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Abstract

We study the discrete time approximation of the solution (Y, Z, K) of a
reflected BSDE. As in Ma and Zhang (2005), we consider a Markovian setting
with a reflecting barrier of the form h(X) where X solves a forward SDE. We
first focus on the discretely reflected case. Based on a representation for the
Z component in terms of the next reflection time, we retrieve the convergence
result of Ma and Zhang (2005) without their uniform ellipticity condition on
X. These results are then extended to the case where the reflection operates
continuously. We also improve the bound on the convergence rate when h € C?

with Lipschitz second derivative.
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1 Introduction

In this paper, we consider the solution (Y, Z, K) of a decoupled Forward-Backward
SDE with reflection

t t
Xt:;%+/bHQ®+/JQQMK,
0 0
T T
Y, = g(Xp)+ / (X, Yo, Ze)ds — / (2. AW, + K1 — Ki |
t t
T
Y, > W(X)) , t<T and / (Y; — h(X;))dK, = 0,
0

where b, o, f, g and h are Lipschitz-continuous functions. Such equations appear
naturally in finance in the pricing and hedging of American contingent claims, see |7].
They are more generally related to semilinear parabolic PDEs with free boundary,
see [9].

We study a discrete-time approximation scheme of the form

Yi o= g(X7),

Z;: = (ti‘H - ti)_l E {YZTH(W%H - Wti) ‘ fti]
VT o= BV IR e - )XY )
VT = Y7 Vh(X]),i<N-1,

where m = {tp =0 < t; < ... <ty = T} is a partition of the time interval [0, T]
with modulus |7|, and X7 is the Euler scheme of X.

In the non-reflected case, such approximations have been studied by [3| and [16],
see also 2] and [6] for BSDEs with jumps. In all these analysis, it appears that the

approximation error
1 1
2 2

E Y7 — Y E
iISIlZ\?Jz(l sup| tit1 t’ +

tE(ti,ti+1]

N—1 tiv1
> / ZT — Zy|*dt
i=0 i

is intimately related to a regularity property on Z. More, precisely, the above error

is controlled by

T 1
B 2
7|2 + E U \Z, — Zt|2dt}
0

where Z is defined on [t;, t;11) by Zs = (tir1—t;) 'E [ :f“ Zsds | ]—}i]. It is shown in
[15] that, in the non-reflected case, the last term is bounded by C|x| 2. This provides
the expected rate of convergence for the discrete-time approximation scheme. This
result is remarkable since it does not require any ellipticity condition on ¢ and the

coefficients are only assumed to be Lipschitz.



The reflected case is more difficult to handle except when f is independent of Z as
in [1] and [3]. In this case, there is no need to control Z and the error on Y is still
bounded by C' ’7‘(’% It can even be improved when h is semi-convex, see [1].

The general case was studied in [11]. When b, o are C’,} and h is C?, they prove that

1

E [fOT |Zy — Zt|2dt} * is bounded by C’|7r|i. This can be viewed as a weak regularity
result on the “gradient” of the solution of the related obstacle problem and is of own
interest, see [9]. This also allows to show that the discrete-time scheme converges
at least at a rate |7r]i.

Their proof relies on a particular representation of Z obtained by means of an
integration by parts argument, in the Malliavin sense. It generalizes a result of [5]
obtained in the non-reflected case with f = 0. The main drawback of this approach
is that it requires some uniform ellipticity condition on o, an assumption which was

not used in the non-reflected case.

The aim of this paper is to improve this result by removing the ellipticity condi-
tion on o. Our approach is slightly different from [11]. We first study the solution
(YR Z4%) of a discretely reflected BSDE. We provide a new representation re-

sult for Z9% in terms of the next reflection time. This allows us to prove that
1

E [ fOT |ZA® — Z4R12q¢ > is controlled by ]7T|i without any ellipticity condition on o.
By using a standard approximation argument, we then extend this property to Z. As
a consequence, we show that the discrete-time scheme approaches both continuously-
and discretely-reflected BSDEs at least at a rate ‘ﬂ”%. We only assume that all the
functions are Lipschitz-continuous and that A is Cl} with Lipschitz-continuous deriv-
atives. When o € C’g with Lipschitz-continuous first derivative and h is Cg with
Lipschitz-continuous second derivatives, this result is improved and the error on Y
is shown to be bounded by C' ’W‘% as in the non-reflected case. The error on Z can

also be improved when X™ is replaced by an order one scheme.

To conclude this introduction, we would like to observe that the above discrete time
scheme can not be directly implemented in practice and requires the estimation of
conditional expectations. The global numerical error can therefore be decomposed
as the sum of two terms: the first one, which we study here, is the discrete-time
approximation error; the second one is related to the numerical approximation of
the involved conditional expectations. Different techniques for computing these
conditional expectations are discussed in [1], [3], [4] and [6], see also the references
therein, and can be easily adapted to our context without any further analysis.
Since the global error is the sum of these two terms, the impact of our results
on the precision of the numerical approximation is clear. It would be too long to
describe here these different methods and we refer to the above papers for a complete

presentation.



The rest of the paper is organized as follows. In Section 2 and Section 3, we study
the approximation of the discretely reflected BSDE. The representation and the
regularity property of Z9% are proved in Section 5. The continuously reflected case

is studied in Section 4.

2 The forward process

Let T > 0 be a finite time horizon and (2, F,P) be a stochastic basis supporting
a d-dimensional Brownian motion W. We assume that the filtration F = (F;)i<r
generated by W satisfies the usual assumptions and that Fr = F.

Let X be the solution on [0,77] of the stochastic differential equation

t t
Xt:Xo—i—/ b(Xu)dqu/ o (X,)dW,
0 0

where X € R?, and, b : R — R% and o : R — M? are assumed to be L—Lipschitz,

lb(z) — b(y)| + |o(z) — o(y)| < Lz —y| forall z,y € RY. (2.1)

Here M? is the space of d-dimensional matrices, | - | denotes the Euclidean norm on
R? or M¢ and all elements of R? are viewed as column vectors.

By convention, we assume that |Xo| + 7 + |b(0)| + |0(0)] < L. In the following, we
shall denote by C a generic positive constant which depends only on L (but may

take different values). We write C7 if it depends on an extra parameter p > 0.

For later use, we recall the well-known consequence of (2.1):

[sup | X¢| [z» < CF, (2.2)
t<T

1
where, for a random variable £, we write [|€||zr := E[|£[P]?.

Remark 2.1. Importantly, we shall not make any ellipticity assumption on o. We
can therefore consider cases where some lines or columns of o are equal to zero. This
allows to embed situations where X and the effective driving Brownian motion have
different dimensions and/or the coefficients of the SDE are time dependent. In the

later case, one component of X corresponds to the time variable.

