
element P ∈ P is interpreted as a possible model for the real-world dy-
namics; no domination assumption is made. We say that a property holds
P-quasi-surely (or P-q.s.) if it holds P -a.s. for all P ∈ P. We shall assume
throughout that

ζ =∞ P-q.s.
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Thus, the cemetery state is actually invisible under the real-world models;
its role will be to absorb the residual mass of certain martingale measures.

Given a σ-field G ⊆ F , we denote by L0
+(G) the set of all [0,∞]-valued,

G-measurable random variables that are P-q.s. finite.

2.2 Trading and Arbitrage

The tradable assets are modeled by an Rd-valued, F-adapted and right-
continuous process S : R+ × Ω→ Rd such that

the paths of S are P-q.s. continuous.

No other assumption is made on S at this stage; in particular, no semi-
martingale property is assumed. However, structural properties will follow
later as a consequence of our no-arbitrage condition.

A simple predictable1 strategy is a process H =
∑n

i=1 hi1]]τi−1,τi]], where
hi = (hji )j≤d is Fτi−1+-measurable for all i ≤ n, and (τi)i≤n is a nondecreas-
ing T+-valued sequence with τ0 = 0. Given an initial capital x ∈ R+ and a
simple predictable strategy H, we define the associated wealth process

Xx,H = x+H • S = x+

n∑
i=1

d∑
j=1

hji

(
Sjτi∧· − S

j
τi−1∧·

)
.

Moreover, we define Hsimp(x) as the class of all simple predictable processes
H such that Xx,H remains nonnegative P-q.s. (The superscript “simp” acts
as a mnemonic for “simple” in what follows.) Given T ∈ R+ and f ∈ L0

+(FT ),
let

vsimp(T, f) := inf
{
x ∈ R+ : ∃H ∈ Hsimp(x) with Xx,H

T ≥ f P-q.s.
}

be the superhedging price of the claim f over the class of simple strategies.
We can then introduce our notion of no-arbitrage of the first kind, stating
that the superhedging price is null if and only if the claim is null P-q.s.

Definition 2.1. We say that NA1(P) holds if

∀T ∈ R+ and f ∈ L0
+(FT ), vsimp(T, f) = 0 =⇒ f = 0 P-q.s.

This condition coincides with [26, Definition 1.1] when P is a singleton.
1We define simple predictable strategies with respect to the filtration F+; however, we

recall that the class of predictable processes on (Ω,F) coincides with the class of predictable
processes on (Ω,F+). The symbol ]]τi−1, τi]] denotes the stochastic interval.
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3 Fundamental Theorem of Asset Pricing

In order to state our version of the fundamental theorem of asset pricing, we
first need to introduce the concept of prior-to-ζ equivalence.

Definition 3.1. Given two measures P and Q on (Ω,F), we say that Q
is prior-to-ζ absolutely continuous with respect to P , if Q � P holds on
the space ({t < ζ} ,Ft ∩ {t < ζ}) for all t ∈ R+. This relation is denoted by
Q �ζ P . If Q �ζ P and P �ζ Q, we say that P and Q are prior-to-ζ
equivalent and denote this fact by Q ∼ζ P .

In this definition, equivalence is used in the sense of unnormalized mea-
sures. Namely, even if the measures are probabilities on (Ω,F), they need
not be probabilities on ({t < ζ} ,Ft ∩ {t < ζ}), and Q ∼ζ P does not mean
that P (A) = 1 implies Q(A) = 1, even if A ∈ Ft∩{t < ζ}. A second remark
is that local (on Ft, for all t ∈ R+) equivalence of two probabilities trivially
implies prior-to-ζ equivalence, but the converse fails. The following simple
example demonstrates these phenomena.

Example 3.2. Suppose that E is a singleton. Then, F is the smallest
filtration that makes ζ a stopping time and Ft∩{t < ζ} = {∅, {t < ζ}} holds
for all t ∈ R+. It follows that prior-to-ζ equivalence for any two probabilities
P and Q on (Ω,F) is tantamount to checking that P{ζ > t} > 0 if and only
if Q{ζ > t} > 0, for all t ∈ R+. On (Ω,F), one can prescribe probabilities
endowing any given law to ζ; letting P be such that P{ζ <∞} = 0 and Q be
such thatQ{ζ > t} = exp(−t) for t ∈ R+, it follows that P is a probability on
({t < ζ} ,Ft ∩ {t < ζ}) for all t ∈ (0,∞), while Q is a strict sub-probability.
Note also that the probabilities P and Q fail to be equivalent on Ft whenever
t ∈ (0,∞); indeed, P{ζ ≤ t} = 0 and Q{ζ ≤ t} > 0 hold for all t ∈ (0,∞).

We refer to Section A.2 for further discussions on prior-to-ζ equivalence
and proceed with the relevant concept of a local martingale measure.

Definition 3.3. Fix P ∈ P. A probability Q on (Ω,F) is a prior-to-ζ
equivalent local martingale measure corresponding to P if Q ∼ζ P and there
exists a nondecreasing sequence (τn)n∈N ⊂ T+ such that

(i) τn < ζ for all n ∈ N and limn→∞ τn = ζ hold Q-a.s.,

(ii) (St∧τn)t∈R+ is an (F+, Q)-martingale for all n ∈ N.

The class of all such probabilities Q will be denoted by QP .

6



What follows is the main result of this section, the fundamental theorem
of asset pricing. In the present incarnation, it states that the condition
NA1(P) of Definition 2.1 holds if and only if we can find (at least) one prior-
to-ζ equivalent local martingale measure for each possible model P ∈ P.

Theorem 3.4. Condition NA1(P) holds if and only if QP 6= ∅ for all P ∈ P.

We emphasize that this result necessitates the continuity of S; it is to be
compared to the discrete-time case of [7]. The following is a direct conse-
quence of the theorem, but will actually be established in the course of its
proof.

Corollary 3.5. Let NA1(P) hold. Then S is a semimartingale under each
P ∈ P.

To be precise, we should indicate a filtration in the above statement. In
fact, the P -semimartingale property holds equivalently in any of the filtra-
tions F, F+ or FP+ (the P -augmentation of F+), or more generally in any
intermediate filtration F ⊂ G ⊂ FP+; see, e.g., [31, Proposition 2.2]. We shall
use this fact in Section 5.

Proof of Theorem 3.4. Step 1. We first prove the easy implication; that is,
we assume that QP 6= ∅ for all P ∈ P. Fix T ∈ R+ and f ∈ L0

+(FT ) with
vsimp(T, f) = 0. Moreover, let P ∈ P be arbitrary but fixed; we need to
show that f = 0 P -a.s.

Indeed, let X simp be the class of all processes of the formXx,H for x ∈ R+

and H ∈ Hsimp(x). By assumption, there exists some Q ∈ QP . Let (τn)n∈N
be the localizing sequence appearing in Definition 3.3. Since the stopped
process S·∧τn is a Q-martingale, it follows that X·∧τn is a local Q-martingale
for all X ∈ X simp and n ∈ N. A straightforward argument then shows that
X1[[0,ζ[[ is a Q-supermartingale for all X ∈ X simp.

Let Xn ∈ X simp be such that Xn
0 = 1/n and Xn

T ≥ f P-q.s., then the
above supermartingale property yields that

EQ[f1T<ζ ] ≤ EQ[Xn
T1T<ζ ] ≤ EQ[Xn

0 ] = 1/n, n ≥ 1.

Therefore, EQ[f1T<ζ ] = 0 which implies that Q{f > 0, T < ζ} = 0. Since
Q ∼ζ P and ζ = ∞ P -a.s., it follows that P{f > 0} = 0. This completes
the proof of the “if” implication in Theorem 3.4.