The discrete-time approximation of X has been widely studied in the literature, see
e.g. [10]. When (X, );<n cannot be perfectly simulated, we use the standard Euler
scheme X7 defined for a partition 7 := {0 =ty < t; < ... < ty = T} of [0,7T],
N > 1, by

Xr = X
XZ.’E+1 = XZZ +b(XZ:)(tz+1 — tz) +U(XtTZ>(Wti+1 — th) y 7 S N-—-1.

4



In the sequel, we shall denote by || := max;<y_1(tit1 — ;) the modulus of 7 and

assume that

Nir| < L
which holds with L > 1 when the grid 7 is regular, i.e. (t;11 —t;) = |« for all
1t <N -1

As usual, we define a continuous-time version of X™ by setting
er = Xg + b(XZZ)(t — ti) —|—O’(XZZ)(W,5 — Wtz) , te [ti,ti+1) , 1SN —1. (23)
Remark 2.2. It is well known that under (2.1)

< Cllnlz,p>1. (24)

[ sup [ Xy — XT| ||Lr + max || sup |X; — X7| [[z»
t<T <N te(titiq]

Using standards arguments, one can also obtain a conditional version of this result:

Et, |1 Xt — X5 | < e Xy, — XT P+ CplnPEy, [(X7)?] i <N -1, (2.5)

i+1

where Ey, [] denotes the conditional expectation E[- | ], i« < N, and X} =

maxi<r ‘Xt’

3 Approximation scheme for discretely reflected BSDEs

In this section, we concentrate on the approximation of “discretely reflected BSDEs”,
i.e. BSDEs for which the reflection operates only on a finite set of times. The reason
for looking at such equations is twofold. First, they provide a good approximation
for (continuously) reflected BSDEs, see below. Second, they are related to optimal
stopping problems where the stopping times can only take a finite number of different
values. For instance, they are related to Bermudan options in finance, see e.g. [14]

and the references therein. They are therefore interesting in their own.

3.1 Definition

In this section, we define a discretely reflected BSDE. The reflection operates only

at the times
O<rm < - <re1<T

for some k > 1. We set ® = {r;, 0 < j < s} where by convention 79 := 0 and
7 := T. The solution of the discretely reflected BSDE is a pair (Y%, Z4%) satisfying

Vi~ T g(Xr)



and, for j <k —1land t € [rj,rjt1),

Tj+1

IR = YR g [ f(Od)ds - [T (Z8R) AW, |
an an (3.1)
th = R (t 9 Xt ) }/t ) .

Here, g : R — R, f : R¢ x R x R? — R, @ .= (X, YR zdR®) (7dR) i the

transposed vector of Z9% and

R(taxvy) = y+ [h(ﬂ?) - y]Jr]-{tG%\{O,T}} ) (tvxuy) € [07T] X Rd+1 )

for some h : R? — R satisfying ¢ > h on R%.
By a solution, we mean an adapted process (Y%, Zd%) € 8? x H? where, for p > 1,

SP is the set of real valued progressively measurable U such that

[Ullsp = [Isup|U| |lr < o0,
t<T

and HP is the set of progressively measurable R%-valued processes V satisfying

. ;
Vi = | (/0 M\?dr) I < oo

In the following, we shall extend the definition of || - ||s» and || - ||3» to processes

with values in R? or M¢, these extensions being defined in a straightforward way.

Observe that the solution of (3.1) can be constructed piecewise. Assuming that g,
h and f are L-Lipschitz:

lg(z1) — g(z2)| + |h(z1) — h(22)| + | f(01) — f(O2)] < L (|21 — 22| + (01 — 62])

for all 1,22 € R? and 61,6, € R? x R x R?, the existence and uniqueness of the
solution follow from [13]. By convention, we assume that |g(0)|+|h(0)|+|f(0)] < L.

Remark 3.1. For later use, observe that (3.1) can be written as

T T
T g(xp) + / F (X0 VIR, 20%)du / (ZRyaw, + KR - R 1<,
t t
(3.2)
with

k—1

KR Z[h(er>_ﬁgﬂ*1{w}.
j=1

By repeating the arguments of the proof of Proposition 3.5 in [9], we then easily
check that

7452 + 1Y 52 + 1129 e + | BF 2 < C (33)

Recall that Cp, > 0 is a constant independent of .



We conclude this section with a regularity result on Y4 whose proof is given at the
end of Section 5.3.

Proposition 3.1. We have

max E | sup |§Q?i Y2 < op|nl.
iSN-1 tE(ti,tH_ﬂ

3.2 Discrete-time approximation

From now on, we assume that & C =, i.e. the reflection times are included in the
partition defining the Euler scheme of the forward process X.
We approximate (Y%, Z9%) by the piecewise constant process (Y7, Z™) defined by

induction by

77 = (tig1—t) " By [}‘Q?H(Wtw — W)
Yro= B [V ] (e — 0 XLV 27) (3.4)
Vro= R(ti, Xp, Vi) iSN-1,
and by the terminal condition
Vi o= V= g(XF).
Recall that Ey, [-] stands for E[- | F,]. For ease of notations, we set
(V7 27) = (V7. Z7) fort e ftitin), i< N1, (35)

Using an induction argument and the Lipschitz-continuity assumption on g, h and
f, one easily checks that the above processes are square integrable. It follows that

the conditional expectations are well defined at each step of the algorithm.

Remark 3.2. Observe that Y7 is defined implicitly as the solution of a fixed point
problem. Since f is Lipschitz-continuous, it is defined with no ambiguity. Moreover,
for small values of |7| it can be estimated numerically in a very fast and accurate
way, if not explicit. We refer to [2] for a discussion on the difference between implicit

and explicit schemes.

For later use, let us introduce the continuous time scheme associated to (Y™, Z™).

By the martingale representation theorem, there exists Z™ € H? such that
_ _ Lit1 , .
v =E, [Ygﬂ} +/t (ZTYdW, , i<N 1.

We can then define Y™ on [ti, tit1) by

_ - _ tit1
o= Ve - 0f T2 - [ a6
t

i1 i1



and set
Y = R(t,XF,Y[) for t<T,
so that
Y™ =Y onm and Y™ = Y7 on[0,T]\R. (3.7)

Remark 3.3. It follows from the It6 isometry that
_ tit1
er = (tz’+1 — ti>_1Eti [/ ngu] , Vte [ti,ti+1) , <N -1, (3.8)
t;

recall (3.5).

3.3 Convergence results

In order to state our first result, we need to introduce the process Z® defined on

each interval [t;,t;+1) by
_ tit1
t;
Remark 3.4. For later use, observe that, by (3.8) and Jensen’s inequality,

tit1

E(IZ%-Z7P] < (i -t)7! / E||1Z8% - Zz au,  (3.10)

ti

which implies
12 = Z7 e < 112 = Z7|lpee - (3.11)

The following result shows that the approximation error is intimately related to the

Zdﬂ% _

H? norm of ZW® A similar property holds in the non-reflected case, see [2],

[3], [15] and [16].
Proposition 3.2. The following holds:

l —
max | sup Y7 =Y < O (JnlE 412 - 2%
JSR=L ey ri]

and

127 = 2% < Cp (REIR[E + 1120 = 2%

The proof essentially follows the arguments of [3] and is provided in the Appendix.



Remark 3.5. Observing that Z% is the best L2(Q2 x [0, T])-approximation of Z4%
by adapted processes which are constant on each interval [t;,¢;11), we deduce that
|| Z9% — Zd%H%Q goes to 0 as |r| goes to 0. Thus, the above proposition actually
shows that our discrete-time scheme is convergent. This also implies that
AR _ ZdR(2 -« B AR w2
1297 2% < YE| [ 1R - e
i=0 i

In order to get a bound on the convergence rate, it remains to control || Z9% - Z4%| 2.

Such a control will be obtained under one of the following additional assumptions.
(H1) : h € C} with L-Lipschitz derivative,
or

(H2) : o € C} with L-Lipschitz derivative, and h € Cf with L-Lipschitz first and

second derivatives.

Proposition 3.3. Let (H1) hold. Then,
12 = 2%y < C1, (alk) [7]3 + () ) |

where (a(k), e(r)) = (k1,|7|1) under (H1), and (a(x), e(r)) = (1, |7|2) under (H2).
The proof will be provided in Section 5.

Combining the above propositions, we obtain the main result of this section.

Theorem 3.1. Let (H1) hold. Then,

1
max | swp [V Y|l < Co (av(w) |nl? + e(m))
ISR=L T tery ]

and

127 = 2% e < C1 (az(w) [n]? +e(m))
with (@ (), az(x), () = (k1, k2, |7|1) under (H1), and (ay (k) az(k),e(r)) =
(1,k2,|m|2) under (H2).

Recalling (3.7), (3.11) and combining Proposition 3.1 with Theorem 3.1, we finally
obtain a bound on the error due to the approximation of (Y%, Z4%) by the piecewise
constant process (Y™, Z™) which can actually be estimated numerically, see the end

of the introduction.

Corollary 3.1. Let (H1) hold. Then,

max |77 =Y+ sup V7, Y e < Cp (ay(s) InlF + e(m))
i<N-1 te(tistig]



and
127 = 2% < Cp (az(k) I7lF + e(m))

with (@ (), az7(x), () = (k1, k3, |7|1) under (H1), and (ay (k),az(k), e(r)) =
(1,k2,|7|2) under (H2).

Remark 3.6. It was shown in [11] that the results of Proposition 3.3 and Theorem
3.1 hold with the bound CL‘W‘i when (Y4 Z4%) is replaced by the solution (Y, Z) of
a continuously reflected BSDE, see (4.1) below. Their proof is based on a particular
representation of Z obtained by an integration by parts argument. However, it
requires an uniform ellipticity condition on o. Our approach is completely different.
It is based on a representation for Z in terms of the next reflection time, see
Section 5 below. This allows us to get rid of the inversibility condition on . The

above results will be extended to the continuously reflected case in Section 4 below.

Remark 3.7. For sake of simplicity, we restrict ourselves to the case where X is
approximated by its Euler scheme. However, it would be natural to wonder what

happens if X is approximated by an order one scheme, i.e. such that:
maxE [|X;, — XT|*] < Cyln*.
i<N i

This would be the case if X can be perfectly simulated on the grid = or if we can
use a Milshtein’s scheme. In this case, the proof of Proposition 3.2 can be easily

adapted, see Remark A.1 in the Appendix, to obtain

127 = 2™ < Cp (ImlE + 1129 = 2% o)

The bounds of Theorem 3.1 and Corollary 3.1 then hold with az(k) = k1 under
(H1), and az(k) = 1 under (H2).

3.4 Discretely reflected BSDE constructed with the Euler scheme

In this subsection, we introduce the solution (Y4%¢ Z4%e) of a discretely reflected
BSDE defined similarly as (Y%, Z9%) but with X™ instead of X i.e.

YRt = YRt i=g(XT)
and, for j <k —1landt € [rj,rjq1),

Ti+1

Y/;déﬁ,e _ Yd?R,e_'_ftrj+1 f(@g%’e)ds—ftrj“ (Z;ié)?,e)/dws 7 (3 12)
Y;d?R,e _ R(t, thv zd?R,e) ) .

with @ .= (X7 ydRe zdRe)

10



This construction will be useful to extend the results of the previous section to the

continuously reflected case.

Observe that

T T
}/td%‘:,e _ g(X%) +/ f(@ld??,e>du/ (ZSéR’e),qu +K%%,e . K;ﬂ?,e < T,
t t
with
k—1
d§Re . |: Yd?RE ]-T'jSt .
=1

.

Moreover, it follows from the same arguments as in the proof of Proposition 3.2, see
Remark A.1 after the proof in the Appendix, that

127 = 2% e < Cy (Jl% + (120 = 2 ppa) (3.13)
where Z9%¢ is defined similarly as Z%, i.e.
~ZdR,e -1 bt dR,e .
Zy = (tz’+1 — ti> Es, Zg s |, te [ti,ti+1), i< N-—-1.
t;

We shall also prove in Section 5 that the result of Proposition 3.3 can be extended
to Zd%e,

Proposition 3.4. Let (H1) hold. Then,

HZd?R,e 7

1 1 1
(5 Iml% +1m1%)

4 Extension to the continuously reflected case
Let (Y, Z, K) be the F-progressively measurable process satisfying

Yy

T T
g(XT) +/ f(X&Y:;? Zs)ds - / (ZS)/dWS + Kr— K
t t
Yi > h(X), 0<t<T (4.1)

with K continuous, non-decreasing, such that Ky = 0 and

/T (Y; = h(Xy))dKy = 0. (4.2)
0

Existence and uniqueness of a solution (Y,Z,K) € S? x H? x §? follows from

Theorem 5.2 in [9], recall that g, h and f are Lipschitz-continuous.

As in Section 3.4, we also define (Y€, Z¢ K€) as the solution of (4.1) with X™ in
place of X, i.e.

1/%6

T

g(XE) /fX;T,Y;,Zj)ds—/ (Z8) AW, + K% — Kf
t

YS > WX[), 0<t<T,

11



where K is continuous and non-decreasing, K§ = 0 and fOT (Y — h(X]))dK§ = 0.