Step 2. The converse implication will be established through a third
equivalent condition. To this end, consider NA1(P ) := NA1({P}) for a fixed
P ∈ P; that is, the condition that

∀T ∈ R+ and f ∈ L0
+(FT ), vsimp,P (T, f) = 0 =⇒ f = 0 P -a.s.,
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where

vsimp,P (T, f) = inf
{
x ∈ R+ : ∃H ∈ Hsimp,P (x) with Xx,H

T ≥ f P -a.s.
}

and Hsimp,P (x) is the class of all simple predictable processes H such that
Xx,H is nonnegative P -a.s. We claim that

NA1(P) holds if and only if NA1(P ) holds for all P ∈ P. (3.1)

Indeed, the observation that Hsimp(x) ⊆ Hsimp,P (x) shows that the validity
of NA1(P ) for all P ∈ P implies NA1(P). To see the converse, suppose that
there exists P ∈ P such that NA1(P ) fails. Then, there are T ∈ R+ and
g ∈ L0

+(FT ) such that vsimp,P (T, g) = 0 and P{g > 0} > 0. That is, for any
n ∈ N there exists Hn ∈ Hsimp,P (1/n) such that X1/n,Hn

T ≥ g P -a.s. Define

τn = inf
{
t ∈ R+ : X

1/n,Hn

t < 0
}
∈ T+, Gn = Hn1]]0,τn]].

Then τn ∈ T+ as the paths of S are right-continuous and thus Gn is a simple
predictable strategy. Since τn = ∞ P -a.s., we have Gn = Hn P -a.s.; in
particular, Gn still satisfies X1/n,Gn

T ≥ g P -a.s. In addition, the definition
of τn guarantees that X1/n,Gn is nonnegative P-q.s.—the continuity of S is
crucial in this step. Consider

f := inf
n∈N

X
1/n,Gn

T ∈ L0
+(FT )

and note that vsimp(T, f) = 0 holds by definition. Moreover, we have f ≥ g
P -a.s. and thus P{f > 0} > 0, contradicting NA1(P). Therefore, (3.1) has
been established.

Step 3. In view of (3.1), it remains to show that NA1(P ) implies QP 6= ∅,
for arbitrary but fixed P ∈ P. Thus, we are essentially in the realm of
classical stochastic analysis and finance; in particular, we may use the tools
in the Appendix as well as [26, 27].

Define X simp,P as the class of all processes of the form Xx,H for x ∈ R+

and H ∈ Hsimp,P (x). The set {X ∈ X simp,P : X0 = 1} has the essential
properties of [27, Definition 1.1] needed to conclude that X simp,P consists
of P -semimartingales, see [27, Theorem 1.3], and that (the immediate ex-
tension of) condition NA1(P ) is also valid for the closure XP of X simp,P

in the P -semimartingale topology; see [27, Remark 1.10]. In particular, a
standard localization and integration argument (using local boundedness of
S under P ) shows that S is itself a P -semimartingale.
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The set XP coincides with the class of all P -a.s. nonnegative stochastic
integrals of S under P , using general predictable and S-integrable integrands.
This is seen by using density (in the semimartingale topology) of simple
stochastic integrals with respect to general stochastic integrals, as well as a
stopping argument which again uses that S has continuous paths P -a.s. As
a result, using condition NA1(P ) for XP , we infer the existence of a strictly
positive (F+, P )-local martingale Y with Y0 = 1 such that Y S is an (F+, P )-
local martingale; cf. [26, Theorem 4]. We can now use Theorem A.6 in the
Appendix to construct a probability Q ∼ζ P such that Y is the prior-to-ζ
density of Q with respect to P . Using the facts that Y S is an (F+, P )-
local martingale, ζ is foretellable under Q (for the latter, see Definition A.4
and Theorem A.6 in the Appendix) and Remark A.2, we can construct the
required T+-valued sequence (τn)n∈N such that S·∧τn is an (F+, Q)-martingale
for all n ∈ N. The last fact translates toQ ∈ QP and concludes the proof.

4 Dynamic Programming Properties of Prior-to-ζ
Supermartingale Measures

For our proof of the superhedging theorem in Section 5, it will be crucial to
know that the set of (super-)martingale measures satisfies certain dynamic
programming properties. In this section, we impose assumptions on the set P
which is the primary object of our model, and show how these properties are
inherited by the corresponding set of supermartingale measures.

4.1 Additional Assumptions and Notation

From now on, we assume that the Polish space E is a topological vector
space and that the paths ω ∈ Ω start at the point x∗ = 0 ∈ E.

For x, y ∈ Ē, we use the convention x + y = 4 if x = 4 or y = 4. Let
t ≥ 0. Given ω, ω̃ ∈ Ω, we set

(ω ⊗t ω̃)s = ωs1[0,t)(s) + (ωt + ω̃s−t)1[t,∞)(s).

Given also a process Z, we define

Zt,ωs (ω̃) := Zt+s(ω ⊗t ω̃), s ≥ 0;

note that a shift in the time variable is part of our definition. We view a
random variable ξ as a process which is constant in time, so that

ξt,ω(ω̃) := ξ(ω ⊗t ω̃).
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We denote by P(Ω) the collection of all probability measures on Ω, equipped
with the topology of weak convergence. Given a probability R ∈ P(Ω), we
define Rt,ω by

Rt,ω(A) = Rωt {ω ⊗t ω̃ : ω̃ ∈ A}, A ∈ F ,

where Rωt is a regular conditional distribution of R given Ft satisfying

Rωt {ω′ ∈ Ω : ω′ = ω on [0, t]} = 1, ω ∈ Ω.

The existence of Rωt is guaranteed by the fact that Ft is countably generated;
cf. Lemma A.7 and [46, Theorem 1.1.8 and p. 34]. It then follows that

ER
t,ω

[ξt,ω] = ER
ω
t [ξ] = ER[ξ|Ft](ω) for R-a.e. ω ∈ Ω. (4.1)

We shall assume that our set P admits a family of (t, ω)-conditional
models. More precisely, we start with a family {Pt(ω) : t ∈ R+, ω ∈ Ω}
of subsets of P(Ω) which is adapted in the sense that Pt(ω) = Pt(ω̃) if
ω|[0,t] = ω̃|[0,t]. In particular, P0 = P0(ω) is independent of ω. We impose
the following structural conditions—compare with [30, 37] in the case ζ ≡ ∞.

Definition 4.1. An adapted family {Rt(ω) : t ∈ R+, ω ∈ Ω} of subsets of
P(Ω) is analytic and stable prior to ζ if the following hold for all t ≥ s ≥ 0,
ω̄ ∈ Ω and R ∈ Rs(ω̄).

(A1) {(R′, ω) : ω ∈ Ω, R′ ∈ Rt(ω)} ⊂ P(Ω)× Ω is analytic2.

(A2) Rt−s,ω ∈ Rt(ω̄ ⊗s ω) for R-a.e. ω ∈ {ζs,ω̄ > t}.

(A3) If ν : Ω 7→ P(Ω) is an Ft−s-measurable kernel and ν(ω) ∈ Rt(ω̄ ⊗s ω)
for R-a.e. ω ∈ {ζs,ω̄ > t}, then the measure defined by

R̄(A) :=

∫∫
(1A)t−s,ω(ω′) νR(dω′;ω)R(dω), A ∈ F ,

where νR(ω) := ν(ω)1{ζs,ω̄>t}(ω) +Rt−s,ω1{ζs,ω̄≤t}(ω),

belongs to Rs(ω̄).

Condition (A1) is of technical nature; it will be used for measurable
selection arguments. Conditions (A2) and (A3) are natural consistency con-
ditions, stating that the family is stable under “conditioning” and “pasting.”

2The definition of an analytic set is recalled in Section A.1 of the Appendix.

10



Assumption 4.2. We have P = P0 for a family {Pt(ω) : t ∈ R+, ω ∈ Ω}
which is analytic and stable prior to ζ. Moreover, St,ω is Pt(ω)-q.s. con-
tinuous prior to ζt,ω − t, for all t ∈ R+ and ω ∈ Ω.