Our first result is standard and we omit the proof, see e.g. [1]. It shows that (Y, Z)
and (Y€, Z¢) can be approximated by the solutions of discretely reflected BSDEs at

a speed ]?R\% under the assumption:

(H3): There exists p; : R? — R% and py : R? — R, such that

()] + |pa(z)] < CL(l+ |2|")
h(z) = h(y) < pr(a)(y —x) + palx)|z —y|* , Va,y eRT.

This condition is slightly weaker than the semi-convexity assumption of Definition
1 in [1] which is satisfied whenever (H1) or (H2) hold.

Proposition 4.1. Assume that (H3) holds. Then,

1
sup |V = Y| 2 + (12 = 2% < Cp W2
te(0,7

and

sup ||V — YR o 41|26 — 2% < Cp IR
t€[0,T]

If moreover (H1) holds, then

jsr=l Tjyrj41] te[rj,rjt1]

R 1
max <|| [Sup Vi =Y e+ sup ¥ - Y HL2> < Cp R
te

We can now extend the convergence results of the previous section to the continu-

ously reflected case.

Theorem 4.1. Let (H1) hold, then

wmax | sup [V, Vil + sup Y7~ Yl 12 < Cpa(n)
t<N—-1 te(ti,ti+1] te[ti7ti+1]

and |27 — Z|lyp + |27 — Z|}pz < Cp|ml1,
with a(m) = |7r|i under (H1) and a(mr) = |7r]% under (H2).

Proof. 1.The error on Y follows from Proposition 4.1, Corollary 3.1 and Theorem
3.1 applied with & = 7.

2. The estimate for Z is a bit more involved. We first approximate (Y, Z) by
(Ye, Z¢). It follows from Proposition 3.6 in [9], our Lipschitz-continuity assumptions,
(2.2) and (2.4) that ||Z — ZeH?_[2 < (Cp, |7r\% Then, we approximate (Y¢, Z€) by
(Ye, Zz4Re) defined in Section 3.3. By Proposition 4.1, [|Z¢ — Z¥e||2 , < Cy, |n].
Finally, it follows from (3.13) that || 2™ — Z4%¢|[2 , < Cp (|n] 4 ||Z2e — Z8%e||2 ),

12



where the last term is controlled by Proposition 3.4. To conclude, we deduce from
Jensen’s inequality that ||Z7 — Z€||, 0 < [|Z7 — ZV%€| |52 + || 200 — ZPe |42,
recall (3.8). O

Remark 4.1. In view of Remark 3.7 and Proposition 4.1 applied with R = 7, it is

clear that, if the Euler scheme X7 is replaced by an order one scheme, then
127 = Zlhe + 1127 = Zl e < Cr ]2,
whenever (H2) holds.

As in (3.9), we now define

1 tit1
Zt = (tiJrl — ti)_ Eti |:/ Zudu} s

t;

_ tit1
Zte = (tzqu — ti)_lEti |:/ Zjdu} for t e [ti,ti+1) , 1SN —1.
t;

Observe that, by Jensen’s inequality,
127 = Zlhe < 12 = Zlhe and (|29 = 2 < (|29 = Z°p . (4.3)

Combining (4.3), Proposition 4.1, Proposition 3.3 and Proposition 3.4 for ® = T,

we obtain the following regularity result for Z and Z°.

Corollary 4.1. Let (H1) holds, then
12 = Zlln +112° = 2|y < O I3
If moreover (H2) holds, then
1Z = Z|lse < Cp |72 .

Remark 4.2. As explained in the previous section, similar results were obtained
in [11]. However, their approach requires that o is uniformly elliptic. Here, we do
not need this condition on . We also obtain better bounds for ||Z — Z||2 and
supyepo,r) I|Yy" — Yill2 under (H2). This last assumption is slightly stronger than
the C? regularity imposed on h by [11].

5 Representation and regularity of Z4% and Z4%

5.1 Preliminaries

In the sequel, we denote by D'? the space of random variable I which are differen-

tiable in the Malliavin sense and such that

T
Hﬂ@+£”&ﬂ@&<m.

13



Here, D, F' denotes the Malliavin derivative of F' at time ¢ < T, see e.g. [12].
We also introduce the space L% of adapted processes V such that, after possibly
passing to a suitable version, V, € D2 for all s < T and

T
HV%+/Hmw%a<m.
0

In the following, we shall always consider a suitable version if necessary.

In this section, we work under the stronger assumptions:
(H'): b, 0, g and f are C}.

The general case will be obtained by using an approximation argument.

Remark 5.1. It is well known that under the above assumptions X € L2 , See e.g.
[12], and satisfies for p > 2 and t,u < T

1
sup ||DsXy — DsXyllzr + || sup |DiXg — Dy Xl[[rr < CF |t —ul2 . (5.1)
s<tAu tVu<s<T

Moreover, the first variation process VX of X is well defined and solves on [0, T
VX, = Id+/ Vb(X,)VX, dr—l—/ ZVJJ ) VX, dW/

where I; is the identity matrix of M¢, ¢7 is the j-th column of o, and Vb, Vo7 the

Jacobian matrix of b and ¢7. Its inverse (VX)™! is the solution on [0, T] of
t

VX)L = I / VX)L |V ngJ Vol (X,)| dr
0

/ Z (VX) Vol (X, ) AW
and the following standard estimates hold:
IVXllsr + 1VX) M lsr < €L (5.2
Finally, we recall the well-known relation between VX and DX:
DX, = VX(VX)) 'o(X)1l<s forallt,s<T. (5.3)
Using the above estimates, (2.2) and the Lipschitz-continuity of o, we deduce that

|| sup |DsX]| ||ls» < Cﬁ. (5.4)
s<T
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Remark 5.2. Observe that X™ also belongs to Ly” under (H') and satisfies

t t d
DX = o(XZ)+ / Vb(X] )D X7 dr + / > Vol (XF)DsXF, AW}
S S le
for s < t, where ¢ = max{u € m : u <t}. Thus, D;X] is given by
IT | Za+ VoXT) (tera At —ti) + > VoI (XT)WE e = W) | ¢ o(XF,)Lest
keNs,t j:]-
with Ny :={k < N : s <t <t}. Using the bound on Vb and Vol, j < d, we

obtain

E | sup |D,XT|P| < C§(1+C§|w\2p)N <1+E

N[

s<t<T

sup | X[ [
t<T

which leads to

E | sup |D8Xf\p] < C7,p>1. (5.5)
| s<t<T
By using standard arguments, one also easily checks that the bounds (5.1) can be
extended to X7, uniformly in 7

1
sup ||Ds Xy — DsXyllre + || sup  |DiXs — Dy Xsl||zr < Cg [t —u|z . (5.6)
s<tAu tVu<s<T

5.2 Representation

In order to provide a suitable representation of Z9%, we shall appeal to the following

easy lemma.
Lemma 5.1. If F € D2, then [F]* € D2 and Dy[F|* = (DF)1{psoy-

Proof. By a straightforward adaptation of Proposition 1.2.3 in [12], we observe that
[F]* belongs to DY? and D;[F]* = a(DF) where « is a random variable bounded
by 1 satisfying 1yps oy = 1ypsgy. The proof is then concluded by appealing to
Proposition 1.3.7 in [12]. O

Recalling that g > h, using Remark 5.1, Lemma 5.1, Proposition 5.3 in [8] and an
induction argument, we easily deduce from (3.1) that (Y%, Z®) belongs to L.