A canonical example of such a set P is the collection of all laws P of Itô
semimartingales

∫ ·
0 αu du +

∫ ·
0 σu dWu, each one situated on its own prob-

ability space with a Brownian motion W , drift rate α valued in a given
measurable set A ⊂ Rd, and volatility σ such that σσ> is valued in a given
measurable set Σ of positive definite d × d matrices. In this case, we can
take Pt(ω) = P for all (t, ω) because the sets A and Σ are constant; cf. [32].
The continuity condition is clearly satisfied for the canonical choice S = B
and then NA1(P) holds, for instance, when A and Σ are compact.

4.2 Prior-to-ζ Supermartingale Measures

For technical reasons, it will be convenient to work with supermartingale
(rather than local martingale) measures in what follows. The purpose of this
section is to define a specific family of supermartingale measures satisfying
the conditions of Definition 4.1; it will be used to construct the optimal
strategy in the superhedging theorem (Theorem 5.1). We first need to define
a conditional notion of prior-to-ζ absolute continuity.

Definition 4.3. Let (t, ω) ∈ R+×Ω and P,Q ∈ P(Ω). We write Q�ζt,ω P
(with some abuse of notation) if

Q� P on Fs ∩ {s < ζt,ω − t}, s ∈ R+.

We also need to consider wealth processes conditioned by (t, ω) ∈ R+×Ω.
More precisely, let

X simp
t (ω) :=

{
1 + (H • St,ω)

τn
H,St,ω : H ∈ Hsimp, n ∈ N

}
, (4.2)

where Hsimp is the set of all simple predictable processes and

τnH,St,ω := inf
{
s ≥ 0 : (H • St,ω)s /∈ (−1, n)

}
.

Here the stopping at −1 corresponds to the nonnegativity of the wealth
process, whereas the stopping at n is merely for technical convenience. The
point in this specific definition of X simp

t (ω) is to have a tractable dependence
on ω; in this respect, we note that the set Hsimp is independent of ω.
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Definition 4.4. Let (t, ω) ∈ R+ × Ω and P ∈ P(Ω). We introduce the sets

Pζt,ω(P ) = {Q ∈ P(Ω) : Q�ζt,ω P},

Yt(ω) =
{
Q ∈ P(Ω) : X1[[0,ζt,ω−t[[ is a Q-supermartingale ∀ X ∈ X simp

t (ω)
}
,

Qt(ω, P ) = Pζt,ω(P ) ∩ Yt(ω),

Qt(ω) =
⋃

P∈Pt(ω)

Qt(ω, P ).

The elements of Qt(ω) are called prior-to-ζ absolutely continuous super-
martingale measures given (t, ω).

We observe that the family {Qt(ω) : t ∈ R+, ω ∈ Ω} is adapted. Fur-
thermore, we recall from Theorem 3.4 thatQ0 6= ∅ under NA1(P). In the rest
of this subsection, we show that the family {Qt(ω)} inherits from {Pt(ω)}
the properties of Definition 4.1.

Proposition 4.5. The family {Qt(ω)} satisfies (A1)–(A3).

The proof is split into the subsequent lemmas. For ease of reference, we
first state the following standard result.

Lemma 4.6. Let A be a Borel space and let (a, ω) ∈ A × Ω 7→ ξ(a, ω) ∈
R+ be Borel-measurable. Then, (a,R) ∈ A × P(Ω) 7→ ER[ξ(a, ·)] is Borel-
measurable.

Proof. See, e.g., Step 1 in the proof of [37, Theorem 2.3].

Lemma 4.7. There exist a countable set H̃ ⊂ Hsimp and a countable set
T̃ ⊂ T of bounded stopping times with the following property:

Given (t, ω) ∈ R+×Ω and Q ∈ P(Ω) such that St,ω is Q-a.s. continuous
prior to ζt,ω − t, we have equivalence between

(i) X1[[0,ζt,ω−t[[ is a Q-supermartingale for all X ∈ X simp
t (ω),

(ii) X1[[0,ζt,ω−t[[ is a Q-supermartingale for all X ∈ X̃t(ω),

(iii) EQ[Xσ1σ<ζt,ω−t] ≥ EQ[Xτ1τ<ζt,ω−t] for X ∈ X̃t(ω) and σ ≤ τ in T̃ ,

where X̃t(ω) is defined like (4.2) but using only integrands H ∈ H̃. Moreover,
if St,ω1[[0,ζt,ω−t[[ is a semimartingale under Q, the above are equivalent to

(iv) X1[[0,ζt,ω−t[[ is a Q-supermartingale for all X ∈ Xt(ω),

where Xt(ω) is defined like (4.2) but using arbitrary predictable integrands.
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Proof. For each s ≥ 0, let F̃s be a countable algebra generating Fs; cf.
Lemma A.7. Let T̃ be the set of all stopping times

τ =
n∑
j=1

tj1Aj ,

where n ∈ N, tj ∈ Q+ and Aj ∈ F̃tj . Moreover, let H̃ ⊂ Hsimp be the set of
all processes

H =
n∑
j=0

αj1]tj ,tj+1],

where n ∈ N, 0 = t0 ≤ t1 ≤ · · · ≤ tn ∈ Q+ and each random variable αj is
of the form

αj =

n∑
i=0

aij1Aij

for some aij ∈ Qd and Aij ∈ F̃tj .
It is clear that (i)⇒(ii)⇒(iii). To see that (iii) implies (i), fix Q ∈ P(Ω)

and X ∈ X simp
t (ω). We first observe that it suffices to show that

(i’) EQ[Xσ1σ<ζt,ω−t] ≥ EQ[Xτ1τ<ζt,ω−t] for all X ∈ X simp
t (ω) and all

σ ≤ τ in T̃ .

Indeed, since T̃ contains all stopping times of the form τ = u1A + v1Ac and
σ = u, where u ≤ v ∈ Q+ and A ∈ F̃u, it readily follows that (i’) implies
the supermartingale property of X1[[0,ζt,ω−t[[ at rational times, and then the
supermartingale property on R+ follows by right-continuity.

To show that (iii) implies (i’), fix σ ≤ τ and let T ∈ R+ be such that
τ ≤ T . The claim will follow by passing to suitable limits in the inequality

EQ[Xσ1σ<ζt,ω−t] ≥ EQ[Xτ1τ<ζt,ω−t]; (4.3)

we confine ourselves to a sketch of the proof. Let X ∈ X simp
t (ω) be given

and recall that St,ω is (Q-a.s.) continuous prior to ζt,ω − t.
Using a stopping argument and monotone convergence, we may reduce

to the case where X̄ := X1[[0,ζt,ω−t[[ is uniformly bounded. Then, using
dominated convergence and another stopping argument, we may reduce to
the case where X̄ is also uniformly bounded away from zero prior to ζt,ω− t.
Using standard arguments we can find a sequence (Hk) of simple predictable
integrands with deterministic jump times such thatXk := 1+Hk • St,ω → X

13



uniformly on [[0, ζt,ω − t[[ in Q-probability. Using that X is bounded and
bounded away from zero, it follows that

X̄k := 1 + (Hk • St,ω)
τn
Hk,St,ω1[[0,ζt,ω−t[[ → X̄

uniformly on [0, T ] in Q-probability, for a sufficiently large n ∈ N. After an
additional approximation, we may obtain the same property with Hk ∈ H̃,
and we may show using dominated convergence that the validity of (4.3) for
each X̄k implies the validity for X̄.

If St,ω is a semimartingale under Q, one shows that (iii) implies (iv) by
using similar arguments as well as standard results about stochastic integrals,
in particular [42, Theorems II.21 and IV.2].

Lemma 4.8. The family {Qt(ω)} satisfies (A1).