Proposition 5.1. Let (H') hold. Then, the process (YR, Z®) belongs to L&? and,
for allt < T, Dy(Y® 2R solves on (15, 7541), ] < kK —1,

DY = (Dih(X

Tl

) = DY ) x,

Ti+1

]+1) Ti+1

_ Ti+1 Tj+1
+ DY 4 / V(0% D,0dRdy — / D Z3Raw, .

Tj+1
s s

15



In order to get rid of the indicator functions appearing in (5.7), we now define the

following sequence of stopping times
m=inf{t €R [t > 710, MX) >SYIRIAT [ j<r—1. (5.8)

Following [15] , we also define, for s <t < T,

A = exp{ /tvzﬂ@zmydm— / (;vzf(@iw—vyf(ei%)) du},

where V, f denote the partial derivative of f with respect to its second variable y,
and V. f and V. f the gradient of f with respect to its first and last variable.

Remark 5.3. The following estimates are standard:

| supTAfHLp < 7, (5.9)
s<t<
I sup A =AY s < CPlt—s|z ,t,s<T. (5.10)
u<tAs

Using (5.1), we deduce that

| sup T|A§DtXS —A'Dy Xyl |lpr < CPlt—wl2 ,ut<T. (5.11)
uVt<s<

We can now state the main result of this section which provides a representation for
Z%,

Corollary 5.1. Let (H') hold. Then, there is a version of ZW% such that for each
j<k—1landterjrj):

(zaRy = IE[Vg(XT)(AtDtX)Tl{Tj:T}+Vh(XTj)(AtDtX)Tj1{Tj<T} ]}}]

+ E [ / K Vo (O A'D X)), du | .7-}} .
t

Proof. 1. It follows from Proposition 5.1 and the assumption g > h that, for all
t<T,j<k—1ands € [rj,rj;1), we have

= AR vdR
DY = (Vh(XTHl)DtXTjH - DtY7"j+1> l{h(XTj+1)>?r(;-§§_1}
~ AR Tj+1
+ Do +/
S

Tj+41
V(0™ D,0Rdy — / " DzRaw, .

S

In particular,

DYI® = (Vh(XTHl)DtX

Tit1

Yaebid
h DtY;qu) 1{h(Xr,'

y dR
_}+1)>Yrj+1}

Tj+1

~ Tj+1 Tj+1
+ DY 4 / V(0 D,0d%dy — / D Zz%aw,, .

T3 Ty

16



Since f/;i% = g(X7), it follows that Dtﬁi% = Vg(X7)D:X7. Recalling that g > h,

it then results from a simple induction that for s € [r;,rj41)
DY = Vg(X1)DiXrl(r, 1y + V(X)) (DiX)r 17 <1
’Tj Tj
- / V(0 D,ed%dy — / D Z%aw,, .
S S
By the same arguments as in Proposition 5.3 in [§], we have th/;d§R = DtY;d% =

(Z3®) on (r;,7j+1). The result then follows from the previous equation, It6’s for-

mula and by considering a suitable version. O

Remark 5.4. Assume that (H’) holds. Then, it follows from (5.4), (5.9) and Corol-
lary 5.1 that ||Z9%||s» < C7.

Remark 5.5. Let (H') hold. We deduce from the same arguments as in the proof
of Corollary 5.1 that there is a version of Z4%¢ such that for each t € [rj,7j41),
j<k-—1

(Z;“R’e)/ = E [Vg(XT)DtX%l{T;:T} + Vh(X%)(Ae’tDtXW)Tjl{Tje<T} ‘ ft
+ E [ / $ VL H(OP) (A DX | ft] ST,
t
where

me=if{t e R |t >0, W(XT) > Y YAT | j<n—1.

and A}’ is defined, for s <t < T, by

t t 1
AP = exp{ [ veremeaw, - [ <2|sz(®3%’e)l2Vyf(@fﬁ’e)) du},

The following estimates are standard:

| E?ETA?SHLP < c?, (5.12)
ST
I sup (A7 = AS] o < CPlt—s|z , t,s<T. (5.13)
u<tAs

Using (5.6), we deduce that

| sup [AYDXT — AUD,XT| |lr < CPlt—ulz , u,t<T. (5.14)
tVu<s<T

5.3 Regularity

In this section, we replace (H2) by the stronger assumption:

(H2) : 0 € C} with derivatives up to order two bounded by L, and h € C} with
derivatives up to order three bounded by L.

The extension of the following results to (H2) will be obtained by using an approx-

imation argument.

17



Proposition 5.2. Let (H1)-(H') hold. Then
12 = 2% < C1, (alk) [7]* + () |

where (a(k),e(m)) = (I{i,|ﬂ'|i) under (H1), and (a(k),e(n)) = (1,’7T|%> under
(H2').

The following remark prepares for the proof.

Remark 5.6. Set

4
8 = <1+ sup |DsXi|+ sup|X¢| + sup ’Aﬂ) )
T s<t<T

s<t<T t<

and observe that, by (2.2), (5.4) and (5.9),
1Bl < CL,p>2. (5.15)

Fix t < T and let 61 and 65 be two stopping times such that ¢t < 6; < 0y <T P—a.s.

By the Lipschitz-continuity assumption on b and o, we have
E [|X6’1 - X492|2 | ‘7:91] < CL E[ﬁ(GQ - 91) | -7:91] : (516)
Under (H2'), we deduce from It6’s Lemma that

‘E [Vh(X92)A32(DtX)92 — Vh(Xgl)Agl (D¢ X)p, | .7:91” < CLE[B(02—61) | Fo,] -
(5.17)
When (H1) holds, we can use the bound |Vh| < L to obtain

IVh(XQZ)AEQ (DtX)92 - Vh(Xgl)A‘tgl (DtX)91’ < g |Vh(X92) - Vh(X91)|
+ CrL|AG,(DeX)o, — Af, (DiX)o,|

which, by Lipschitz-continuity of Vh, [t6’s Lemma and the Cauchy-Schwartz in-

equality, implies

D=

E [|Vh(Xe,)Ag, (DiX)a, — Vh(Xp, )N, (D: X ), | | Fo,] < CL (BE[B(62 — 61) | Fo,])
(5.18)

where

B:=sup E [52 | 7] satisfies  [|B]|» <CT,p>2, (5.19)
t<T

recall (5.15).

Proof of Proposition 5.2.

1. Tt follows from Corollary 5.1 that, after passing to a suitable version,

(th%)/:v;f]’t ,Tj§t<7’j+1,j§f$—1,

18



where, for j < x — 1,
V) = E [Vg(XT)(ASDSX)Tl{Tj:T} + VA(X.,) (N DyX) 1ir ory | Fi
+ E [ / VO A DX )udu | Fo| , s<t.

Also observe from (5.3) and (5.8) that

Vit = Alg, fort < Tj+1 (5.20)
where
Al = E [Vg(XT)AOTVXTl{Tj:T} + VA(X ) AV X)L oy | ft]
" R
+E [/ Vo fOANVX)du | | , t<T
t
and

n = (A?VXt)_lO'(Xt) ; t < T.

It follows that

d d
ZI 2P < O 3D ST AN () — (AL ()2
l1=1/42=1

where the superscript ¢; and ¢;,¢> denote the components of the vector A7 and
matrix 7. In order to avoid too complicated notations, we shall now restrict to the
case d = 1. The general case is obtained by the same argument, by working on each
term |(A]) (me) "2 — (A])" (1,)""2|* separately.

2. We first deduce from the definition of V;** that, for t € [t;,tis1) C [rj,7j41),

287 = ZER <V = VP =V (5:21)

where, by (5.11),
IV =V, < Cplal. (5.22)

Moreover, the martingale property of V7% on [t;,;11], (5.4) and (5.20) imply that

jti jsti jti jsta
BV - ViR < B[V - vt
jiti jiti j j
S ]E |:|‘/;Z'+1+1’2 - “/t‘z |2 + (‘A¥Z+177t1|2 - |A‘Zi+1nti+l‘2) + CYL|7T|

(5.23)
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3. In this part, we study the first term in the right-hand side of (5.23). Define i;
through ¢;; = r;, j <k, and observe that

R— 17/]+1 1
o J,tk+1 otk 12
xo= ZZE[V;%H |Vtk |}
Jj=0 k=i;

- Sefwe-ng

K—1
< E [|Vrfzfl,r,<’2 _ "/*7%77“0’2] + ZE [|Vrjjfl,r]»’2 _ ’Vrjj’” 9
Jj=1
Kk—1 ) A
< Cp |1+) E [Mj‘”jp _ |Vrj’”|2} (5.24)
Jj=1

where the last inequality follows from (5.15).

3.a. For ease of notations, we now write E,, [-] for E |- | F,,]. By Cauchy-Schwartz

inequality,

|Wi—1,Tj|2 . H/T];rj 2 < |‘4‘€—1,Tj o ‘/%,Tj| |W€—1,Tj + ‘/T];T‘j
< CLE, (8] V7 -V, (5.25)

where 3 is defined in Remark 5.6.

Recalling that Vg, Vh are bounded by L and that 7;_1 < 7; <T', we observe that
Vg(XT)DtXT]-{T =T} + Vh( )(AtDt )’le{Tj<T}
_vg(XT)DtXT]-{Tj,I:T} — Vh(XTj,l)(AtDtX)Tj,l1{Tj,1<T}
= (Vg(X7)Di X7 — VA(X:,)(A'Di X)) 1(7,—1y
— (Vg(X7)Dy X7 — VA(X7,_ )A'DiX)7, ) 1gr,  omy
+Vh(X7 (A DX)r, = V(X7 ) (A DX)y,
< /Bl{Tj—l<Tj:T} + (Vh( TJ)(AtDt ) Vh( Tj— 1)(AtDtX)Tj—1) :

When (H1) holds, it then follows from (5.4), (5.9) and (5.18) that

j—1,7; j,T
|V7"]J = ‘/TJJ < CLEy, |:1{Tj—1<Tj:T}:|
_1 1
+ (B, (875 — 750 + B By, [Br0 — 7))
Since 25;11 1(7,_,<7;=1} < 1, the above inequality combined with (5.24) and (5.25)
implies
xk—1

L < CLE |1+ Y By, (8] (Er, [B(r; — 75-1)] + B2 By, [B(r; — 75-1)
j=1

(ST

)

rk—1
< ¢ {143 (E[38( - 7-0)] + E[5(r; - 73-1)]})
=1
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where we used Cauchy-Schwartz inequality and (5.19). By (5.19) again, this shows

that
¥ < O {1+E[5ﬂ(m—1—70)} + V& E[B(75-1 — 70)] }
< Cr(1+Vk) . (5.26)

NI

3.b. Under (H2'), we use exactly the same arguments except that we appeal to
(5.17) instead of (5.18). This leads to

Kk—1

Y < ( 1+ ZE [56(7'] — Tj—l)] < CL. (527)
j=1
4. We now study the second term in the right-hand side of (5.23).
4.a. Using Cauchy-Schwartz inequality, (2.2), (5.2), (5.9), the Lipschitz continuity

of o and standard estimates, we first observe that

. . 1
E |Agi+177ti|2 - |A§i+177ti+1|2} < CL E [|7lti - 77ti+1|4} *
< Cplrlz.
It follows that
k—1%j41—1 ' ' L
2 o= 33 B[l el - 4 e P <ol (5.28)
=0 k=i;

4.b. We now work under (H2'). We first observe that
E [‘Aii+1nti|2 - |Agi+1nti+1‘2] < E [’AiZ‘Q (\%‘2 - ‘nti+1|2):|
+ B[4, 2= 1AL (il = e )] -

Since (H2') is in force, we can apply Ito’s Lemma on || between ¢; and t;11. In
view of (2.2), (5.2), (5.9), this leads to

E[IALE (inf? = mea?)] < ol

On the other hand, Cauchy-Schwartz inequality, It6’s Lemma applied to ||? and
(2.2), (5.2), (5.9) imply

E (147, 2 = 1AL (1,2 = ey )]
1 1
<E (14, P = 1ALP2] B | (0 = e )]
1
< Cu 7B (141, P — 1AL 2?] 7 .