Proof. Fix t ≥ 0. It suffices to show that the set

Γ := {(ω, P,Q) : ω ∈ Ω, P ∈ Pt(ω), Q ∈ Qt(ω, P )} ⊂ Ω×P(Ω)×P(Ω)

is analytic. Indeed, once this is established, the graph of Qt(·) is analytic as
a projection of Γ; that is, (A1) is satisfied.

As a first step, we show that

graph(Pζt,·(·)) := {(ω, P,Q) : ω ∈ Ω, P ∈ P(Ω), Q ∈ Pζt,ω(P )} is Borel
(4.4)

and in particular analytic. Indeed, it follows from Lemma A.1 that

Pζt,ω(P ) =
⋂
q∈Q+

Pζt,ω(P, q),

where

Pζt,ω(P, q) :=
{
Q ∈ P(Ω) : Q� P on Fq ∩ {q < ζt,ω − t}

}
.

Hence, it suffices to show that

{(ω, P,Q) ∈ Ω×P(Ω)×P(Ω) : Q ∈ Pζt,ω(P, q)}

is Borel for fixed q. Since Fq is countably generated, cf. Lemma A.7, a stan-
dard argument (see [14, Theorem V.58, p. 52] and the subsequent remarks)
shows that we can construct a Borel functionDq : Ω×P(Ω)×P(Ω)→ R such

14



that Dq(·, Q, P ) is a version of the Radon–Nikodym derivative of the abso-
lutely continuous part of Q with respect to P on Fq. Then, Q ∈ Pζt,ω(P, q)
if and only if EP [Dq(Q,P )1q<ζt,ω−t] = Q{q < ζt,ω − t}. Using the fact that

(ω, P,Q) 7→ EP [Dq(Q,P )1q<ζt,ω−t]−Q{q < ζt,ω − t}

is Borel by Lemmas 4.6 and A.7, we conclude that (4.4) holds.
Let σ, τ ∈ T and let X ∈ X simp

t (ω); recall that X = XH is of the
form (4.2). Then the map

(ω,Q) ∈ Ω×P(Ω) 7→ ψH,σ,τ (ω,Q) := EQ[Xτ1τ<ζt,ω−t]− EQ[Xσ1σ<ζt,ω−t]

is Borel as a consequence of Lemma 4.6. If (ω,Q) are such that St,ω is Q-a.s.
continuous prior to ζt,ω − t, Lemma 4.7 shows that

Q ∈ Yt(ω) if and only if ψH,σ,τ (ω,Q) ≤ 0 ∀H ∈ H̃, σ ≤ τ ∈ T̃ .

Using the obvious embeddings of graph(Pt) and graph(Yt) into Ω×P(Ω)×
P(Ω), it follows that

Γ = graph(Pt) ∩ graph(Pζt,·(·)) ∩ graph(Yt)

= graph(Pt) ∩ graph(Pζt,·(·)) ∩
⋂

H∈H̃, σ≤τ∈T̃

{ψH,σ,τ ≤ 0}.

Here we have used that if (ω, P,Q) belong to the first intersection, then St,ω

is P -a.s. and hence Q-a.s. continuous prior to ζt,ω − t; cf. Assumption 4.2.
The above representation shows that Γ is analytic as a countable intersection
of analytic sets.

Lemma 4.9. The family {Qt(ω)} satisfies (A2).

Proof. For simplicity of notation, we state the proof for s = 0; the extension
to the general case is immediate. Fix Q ∈ Q0; then Q ∈ Q0(P ) for some
P ∈ P. We shall show that

Qt,ω ∈ Pζt,ω(P t,ω) ∩ Yt(ω) for Q-a.e. ω ∈ {ζ > t};

this will imply the lemma because P t,ω ∈ Pt(ω) holds for P -a.e. ω ∈ Ω, cf.
Assumption 4.2, and thus for Q-a.e. ω ∈ {ζ > t} as Q ∈ Q0(P ).

Let Y be the prior-to-ζ density process of Q with respect to P (see
Remark A.3 for details on this notion) and set

Ỹ = 1[0,t) + (Y/Yt)1[t,∞),
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where we use the convention 0/0 = 0. We first establish that given s ≥ 0,
we have Qt,ω � P t,ω on Fs ∩ {ζt,ω − t > s} and in fact

dQt,ω = Ỹ t,ω
s dP t,ω on Fs ∩ {ζt,ω − t > s}

for Q-a.e. ω ∈ {ζ > t}. Indeed, let g ≥ 0 be an Fs-measurable random
variable; then there exists an Fs+t-measurable random variable ḡ such that
ḡt,ω = g. Recalling (4.1), we have for Q-a.e. ω ∈ {ζ > t} that

EQ
t,ω

[g1ζt,ω−t>s] = EQ[ḡ1ζ>s+t|Ft](ω)

= EP [(Ys+t/Yt)ḡ1ζ>s+t|Ft](ω)

= EP [Ỹs+tḡ1ζ>s+t|Ft](ω)

= EP
t,ω

[Ỹ t,ω
s g1ζt,ω−t>s].

We have shown in particular that Qt,ω � P t,ω on Fs ∩ {ζt,ω − t > s} for all
s ∈ Q+ holds for Q-a.e. ω ∈ {ζ > t}, which by Lemma A.1 implies that

Qt,ω ∈ Pζt,ω(P t,ω) for Q-a.e. ω ∈ {ζ > t}.

It remains to prove that

Qt,ω ∈ Yt(ω) for Q-a.e. ω ∈ {ζ > t}. (4.5)

Let X ∈ X simp
t (ω), then we observe that X = X̄t,ω for some X̄ ∈ X simp

0 .
Moreover, let σ ∈ T be bounded, then σ = σ̄t,ω − t for some bounded
σ̄ ∈ T satisfying σ̄ ≥ t (both X̄ and σ̄ do not depend on ω). We have
Xσ = (X̄t,ω)σ̄t,ω−t = (X̄σ̄)t,ω (where X̄σ̄ is considered as a random variable)
and thus

EQ
t,ω

[Xσ1ζt,ω−t>σ] = EQ
t,ω

[(X̄σ̄)t,ω1ζt,ω>σ̄t,ω ] = EQ[X̄σ̄1ζ>σ̄|Ft](ω)

for Q-a.e. ω ∈ {ζ > t}. If τ ≥ σ ∈ T is bounded and τ̄ ≥ σ̄ has the obvious
meaning, we deduce from the supermartingale property of Q ∈ Y0 that

EQ
t,ω

[Xσ1ζt,ω−t>σ] = EQ[X̄σ̄1ζ>σ̄|Ft](ω)

≥ EQ[X̄τ̄1ζ>τ̄ |Ft](ω)

= EQ
t,ω

[Xτ1ζt,ω−t>τ ]

for Q-a.e. ω ∈ {ζ > t}. Now Lemma 4.7 implies (4.5) and the proof is
complete.
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Lemma 4.10. The family {Qt(ω)} satisfies (A3).

Proof. Again, we state the argument for the case s = 0. Let Q ∈ Q0; then
Q ∈ Q0(P ) for some P ∈ P = P0. Moreover, let t ≥ 0 and let ν be an
Ft-measurable kernel such that ν(ω) ∈ Qt(ω) for Q-a.e. ω ∈ {ζ > t}. Using
Assumption 4.2 and the measurability results established in the proof of
Lemma 4.8, it follows that the set

{(ω, P ′, Q′) : ω ∈ Ω, P ′ ∈ Pt(ω), Q′ = ν(ω), Q′ ∈ Qt(ω, P ′)}

is analytic. Let F∗t be the universal completion of Ft. Applying the mea-
surable selection theorem, cf. [4, Proposition 7.49], we can find an F∗t -
measurable kernel µ′ such that µ′(ω) ∈ Pt(ω) and ν(ω) ∈ Qt(ω, µ′(ω)) for
all ω ∈ {ζ > t} outside the F∗t -measurable Q-nullset

N ′ := {ν /∈ Qt} ∩ {ζ > t}

and, e.g., µ′(ω) = P t,ω for ω ∈ N ′. We can then find an Ft-measurable
kernel µ and a P -nullset N such that µ(ω) = µ′(ω) for all ω /∈ N ; cf. [4,
Lemma 7.27]. Using Assumption 4.2 and Q�ζ P , we have

µ(ω) ∈ Pt(ω) for P -a.e. ω ∈ {ζ > t};
ν(ω) ∈ Qt(ω, µ(ω)) for Q-a.e. ω ∈ {ζ > t}. (4.6)

By Assumption 4.2, the measure

P̄ (A) :=

∫∫
(1A)t,ω(ω′)µP (dω′;ω)P (dω), A ∈ F

is an element of P; cf. Definition 4.1 for the notation. Set

Q̄(A) :=

∫∫
(1A)t,ω(ω′) νQ(dω′;ω)Q(dω), A ∈ F .

Next, we show that Q̄�ζ P̄ ; i.e., that

Q̄� P̄ on Fs ∩ {s < ζ}, s ≥ 0.

This is clear for s ≤ t since Q̄ = Q �ζ P = P̄ on Ft. Let s > t and let
A ∈ Fs be such that P̄ (A ∩ {s < ζ}) = 0. Then

µ(ω){(A ∩ {s < ζ})t,ω} = P̄ t,ω{(A ∩ {s < ζ})t,ω} = 0

and thus

Q̄t,ω{(A ∩ {s < ζ})t,ω} = ν(ω){(A ∩ {s < ζ})t,ω} = 0
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for Q-a.e. ω ∈ {ζ > t}, by (4.6). It follows that

Q̄(A ∩ {s < ζ}) = EQ
[
EQ̄[1A∩{s<ζ}|Ft]

]
= 0

as desired.
To see that Q̄ ∈ Y0, let X ∈ X̃0 (recall the notation from Lemma 4.7);

then X1[[0,ζ[[ is a Q-supermartingale. Moreover, noting that Xt,ω is an el-
ement of the scaled space Xt(ω)X simp

t (ω), we have that Xt,ω1[[0,ζt,ω−t[[ is
a ν(ω)-supermartingale for all ω such that ν(ω) ∈ Qt(ω). Using Fubini’s
theorem, it then follows that X1[[0,ζ[[ is a Q̄-supermartingale as desired.

We have shown that Q̄ ∈ Pζ(P̄ )∩Y0 ⊂ Q0 and the proof is complete.

5 Superhedging Duality

In this section, we provide a superhedging duality and the existence of an
optimal strategy. To this end, we require an enlargement of the set of ad-
missible strategies, allowing for continuous trading. We first introduce the
filtration G = (Gt)t≥0, where

Gt := F∗t ∨NP ;

here F∗t is the universal completion of Ft and NP is the collection of sets
which are (F , P )-null for all P ∈ P. Moreover, Assumption 4.2 is in force
throughout this section.

Let NA1(P) hold, then Corollary 3.5 implies the (G, P )-semimartingale
property of S for each P ∈ P. Therefore, we may introduce the class L(P) of
all predictable processes on (Ω,G) that are S-integrable under every P ∈ P.
Given H ∈ L(P) and P ∈ P, we can construct the usual stochastic integral
H • S under P (the dependence on P is suppressed in the notation—but see
also [33]). For x ∈ R+, we denote by H(x) the collection of all H ∈ L(P)
such that x+H • S remains P -a.s. nonnegative for all P ∈ P.

To be consistent with the classical literature, the following superhedging
theorem is stated with the set

Q :=
⋃
P∈P
QP

of prior-to-ζ local martingale measures; cf. Definition 3.3. The subsequent
Lemma 5.2 provides an equivalent version with the set Q0 of supermartingale
measures.
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Theorem 5.1. Let NA1(P) hold, let T ∈ R+ and let f : Ω → [0,∞] be an
upper semianalytic 3, GT -measurable function with supQ∈QE

Q[f1ζ>T ] <∞.
Then

sup
Q∈Q

EQ[f1ζ>T ]

= min
{
x : ∃H ∈ H(x) with x+ (H • S)T ≥ f P -a.s. for all P ∈ P

}
.

In order to prove this theorem, we first show that Q can equivalently be
replaced by Q0 in its statement.

Lemma 5.2. Let NA1(P) hold, let T ∈ R+ and let f : Ω → [0,∞] be a
GT -measurable function. Then

sup
Q∈Q

EQ[f1ζ>T ] = sup
Q∈Q0

EQ[f1ζ>T ].

Proof. Since Q ⊆ Q0, we only have one non-trivial inequality to prove. Fix
Q0 ∈ Q0, and let P ∈ P be such that Q0 �ζ P . By Remark A.3 in the
Appendix, one can construct a càdlàg adapted process Y 0 ≥ 0 which is the
prior-to-ζ density of Q0 with respect to P . Then, the same arguments as
in [28, Proposition 3.2] show that one may write Y 0 = Y D, where D is an
F+-predictable nonincreasing process with D0 = 1 and Y is a P -a.s. strictly
positive càdlàg (F+, P )-local martingale such that Y S is also an (F+, P )-
local martingale. Applying Theorem A.6 from the Appendix, we construct
Q ∼ζ P whose prior-to-ζ density with respect to P is Y . Clearly,

EQ[f1ζ>T ] = EP [YT f ] ≥ EP [Y 0
T f ] = EQ0 [f1ζ>T ]

since f ≥ 0. It remains to show that Q ∈ QP , which follows in a straight-
forward way from the fact that Y S is an (F+, P )-local martingale and that
ζ is foretellable under Q; see Definition A.4 and Theorem A.6 in the Ap-
pendix.

The remainder of this section is devoted to the proof of Theorem 5.1.
In the course of this proof, T > 0 is fixed and f satisfies the assumptions
stated in the theorem. We will use Lemma 5.2 without further mention. To
simplify the notation, we may assume that

S = S1[[0,ζ[[

3The definition of an upper semianalytic function is recalled in Section A.1 of the
Appendix. In particular, any Borel function is upper semianalytic.
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and moreover we set
g := f1ζ>T ;

note that g is upper semianalytic like f .
We begin by proving the easy inequality of the theorem. Let x ∈ R and

suppose there exists H ∈ H(x) such that x + H • ST ≥ g P -a.s. for all
P ∈ P. Fix Q ∈ Q; then there exists P ∈ P such that Q ∼ζ P . Remark A.5
from the Appendix shows that ζ is a predictable stopping time in the Q-
augmentation GQ

+ of G+. It follows that H ′ := H1[[0,ζ[[ is predictable in
GQ

+, and thus x + H ′ • S is a nonnegative local martingale under Q; in
particular, a Q-supermartingale. Using that g = 0 on {ζ ≤ T}, we see that
x+H ′ • ST ≥ g Q-a.s., and now taking expectations yields x ≥ EQ[g]. Since
Q ∈ Q was arbitrary, the inequality “≥” of the theorem follows.

To complete the proof of the theorem, we shall construct in the remainder
of this section a strategy H satisfying

sup
Q∈Q

EQ[g] +H • ST ≥ g P -a.s. for all P ∈ P. (5.1)

Given t ≥ 0 and an upper semianalytic function h ≥ 0 on Ω, we define

Et(h)(ω) := sup
Q∈Qt(ω)

EQ[ht,ω], ω ∈ Ω.

Moreover, we denote F∗ = (F∗t )t∈R+ .

Lemma 5.3. The process {Et(g)}t∈[0,T ] is a (Q,F∗)-supermartingale for all
Q ∈ Q0, and in particular for all Q ∈ Q.