Moreover, Jensen’s inequality, the bound on V, f and (5.2), (5.9) show that

B (147, = B, |4, |14 - Cp 8,
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which implies

E (4, - 14422 = E |14, 1"+ 14] " —204f, P14LP]

IN

tit1

E ||4],,[* = 4] *] + Cp Il

Thus, combining the above estimates and using Jensen’s inequality again, we obtain

k—1%4+1—1
. ) ) )
¥ o= XY B[l - 14 ]
1fﬂflij+1*1 1
4 . 4 . 4] 2
S EERLED DD DR F AN
k—1tj+1—1 2
j 4 i |14
= Cp |1+ [E Z Z |Agk+1‘ _|Agk’

where the right-hand side term can be bounded by a straightforward adaptation of
the arguments used in 3. under (H2'). This shows that

Y o< O (5.29)

5. By (5.21), (5.22), (5.23), the definition of & and ¥’ in (5.24) and (5.28)
n—1 tiv1
Z/ JE[|ZE“—Z§“|2 dt < Cpln] 1+%+5) .
. t;

The proof is then concluded by appealing to (5.26) and (5.28) under (H1), and to
(5.27) and (5.29), under (H2'), and by using Remark 3.5. O

Proof of Proposition 3.3 Let f, be defined by :
fn(xayaz) = / ¢n($—£,y—’U,Z—C)f(f,’U,C)dgd’UdC )
R2d+1

with ¢, (2,9, 2) = n?*lé(n(x,y, z)) and ¢ a compactly supported smooth proba-
bility density function on R?¥*1, Since f is L-Lipschitz, so is f, and moreover:
Cr
= falle < —,
n
for some C' > 0. Let oy, by, gn, hy be defined similarly for o, b, g, h so that we

have:
Cr
llo = onlloc + 116 = blloo + 119 — gnllec + |2 — nllec < o
Let X™ be the forward diffusion associated to b, and o, and let (Y%7 zd%n frdRn)
be the solution of the discretely reflected BSDE (3.1) associated to X", f,, and g,.
Arguing as in Proposition 3.6 of |9], we get

C
|24% — Zz%e 2, < 21 (5.30)
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Since, by Jensen’s inequality,

1297 = 2% |ps < (1297 — 20|y ]| Z9R — 2Ry ] 7R — 7R

< 9 HZd% . Zd%,nHH2 + HZdﬂ‘E,n . Zdﬂ?,n”Hz ’

the proof is concluded by applying Proposition 5.2 to Z9%" using (5.30) and letting
n go to infinity. O

We now consider the case where the forward diffusion is approximated by its Euler

scheme.

Proposition 5.3. If (H1)-(H') hold, then
||z — 28|, < Oy (;ﬁ ‘7(’% + \7r\5> )

Proof. In view of Remark 5.2 and Remark 5.5, we can follow line by line the argu-
ments of the proof of Proposition 5.2, after replacing the corresponding quantities

in the definitions of 3 and 3, and re-defining, for j < xk — 1,
VP* = B |Vg(XF) (A DX )1 emry + VA(X7) (A DX )t Lpe ey | |
+ E [/ ’ sz(GﬂgR’e)(Ae’stX”)udu | .7-}] ,s<t. (5.31)

The only difference appears in step 2. Instead of using a relation like (5.3) for X™
(which does not hold), we use the martingale property of V7 on [t;, #;11) and write

E |:|‘/;j7ti _ W{’ti|2} < E |:|Vj7ti ‘2 N H/tz’tzlﬂ

tit1

IN

jiti it jiti 5t 5t j>ti
E [V 2 — VA2 4 V3t — vt | vt vt
where by (5.5), (5.12), (5.14) and Cauchy-Schwartz inequality
B [V - vis i vt < o/l

tit1 tipal 17t i+1

The inequality (5.23) then becomes
E(VP" - ViR < B|IVEE = VIR + Coy/Tal
a

Proof of Proposition 3.4 The required result follows from Proposition 5.3 and by

arguing as in the proof of Proposition 3.3. O

We conclude this section with the proof of Proposition 3.1.
Proof of Proposition 3.1. Assume that (H’) holds. By Remark 5.4, we have

tit1
IE[/ |Z§%|2ds} < Cplnl.
t;
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Arguing as in the proof of Proposition 3.3, we obtain that the above bound holds
without (H’). The required result then follows from Ité’s Lemma, the Lipschitz-
continuity of f, (2.2), the bound on Y'® given in (3.3) and Burkholder-Davis-Gundy’s
inequality, recall (3.1). O

A Appendix

Proof of Proposition 3.2
1. Set 6X = X — X", 6V = YR _y7 5y = YR _y7 57 = z% _ 27,

5fs = F(Xo, YR, ZI®) — f(XT, Y[, ZT) for s € [ti,tiy1). Recalling (3.2), (3.6),
(3.7), the fact that #® C 7 and using It6’s Lemma, we compute that for ¢ € [t;, t;11)

) B titr1 9 tir1 B
Al = By {\51@|2+/ 0Zs|*ds — |67, | } =E, [/ 26Y56f8ds] ,
t t

recall that E, [-] stands for E[- | 7,]. By (3.10), the Lipschitz-continuity of f and
the inequality zy < cx? + ¢ 1y?, for z,5y € Ry and ¢ > 0, we therefore obtain

) tit1 - C - tit1
Al < Ry, [/ oz|6YS|2ds+aL<|7r] |6Yti|2+/ |5Zs|2ds)]
t

t;

C titr1 _ _ B
b o | [ X TR TP 1287 - 2Py
t
where « is a positive parameter to be chosen later on. Using Gronwall’s Lemma and
taking « large enough, we deduce that, for |r| small enough, there is some 1 > 0,

independent of 7, such that

B tit1

Ey, [|m|2+n / |6Zs|2ds} < OLlIE, [16Y;,,, %] + CLB; (A1)

t;
sup By, [0V < O (Br, [10%;,,, %) + Il 10V 2 + Bi) (A.2)

te[ti,ti+1]

where
tit+1 - - _
Bioi By | [ (X - X T TP (28R 2P 0]
t;

2. Since |0Y;,| < max{|0Y;,|;|h(X,,) — h(X[)[1en} for i < N, see (3.1), (3.4) and
(3.7), it follows from (A.1) applied at ¢t = t; and the Lipschitz-continuity of h that,

for |7| small enough,

’(SY;‘/Z‘Q < maX{SCLlﬂEti [|5)/t1+1‘2] + CLB; ; L2’5Xti|21tie%} . (A3)
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We claim that, for all 0 < k < N,

2k—1
|5Y2N—k|2 <Pr = L262kCLw|5‘X75N7k|2 +CL LQ’W|2EtN7k [(X%)Q] Z LIl
j=k
k .
+Cpy MR, L [Byj] (A.4)