Proof. Let s ≤ t. In view of Proposition 4.5 and Lemma A.7, we may adapt
the proof of [37, Theorem 2.3] to establish that Et(g) is F∗t -measurable and
upper semianalytic, that

Es(g1ζ>t)(ω) = Es(Et(g)1ζ>t)(ω) for all ω ∈ Ω,

and that

Es(g1ζ>t) = ess supQ

Q′∈QQs
EQ

′
[Et(g)1ζ>t|Fs] Q-a.s. for all Q ∈ Q,

where QQs = {Q′ ∈ Q : Q′ = Q on Fs}. Since {ζ > T} ⊆ {ζ > t} for t ≤ T ,
we have g1ζ>t = f1ζ>T1ζ>t = f1ζ>T = g. Hence, the above simplifies to

Es(g) = Es(Et(g)), s ≤ t ≤ T (5.2)
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and

Es(g) = ess supQ

Q′∈QQs
EQ

′
[Et(g)|Fs] Q-a.s. for all Q ∈ Q, s ≤ t ≤ T.

(5.3)
Our assumption that E0(g) < ∞ and (5.2) applied with s = 0 yield that
supQ∈QE

Q[Et(g)] < ∞ for all t; in particular, Et(g) is integrable under
all Q ∈ Q. Moreover, (5.3) yields that

Es(g) ≥ EQ[Et(g)|Fs] = EQ[Et(g)|F∗s ] Q-a.s. for all Q ∈ Q, s ≤ t ≤ T,

which is the desired supermartingale property.

Lemma 5.4. Define

Z ′t := lim sup
r↓t, r∈Q

Er(g) for t < T and Z ′T := ET (g),

let N be the set of all ω ∈ Ω such that Z ′(ω) is not càdlàg, and

Z := Z ′1Nc .

Then (Zt)t∈[0,T ] is a càdlàg, G+-adapted process which is a Q-supermartingale
for all Q ∈ Q. Moreover,

Z0 ≤ sup
Q∈Q

EQ[g] and ZT = g P -a.s. for all P ∈ P. (5.4)

Proof. Recall Lemma 5.3. The modification theorem for supermartingales
[15, Theorem VI.2] yields that N is Q-polar, the limit superior in its defi-
nition is actually a limit outside a Q-polar set, and moreover that Z ′ is a
(G+, Q)-supermartingale for all Q ∈ Q.

To see that N ∈ NP , we fix an arbitrary P ∈ P and show that N is
P -null. Indeed, we may decompose N as

N = (N ∩ {ζ ≤ T}) ∪ (N ∩ {ζ > T}).

The first set is P -null because {ζ < ∞} was assumed to be P-polar. We
know that there exists Q ∈ Q such that P ∼ζ Q. Since N is Q-null relative
to F∗T , there exists an FT -measurable Q-nullset NQ such that N ⊆ NQ. Now
P ∼ζ Q implies that NQ ∩ {ζ > T} is P -null, and then so is N ∩ {ζ > T}.
As a result, we have N ∈ NP and in particular N ∈ G0. This implies
that Z := Z ′1Nc is still a (G+, Q)-supermartingale for all Q ∈ Q, while in
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addition all paths of Z are càdlàg. Moreover, for any P ∈ P, it follows from
GT = FT P -a.s. and (5.3) that ZT = Z ′T = ET (g) = g P -a.s.

It remains to show the first part of (5.4). Since Z0 is G0+-measurable,
G0+ is equal to F0+ up to P -nullsets for any P ∈ P, and any P ∈ P is
dominated on F0+ by some Q ∈ Q, it suffices to show that

Z0 ≤ sup
Q′∈Q

EQ
′
[g] ≡ E0(g) Q-a.s.

for all Q ∈ Q. The proof of this fact is similar to the proof of [34, Inequal-
ity (3.3)]. Namely, it follows from Lemma 5.3 and the construction of Z
that

sup
Q′∈Q

EQ
′
[Z0] ≤ sup

Q′∈Q
EQ

′
[g].

Then, one shows that supQ′∈QE
Q′ [Z0] dominates the Q-essential supremum

of Z0 for any Q ∈ Q by verifying that Q is stable under F0+-measurable,
equivalent changes of measure—see Theorem A.6. We omit the details.

Lemma 5.5. Let Q ∈ Q. Then there exists a GQ
+-predictable process HQ

which is S-integrable under Q such that

Z −HQ • S is nonincreasing Q-a.s. on [[0, ζ[[∩[[0, T ]].

Proof. Let σn be an announcing sequence for ζ associated with Q and set
τn := σn∧T . Let Q′ be a probability on FT which is equivalent to Q and such
that Sτn is a Q′-local martingale; we show that Zτn is a Q′-supermartingale.
Indeed, let Y ′ = (Y ′t )t∈[0,T ] be the density process of Q′ with respect to Q
and the filtration GQ

+, a strictly positive Q-martingale with unit expectation.
Define

Y ′′t := Y ′t∧τn , t ≥ 0;

then Y ′′ is the density process of a probability Q′′ with respect to Q and it
is elementary to verify that Q′′ ∈ Q. Thus, Z is a Q′′-supermartingale by
Lemma 5.4. As Q′′ = Q′ on Gτn+, it follows that Zτn is a Q′-supermartingale
as desired. As a result, we may apply the classical optional decomposition
theorem (see [22]) to obtain an integrand HQ,n such that

Zτn −HQ,n • Sτn is nonincreasing Q-a.s.

The result follows by a passage to the limit n→∞.
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End of the Proof of Theorem 5.1. We can now construct H as in (5.1) by
arguments similar to the proof of [34, Theorem 2.4]. To this end, we recall
that S = S1[[0,ζ[[. Moreover, as we will be working in the filtration G and
NP ⊂ G0, we may assume without loss of generality that all paths of S are
continuous prior to ζ.

The (d+1)-dimensional process (S,Z) is essentially a G+-semimartingale
under all Q ∈ Q; that is, modulo the fact that S may fail to have a left
limit at ζ. Following the construction of [31, Proposition 6.6]4, there exists
a G+-predictable (and hence G-predictable) process C(S,Z) with values in
Sd+1

+ (the set of nonnegative definite symmetric matrices), having Q-q.s.
continuous and nondecreasing paths prior to ζ, and which coincides Q-a.s.
with 〈(S,Z)c〉Q under each Q ∈ Q, prior to ζ. Here 〈(S,Z)c〉Q denotes the
usual second characteristic of (S,Z) under Q; i.e., the quadratic covariation
process of the continuous local martingale part of (S,Z).

Let CS be the d × d submatrix corresponding to S and let CSZ be the
d-dimensional vector corresponding to the quadratic covariation of S and Z.
Let At := trCSt be the trace of CS ; then, prior to ζ, CS � A Q-q.s. and
CSZ � A Q-q.s. (i.e., absolute continuity holds outside a polar set). Thus,
we have dCS = cSdA Q-q.s. and dCSZ = cSZdA Q-q.s. for the derivatives
defined by

cSt := c̃St 1{c̃St ∈Sd+}
, c̃St := lim sup

n→∞

CSt − CS(t−1/n)∨0

At −A(t−1/n)∨0

and

cSZt := c̃SZt 1{c̃SZt ∈Rd}, c̃SZt := lim sup
n→∞

CSZt − CSZ(t−1/n)∨0

At −A(t−1/n)∨0
,

where all operations are componentwise and 0/0 := 0. Let (cS)⊕ be the
Moore–Penrose pseudoinverse of cS and define the G-predictable process

H :=

{
cSZ(cS)⊕ on [[0, ζ[[∩[[0, T ]],

0 otherwise;

we show that H satisfies (5.1).
Fix Q ∈ Q. By Lemma 5.5, there exist an S-integrable process HQ and

a nondecreasing process KQ such that

Z = Z0 +HQ • S −KQ Q-a.s. on [[0, ζ[[∩[[0, T ]]. (5.5)
4That proposition does not use the separability assumptions on the filtration that are

imposed for the main results of [31].
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It follows that
d〈S,Z〉 = HQd〈S〉 Q-a.s.,

or equivalently
cSZ = HQcS Q× dA-a.e.