=1

recall the definition of X™* after (2.5). For k = 0, the result follows from the Lipschitz-
continuity of g (with the convention ) Jy = 0). Assume now that this inequality holds
for some k£ < N — 1. Observing that (A.4) and (2.5) implies

ecLlw‘Ethkfl [‘5}/}/N—k|2] +OLBN-k-1 = Prp

and that Py > L2’5XtN_(k+1) |2, we deduce from (A.3) that the inequality ‘5YtN_(k+1) 2 <
Pr+1 holds too. This proves (A.4) which by (2.4) implies

maxE [|0Y, "] < Cp (|| + Nlx|* + B)

with
N-1

>

=0

B:=E

Since by assumption N|m| < L, this implies
) _
IZI%E}\)[{EU(SYM | < ¢ (In|+B) . (A.5)
3. Observing that for s € [t;, tiy1)
. 2 s
B |70 7] < o [CE[IretDE + 2] au
ti

it follows from (2.2), (3.3), the Lipschitz-continuity of f and the assumption N|7| <
L that

N-1 g, ) )
> [TEFR- v < culal.
i=0 V't

Combined with (2.4), this implies

B < O (yw|+|yzdﬂ‘*—2d%u${2) . (A.6)

In view of (A.1) and (A.5), this leads to

N tit1
BTt [ 0ZPas] < (4 Cula) B 0% 4 CuB) L (A)
t;

N

Cy, (Jnl +112% - 293,
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which, by (3.1), (3.7), (A.2), (A.5) and (A.6) shows that

supE [|Y;/?] +supE |[6%i| < Cu(lnl +112°% - Z%|Ba) . (A9)
t<T t<T

Let i; be defined through ¢;; = r;. Using (3.1) and (3.7) again, we deduce from
(A.7) that

Tj+1 b1l tht1
E [/ 6Z,’ds| = D E U |6ZS|2ds}
rj k=i, t
ijr1—1
< CLE ’5YTJ'+1‘2 - ‘5}/7’]‘2 + Z (Bk + ‘71’”(5}/;%_‘_1‘2)
k=i,
Since, by the Lipschitz continuity of h and g,
16Y s, 2 2 <10V, P+ L2 X,, 2 (A.9)
we obtain
s 2 52 52, 72 2
E 6Z,2ds| < CLE [y(syw\ — |6V, |2 + L2[6X,, |
Tj
ij+1—1
+ E| ) (Br+Inl(In|+ B)) (A.10)
k=i,

where we used (A.5). It then follows from (A.6) and (2.4) that

ol erin _
1Z® - Z™|3; = E Z/ 0Z,’ds| < O (m \7r\+HZd§R—Zd§RH%2) .
j=0""i

(A.11)

This proves the second claim of Proposition 3.2.
4. Using Burkholder-Davis-Gundy’s inequality and arguing as in the first steps of

1, we now compute that

E| sup [0Y,[*| < E| sup [§Yi>+ oY,
terj,rjt1] te[rj,rj+1)
2 i+t 2 2 \/ 2
< CUB|I8Y Pt [ (AP 4 BZP) ds + 16,
Tj
_ Ti+1 ~
< ¢, |B+E |6Ej+1\2+/ 167, %ds +ni%<E[ymy2]
T =
< Oy (Jnl +112% - 298,
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where we used (A.6), (A.8) and (A.10). Since
[6Ye| < [0Y2] + |h(Xe) — h(XT)]

the first assertion of Proposition 3.2 follows from the Lipschitz-continuity of h and
(2.4). O

Remark A.1. Observe that the inequality (A.3) implies
’5}/;51’2 < eCLwEti [’6}/;514-1‘2] + CLBi + L2‘6Xti’21t¢€§R .
In the case where the Euler scheme is replaced by an order one scheme X7 satisfying

max E [| X, — X7|?] < Cln|?,
i<N i

the above inequality immediately leads to (A.5). Moreover, the term E [|6X, %
in (A.10) is controlled in Cf|r|?. Thus, (A.11) reads

IN

k—1 Tit1 _
129 _ Z7|2, = E Z/ 10Z,|2ds Cr (e [+ | + 112 — 293, )
j=0""J

IN

Cr, (Jal +112%% - 2% )

since k|m| < L.

References

[1] Bally V. et G. Pages (2003). Error analysis of the quantization algorithm for
obstacle problems. Stochastic Processes and their Applications, 106, 1-40.

[2] Bouchard B. and R. Elie (2005). Discrete time approximation of decoupled
Forward-Backward SDE with jumps. To appear in Stochastic Processes and

their Applications.

[3] Bouchard B. and N. Touzi (2004). Discrete-Time Approximation and Monte-
Carlo Simulation of Backward Stochastic Differential Equations. Stochastic
Processes and their Applications, 111 (2), 175-206.

[4] Clément E., D. Lamberton and P. Protter (2002). An analysis of a least
squares regression method for American option pricing, Finance and Sto-
chastics, 6, 449-472.

[5] Fournié E., J.-M. Lasry, J. Lebuchoux, P.-L. Lions and N. Touzi (1999). Ap-
plications of Malliavin calculus to Monte Carlo methods in finance. Finance
and Stochastics 3, 391-412.

27



[6]

7]

8]

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Gobet E., J.P. Lemor and X. Warin (2006). Rate of convergence of empirical
regression method for solving generalized BSDE. Bernoulli, 12 (5), 889-916.

El Karoui N., E. Pardoux and M.-C. Quenez (1997). Reflected backward
SDEs and American options. In Numerical Methods in Finance, Cambridge
University Press, 215-231.

El Karoui N., S. Peng and M.-C. Quenez (1997). Backward stochastic differ-

ential equations in finance. Mathematical finance, 7 (1), 1-71.

El Karoui N., C. Kapoudjian, E. Pardoux, S. Peng and M.C. Quenez (1997).
Reflected Solutions of Backward SDE’s, and related obstacle problems for
PDE’s. The Annals of Probability, 25 (2), 702-737.

Kloeden P. E. and E. Platen (1992). Numerical Solution of Stochastic Differ-

ential Equations. Springer.

Ma J. and J. Zhang (2005). Representations and regularities for solutions
to BSDEs with reflections. Stochastic processes and their applications, 115,
539-569.

Nualart D. (1995). The Malliavin Calculus and Related Topics. Springer Ver-
lag, Berlin.

Pardoux E. and S. Peng (1992). Backward stochastic differential equations
and quasilinear parabolic partial differential equations. Lecture Notes in Con-
trol and Inform. Sci, 176, 200-217.

Schweizer M. (2002). On Bermudan Options. In K. Sandmann and P. J.
Schonbucher (eds.), Advances in Finance and Stochastics. Essays in Honour

of Dieter Sondermann, Springer, 257-269

Zhang J. (2001). Some fine properties of backward stochastic differential
equations. PhD thesis, Purdue University.

Zhang J. (2004). A numerical scheme for BSDEs. Annals of Applied Proba-
bility, 14 (1), 459-488.

28