By Itô’s isometry, this implies that H is S-integrable under Q and

H • S = HQ • S Q-a.s. on [[0, ζ[[∩[[0, T ]].

Now (5.5) implies that

Z − Z0 −H • S is nonincreasing and nonpositive Q-a.s. on [[0, ζ[[∩[[0, T ]].

Noting that

Zt1ζ≤t = Et+(f1ζ>T )1ζ≤t = Et+(f1ζ>T1ζ≤t) = Et+(0) = 0 Q-a.s.,

we see that Z = 0 on [[0, T ]] \ [[0, ζ[[. Since H also vanishes on that set, we
conclude that

Z − Z0 −H • S is nonincreasing and nonpositive Q-a.s. on [[0, T ]].

In particular, Z0 +H • S ≥ 0 Q-a.s. As Q ∈ Q was arbitrary, it easily follows
that Z0 +H • S ≥ 0 P -a.s. and that

Z − Z0 −H • S is nonincreasing P -a.s. on [[0, T ]]

for all P ∈ P. Thus, we have

sup
Q∈Q

EQ[g] +H • ST ≥ Z0 +H • ST ≥ ZT = g P -a.s. for all P ∈ P

and H ∈ H(x) for x = supQ∈QE
Q[g]. This completes the proof of (5.1) and

thus of Theorem 5.1.

A Appendix

A.1 Notions from Measure Theory

Given a measurable space (Ω,A), let P(Ω) the set of all probability measures
on A. The universal completion of A is the σ-field ∩P∈P(Ω)AP , where AP
denotes the P -completion of A. When Ω is a topological space with Borel σ-
field B(Ω), we endow P(Ω) with the topology of weak convergence. Suppose
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that Ω is Polish, then P(Ω) is Polish as well. A subset A ⊂ Ω is called
analytic if it is the image of a Borel subset of another Polish space under a
Borel-measurable mapping. Analytic sets are stable under countable union
and intersection, and under forward and inverse images of Borel functions.
Any Borel set is analytic, and any analytic set is universally measurable. A
function f : Ω → [−∞,∞] is upper semianalytic if {f ≥ c} is analytic for
every c ∈ R. In particular, any Borel function is upper semianalytic. We
refer to [4, Chapter 7] for these results and further background.

A.2 Föllmer’s Exit Measure

Important references on Föllmer’s exit measure are [21] and [29]; see also
[40] and the references therein for recent developments. The first result of
this section provides an alternative, seemingly stronger characterization of
the notion of prior-to-ζ absolute continuity—compare with Definition 3.1.

Lemma A.1. Let ξ be a random time and P,Q ∈ P(Ω). Then

P (A∩{τ < ξ}) = 0 ⇒ Q(A∩{τ < ξ}) = 0 ∀ τ ∈ T+, A ∈ Fτ+ (A.1)

holds if and only if

P (A∩{q < ξ}) = 0 ⇒ Q(A∩{q < ξ}) = 0 ∀ q ∈ Q+, A ∈ Fq. (A.2)

Proof. It is clear that (A.1) implies (A.2). For the converse, we first note
that it suffices to check (A.1) for F-stopping times taking finitely many values
in Q+ ∪ {∞}. Indeed, let τ ∈ T+ be given; then

τn := inf
{

(k + 1)2−n : 0 ≤ k ≤ n2n, τ ≤ k2−n
}

(where inf ∅ = ∞) is a sequence of such stopping times and τn ↓ τ . Now
A∩{τn < ξ} increases to A∩{τ < ξ} for A ∈ Fτ+ ⊂ Fτn ; therefore, if (A.1)
is valid for each τn, then P (A ∩ {τ < ξ}) = 0 implies P (A ∩ {τn < ξ}) = 0
which in turn implies Q(A∩ {τn < ξ}) = 0 and thus Q(A∩ {τ < ξ}) = 0 by
monotone convergence.

Any F-stopping time τ with finitely many values in Q+ ∪ {∞} is of the
form τ =

∑n
i=1 ti1Ai , where n ∈ N, ti ∈ Q+∪{∞} and Ai ∈ Fti are disjoint.

Hence,

R(A ∩ {τ < ξ}) =

n∑
i=1

R
(
A ∩ {τ ≤ ti} ∩Ai ∩ {ti < ξ}

)
, R ∈ {P,Q}

and it follows that (A.2) implies (A.1).
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Remark A.2. Let Q ∼ζ P . It is a consequence of Lemma A.1 that Q and
P are equivalent on Fτ+∩{τ < ζ} for any τ ∈ T . Suppose now that (τn)n∈N
is a nondecreasing T -valued sequence such that τ := limn→∞ τn ≥ ζ holds
in the Q-a.s. sense. Since {τ < ζ} ∈ Fτ+ ∩ {τ < ζ} has zero Q-measure, we
conclude that P{τ < ζ} = 0, i.e., that τ ≥ ζ also holds in the P -a.s. sense.
In particular, if ζ =∞ P -a.s., it follows that τ =∞ P -a.s.

Remark A.3. Let P and Q be two probability measures on (Ω,F) with
Q�ζ P and ζ =∞ P -a.s. By utilizing appropriate versions of the Radon–
Nikodym theorem and a càdlàg modification procedure, one may establish
the existence of a P -a.s. nonnegative càdlàg adapted process Y such that

Q(Aτ∩{τ < ζ}) = EP [Yτ1Aτ1τ<ζ ] for all τ ∈ T+ and Aτ ∈ Fτ+. (A.3)

The above process Y will be called the prior-to-ζ density process of Q with
respect to P . It is strictly positive under P when Q ∼ζ P . Note that (A.3)
uniquely specifies Q, since the class of sets AT ∩ {T < ζ}, T ∈ R+, AT ∈ FT
generates Fζ− = F and is also a π-system. Therefore, the specification of
the prior-to-ζ density process of Q with respect to P is uniquely defined up
to P -evanescent sets.

Suppose that Q ∼ζ P and Y is the prior-to-ζ density process of Q with
respect to P . In particular, since Q and P are equivalent on F0+ and ζ > 0,
(A.3) gives EP [Y0] = 1. Furthermore, for 0 ≤ s < t < ∞ and As ∈ Fs+,
note that

EP [Yt1As ] = Q(As ∩ {t < ζ}) ≤ Q(As ∩ {s < ζ}) = EP [Ys1As ],

which implies that Y is an (F+, P )-supermartingale.

Theorem A.6 that follows, essentially due to Föllmer in [21], is a converse
to the previous observation: starting with a probability P and a candidate
density process Y , a probability Q is constructed that has Y as a prior-to-ζ
density with respect to Q. The statement requires the following notion.

Definition A.4. We say that ζ is foretellable under a probability Q if there
exists a T+-valued sequence (τn)n∈N such that Q{τn < ζ} = 1 for all n and
Q{limn→∞ τn = ζ} = 1.

It is clear that the above sequence of stopping times can be chosen to be
nondecreasing. Also, note that foretellability of ζ does not remain invariant
under prior-to-ζ equivalent probability changes.

Remark A.5. By [24, Theorem 4.16], ζ is foretellable under Q if and only
if ζ is Q-a.s. equal to a predictable stopping time on (Ω, F+).
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Theorem A.6. Let Y be a strictly positive (F+, P )-supermartingale with
EP [Y0] = 1. Then, there exists Q ∼ζ P such that Y is the prior-to-ζ density
process of Q with respect to P . Furthermore, if Y is actually an (F+, P )-local
martingale, ζ is foretellable under Q.

Proof. Recall that for ξ ∈ T+, the σ-field Fξ− is generated by the collection
{As ∩ {s < ξ} : s ≥ 0, As ∈ Fs}. With this definition in place, we observe
that F = Fζ−, because Bt is Fζ−-measurable for all t ≥ 0. Indeed, Borel
subsets of E ∪ {4} are of the form A or A ∪ {4}, where A ∈ B(E), and
for any such A, we have {Bt ∈ A} = {Bt ∈ A} ∩ {t < ζ} ∈ Fζ− and
{Bt ∈ A ∪ {4}} = ({Bt ∈ A} ∩ {t < ζ}) ∪ {ζ ≤ t} ∈ Fζ−.

By [40, Section 4.2], one can construct ξ ∈ T+ with P{ξ < ∞} = 0 and
a probability Q0 on (Ω,Fξ−), such that

Q0(Aτ ∩ {τ < ξ}) = EP [Yτ1Aτ1τ<ξ]

holds for all τ ∈ T+ and Aτ ∈ Fτ+. In particular, Q0{ξ > 0} = EP [Y0] = 1.
Since Aτ ∩ {τ < ξ ∧ ζ} ∈ Fτ+ for all Aτ ∈ Fτ+, the above formula also
holds for ξ′ := (ξ ∧ ζ)1ξ>0 + ζ1ξ=0. Thus, we may assume that ξ ∈ T+

satisfies 0 < ξ ≤ ζ and P{ξ = ζ} = 1, and that Q0(Aτ ∩ {τ < ξ}) =
EP [Yτ1Aτ1τ<ξ] holds for all τ ∈ T+ and Aτ ∈ Fτ+. We shall extend Q0

to a probability Q on F = Fζ− such that Q{ξ = ζ} = 1 holds; this will
immediately establish (A.3). Define a map ψ : Ω→ Ω as follows: for ω ∈ Ω,
set ψt(ω) = ωt when t < ξ(ω) and ψt(ω) = 4 when ξ(ω) ≤ t. Since F is
generated by the coordinate projections and

{ψ ∈ Λ} = ({ω : ωt ∈ Λ ∩ E} ∩ {t < ξ}) ∪ {t ≥ ξ} ∈ Fξ−

holds for all t ∈ R+ and Borel subsets Λ of Ē = E ∪ {4}, it follows that
ψ is (Fξ−/F)-measurable. By construction, ζ ◦ ψ = ξ. We claim that
ξ ≤ ξ ◦ ψ holds as well. Indeed, since ξ ∧ t is Ft−-measurable for all t ∈ R+,
[14, Theorem 96, Chapter IV] implies that ξ ∧ t = (ξ ∧ t) ◦ kt, where k is
the killing operator defined via kt(ω) = ω1[0,t) +41[t,∞) for ω ∈ Ω. Since
ξ(ω) ∧ t = ξ ◦ kt(ω) ∧ t holds for all (ω, t) ∈ Ω × R+, plugging in t = ξ(ω)
gives

ξ(ω) = ξ ◦ kξ(ω)(ω) ∧ ξ(ω) = ξ ◦ ψ(ω) ∧ ξ(ω), ω ∈ Ω,

where we have used that kξ(ω)(ω) = ψ(ω) holds for all ω ∈ Ω. Therefore,
ξ ≤ ξ ◦ ψ. The last inequality, combined with ξ ≤ ζ and ζ ◦ ψ = ξ, gives
ζ ◦ ψ = ξ ◦ ψ. Define Q on F via Q(A) = Q0(ψ−1(A)) for all A ∈ F . By
construction, Q is an extension of Q0, and (A.3) follows since

Q{ξ < ζ} = Q0{ξ(ψ) < ζ(ψ)} = Q0(∅) = 0.
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Finally, if Y is an (F+, P )-local martingale, let (τn) be a localizing se-
quence and call τ := limn→∞ τn. Note that τ = ∞ = ζ holds in the P -a.s.
sense. By Remark A.2, τ ≥ ζ holds in the Q-a.s. sense. Furthermore,
from (A.3), we obtain Q{τn < τ} = EP [Yτn ] = 1 for all n ∈ N. Therefore, ζ
is foretellable under Q.

A.3 On the Path Space Ω

The goal of this section is to show that Ω carries a natural Polish topology,
which is required for the measurable selection arguments in Sections 4 and 5.
To the best of our knowledge, this result is not contained in the previous
literature—only the Lusin property is mentioned; see, e.g., [29].

Let D = Dx∗([0,∞);E) be the usual Skorokhod space of E-valued càdlàg
paths on [0,∞) starting at the point x∗ ∈ E and let δ∞ be its usual metric,
rendering D a Polish space. We may think of a path ω ∈ Ω as consisting
of a path ω̃ ∈ D and a lifetime z ∈ (0,∞]; in this context, it is useful to
equip (0,∞] with the complete metric d(0,∞](z, z

′) := |z−1 − z′−1|, where
∞−1 := 0. More precisely, given z ∈ (0,∞], let

ez(t) :=

{
t if z =∞,
z(1− e−t) if z <∞.

We note that ez : [0,∞)→ [0, z) is a monotone bijection; thus, precomposi-
tion with ez turns a path ω ∈ Ω with lifetime z = ζ(ω) into an element of D.
As a result, we can define

δΩ(ω, ω′) := d(0,∞]

(
ζ(ω), ζ(ω′)

)
+ δ∞

(
ω ◦ eζ(ω), ω

′ ◦ eζ(ω′)
)
, ω, ω′ ∈ Ω.

Lemma A.7. The space (Ω, δΩ) is Polish and its Borel σ-field coincides
with F . Moreover, Fτ = σ(Bt∧τ , t ∈ R+) for any F-stopping time τ ; in
particular, Fτ is countably generated.

Proof. It is clear that δΩ defines a metric on Ω. Moreover, the mapping

Ω→ D× (0,∞], ω 7→
(
ω ◦ eζ(ω), ζ(ω)

)
admits the inverse

D× (0,∞]→ Ω, (ω̃, z) 7→ (ω̃ ◦ e−1
z )1[0,z) +41[z,∞).

By the definition of δΩ, these mappings constitute an isometric isomorphism
between Ω and D× (0,∞]; in particular, Ω is Polish like D× (0,∞].

28



Let B(Ω) be the Borel σ-field on Ω. To prove that F ⊂ B(Ω), it suffices
to show that the evaluation Bt : ω 7→ ωt is Borel-measurable for any fixed
t ≥ 0. To this end, note that the functions

ω 7→ ζ(ω) ∈ (0,∞], ω 7→ ω ◦ eζ(ω) ∈ D, ω 7→ e−1
ζ(ω)(t) ∈ [0,∞)

are continuous on Ω. Let B̃ be the canonical process on D and recall that
(t, ω̃) 7→ B̃t(ω̃) is jointly Borel-measurable. It then follows that

ω 7→ Bt(ω) = B̃e−1
ζ(ω)

(t)

(
ω ◦ eζ(ω)

)
1[0,ζ(ω))(t) +41[ζ(ω),∞)(t)

is Borel-measurable as well.
To prove the reverse inclusion B(Ω) ⊂ F , it suffices to show that any

continuous function f : Ω→ R is F-measurable. Indeed, the maps

ω 7→ ζ(ω) ∈ (0,∞], ω 7→ ω ◦ eζ(ω) ∈ D

are clearly F-measurable. Moreover, any function f on Ω induces a unique
function f̃ on D× (0,∞] satisfying

f(ω) = f̃
(
ω ◦ eζ(ω), ζ(ω)

)
, ω ∈ Ω.

If f is continuous, it follows that f̃ is continuous and hence the composition
ω 7→ f(ω) = f̃(ω ◦ eζ(ω), ζ(ω)) is F-measurable. This completes the proof
that F = B(Ω).

The last claim follows from the fact that Ē is Polish and standard argu-
ments; see [46, Lemma 1.3.3 and Exercise 1.5.6].
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